Clarify that only english summarization is supported at the moment, pin it in the code
This commit is contained in:
parent
f83043921a
commit
f74b756db6
2 changed files with 17 additions and 16 deletions
16
README.md
16
README.md
|
@ -2,6 +2,10 @@
|
||||||
|
|
||||||
An audio summarizer that glues together [faster-whisper](https://github.com/SYSTRAN/faster-whisper) and [BART](https://huggingface.co/facebook/bart-large-cnn).
|
An audio summarizer that glues together [faster-whisper](https://github.com/SYSTRAN/faster-whisper) and [BART](https://huggingface.co/facebook/bart-large-cnn).
|
||||||
|
|
||||||
|
## Supported Languages
|
||||||
|
|
||||||
|
Only English summarization is supported.
|
||||||
|
|
||||||
## Dependencies
|
## Dependencies
|
||||||
|
|
||||||
- Python 3 (tested: 3.12)
|
- Python 3 (tested: 3.12)
|
||||||
|
@ -24,17 +28,15 @@ pip3 install -r requirements.txt
|
||||||
### Usage
|
### Usage
|
||||||
|
|
||||||
```
|
```
|
||||||
./audio-summarize.py -i filepath -o filepath
|
./audio-summarize.py -i filepath -o filepath [-m name]
|
||||||
[--summin n] [--summax n] [--segmax n]
|
[--summin n] [--summax n] [--segmax n]
|
||||||
[--lang lang] [-m name]
|
|
||||||
|
|
||||||
options:
|
options:
|
||||||
-h, --help show this help message and exit
|
-h, --help show this help message and exit
|
||||||
--summin n The minimum lenght of a segment summary [10, min: 5]
|
--summin n The minimum lenght of a segment summary [10] (min: 5)
|
||||||
--summax n The maximum lenght of a segment summary [90, min: 5]
|
--summax n The maximum lenght of a segment summary [90] (min: 5)
|
||||||
--segmax n The maximum number of tokens per segment [375, 5 - 500]
|
--segmax n The maximum number of tokens per segment [375] (5 - 500)
|
||||||
--lang lang The language of the audio source ['en']
|
-m name The name of the whisper model to be used [small.en]
|
||||||
-m name The name of the whisper model to be used ['small.en']
|
|
||||||
-i filepath The path to the media file
|
-i filepath The path to the media file
|
||||||
-o filepath Where to save the output text to
|
-o filepath Where to save the output text to
|
||||||
```
|
```
|
||||||
|
|
|
@ -20,12 +20,12 @@ from transformers import pipeline
|
||||||
|
|
||||||
# Transcription
|
# Transcription
|
||||||
|
|
||||||
def transcribe(model_name: str, audio_file: str, language: str) -> str:
|
def transcribe(model_name: str, audio_file: str) -> str:
|
||||||
'''Transcribe the media using faster-whisper'''
|
'''Transcribe the media using faster-whisper'''
|
||||||
t_chunks = []
|
t_chunks = []
|
||||||
print("* Loading model ", end="", flush=True)
|
print("* Loading model ", end="", flush=True)
|
||||||
model = WhisperModel(model_name, device="auto", compute_type="int8")
|
model = WhisperModel(model_name, device="auto", compute_type="int8")
|
||||||
segments, _ = model.transcribe(audio_file, language=language, beam_size=5, condition_on_previous_text=False)
|
segments, _ = model.transcribe(audio_file, language="en", beam_size=5, condition_on_previous_text=False)
|
||||||
print()
|
print()
|
||||||
print("* Transcribing audio ", end="", flush=True)
|
print("* Transcribing audio ", end="", flush=True)
|
||||||
for s in segments:
|
for s in segments:
|
||||||
|
@ -67,11 +67,10 @@ def summarize(chunks: List[str], summary_min: int, summary_max: int) -> str:
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# parse commandline arguments
|
# parse commandline arguments
|
||||||
argp = ArgumentParser()
|
argp = ArgumentParser()
|
||||||
argp.add_argument("--summin", metavar="n", type=int, default=10, help="The minimum lenght of a segment summary [10, min: 5]")
|
argp.add_argument("--summin", metavar="n", type=int, default=10, help="The minimum lenght of a segment summary [10] (min: 5)")
|
||||||
argp.add_argument("--summax", metavar="n", type=int, default=90, help="The maximum lenght of a segment summary [90, min: 5]")
|
argp.add_argument("--summax", metavar="n", type=int, default=90, help="The maximum lenght of a segment summary [90] (min: 5)")
|
||||||
argp.add_argument("--segmax", metavar="n", type=int, default=375, help="The maximum number of tokens per segment [375, 5 - 500]")
|
argp.add_argument("--segmax", metavar="n", type=int, default=375, help="The maximum number of tokens per segment [375] (5 - 500)")
|
||||||
argp.add_argument("--lang", metavar="lang", type=str, default="en", help="The language of the audio source ['en']")
|
argp.add_argument("-m", metavar="name", type=str, default="small.en", help="The name of the whisper model to be used [small.en]")
|
||||||
argp.add_argument("-m", metavar="name", type=str, default="small.en", help="The name of the whisper model to be used ['small.en']")
|
|
||||||
argp.add_argument("-i", required=True, metavar="filepath", type=Path, help="The path to the media file")
|
argp.add_argument("-i", required=True, metavar="filepath", type=Path, help="The path to the media file")
|
||||||
argp.add_argument("-o", required=True, metavar="filepath", type=Path, help="Where to save the output text to")
|
argp.add_argument("-o", required=True, metavar="filepath", type=Path, help="Where to save the output text to")
|
||||||
args = argp.parse_args()
|
args = argp.parse_args()
|
||||||
|
@ -80,7 +79,7 @@ if __name__ == "__main__":
|
||||||
args.summax = max(5, args.summax)
|
args.summax = max(5, args.summax)
|
||||||
args.segmax = max(5, min(args.segmax, 500))
|
args.segmax = max(5, min(args.segmax, 500))
|
||||||
# transcribe
|
# transcribe
|
||||||
text = transcribe(args.m, args.i, args.lang).strip()
|
text = transcribe(args.m, args.i).strip()
|
||||||
# split up into semantic segments & summarize
|
# split up into semantic segments & summarize
|
||||||
chunks = split_text(text, args.segmax)
|
chunks = split_text(text, args.segmax)
|
||||||
summary = summarize(chunks, args.summin, args.summax)
|
summary = summarize(chunks, args.summin, args.summax)
|
||||||
|
|
Reference in a new issue