Switch from whisper.cpp to faster-whisper

This commit is contained in:
ChaoticByte 2024-08-15 22:20:55 +02:00
parent 464ede2444
commit f83043921a
No known key found for this signature in database
5 changed files with 47 additions and 112 deletions

1
.gitignore vendored
View file

@ -1,4 +1,3 @@
tmp/ tmp/
vendor/*
.venv/ .venv/
.vscode/ .vscode/

View file

@ -1,48 +1,40 @@
# audio-summarize # audio-summarize
An audio summarizer that glues together ffmpeg, whisper.cpp and BART. An audio summarizer that glues together [faster-whisper](https://github.com/SYSTRAN/faster-whisper) and [BART](https://huggingface.co/facebook/bart-large-cnn).
## Dependencies ## Dependencies
- Python 3 (tested: 3.12) - Python 3 (tested: 3.12)
- ffmpeg
- git
- make
- c/c++ compiler (on Ubuntu, installing `build-essential` does the trick)
## Setup ## Setup
Create a virtual environment for python and activate it: Create a virtual environment for python, activate it and install the required python packages:
```bash ```bash
python3 -m venv .venv python3 -m venv .venv
source .venv/bin/activate source .venv/bin/activate
``` pip3 install -r requirements.txt
Run setup.sh
```bash
./setup.sh
``` ```
## Run ## Run
1. You need a whisper.cpp compatible model file (-> https://huggingface.co/ggerganov/whisper.cpp) 1. In your terminal, make shure you have your python venv activated
2. In your terminal, make shure you have your python venv activated 2. Run audio-summarize.py
3. Run audio-summarize.py
### Usage ### Usage
``` ```
./audio-summarize.py -m filepath -i filepath -o filepath ./audio-summarize.py -i filepath -o filepath
[--summin n] [--summax n] [--segmax n] [--summin n] [--summax n] [--segmax n]
[--lang lang] [-m name]
options: options:
-h, --help show this help message and exit -h, --help show this help message and exit
--summin n The minimum lenght of a segment summary [10, min: 5] --summin n The minimum lenght of a segment summary [10, min: 5]
--summax n The maximum lenght of a segment summary [90, min: 5] --summax n The maximum lenght of a segment summary [90, min: 5]
--segmax n The maximum number of tokens per segment [375, 5 - 500] --segmax n The maximum number of tokens per segment [375, 5 - 500]
-m filepath The path to a whisper.cpp-compatible model file --lang lang The language of the audio source ['en']
-m name The name of the whisper model to be used ['small.en']
-i filepath The path to the media file -i filepath The path to the media file
-o filepath Where to save the output text to -o filepath Where to save the output text to
``` ```
@ -50,16 +42,14 @@ options:
Example: Example:
```bash ```bash
./audio-summarize.py -m ./tmp/whisper_ggml-small.en-q5_1.bin -i ./tmp/test.webm -o ./tmp/output.txt ./audio-summarize.py -i ./tmp/test.webm -o ./tmp/output.txt
``` ```
## How does it work? ## How does it work?
To summarize a media file, the program executes the following steps: To summarize a media file, the program executes the following steps:
1. Convert the media file with [ffmpeg](https://www.ffmpeg.org/) to a mono 16kHz 16bit-PCM wav file 1. Convert and transcribe the media file using [faster-whisper](https://github.com/SYSTRAN/faster-whisper), using [ffmpeg](https://www.ffmpeg.org/) and [ctranslate2](https://github.com/OpenNMT/CTranslate2/) under the hood
2. Transcribe that wav file using [whisper.cpp](https://github.com/ggerganov/whisper.cpp) 2. Semantically split up the transcript into segments using [semantic-text-splitter](https://github.com/benbrandt/text-splitter) and the tokenizer for BART
3. Clean up the transcript (newlines, whitespaces at the beginning and end) 3. Summarize each segment using BART ([`facebook/bart-large-cnn`](https://huggingface.co/facebook/bart-large-cnn))
4. Semantically split up the transcript into segments using [semantic-text-splitter](https://github.com/benbrandt/text-splitter) and the tokenizer for BART 4. Write the results to a text file
5. Summarize each segment using BART ([`facebook/bart-large-cnn`](https://huggingface.co/facebook/bart-large-cnn))
6. Write the results to a text file

View file

@ -10,55 +10,39 @@ warnings.simplefilter(action='ignore', category=FutureWarning)
from argparse import ArgumentParser from argparse import ArgumentParser
from pathlib import Path from pathlib import Path
from subprocess import check_call, DEVNULL
from tempfile import TemporaryDirectory
from typing import List from typing import List
from faster_whisper import WhisperModel
from semantic_text_splitter import TextSplitter from semantic_text_splitter import TextSplitter
from tokenizers import Tokenizer from tokenizers import Tokenizer
from transformers import pipeline from transformers import pipeline
# Some constant variables
# Transcription
def transcribe(model_name: str, audio_file: str, language: str) -> str:
'''Transcribe the media using faster-whisper'''
t_chunks = []
print("* Loading model ", end="", flush=True)
model = WhisperModel(model_name, device="auto", compute_type="int8")
segments, _ = model.transcribe(audio_file, language=language, beam_size=5, condition_on_previous_text=False)
print()
print("* Transcribing audio ", end="", flush=True)
for s in segments:
print(".", end="", flush=True)
t_chunks.append(s.text)
print()
t = "".join(t_chunks)
return t
# NLP
NLP_MODEL = "facebook/bart-large-cnn" NLP_MODEL = "facebook/bart-large-cnn"
root_dir = Path(__file__).parent
whisper_cpp_binary = (root_dir / "vendor" / "whisper.cpp" / "main").__str__()
# Steps
def convert_audio(media_file: str, output_file: str):
'''Convert media to mono 16kHz pcm_s16le wav using ffmpeg'''
check_call([
"ffmpeg",
"-hide_banner",
"-loglevel", "error",
"-i", media_file,
"-ac", "1",
"-ar", "16000",
"-c:a", "pcm_s16le",
output_file])
def transcribe(model_file: str, audio_file: str, output_file: str):
'''Transcribe audio file using whisper.cpp'''
check_call([
whisper_cpp_binary,
"-m", model_file,
"--max-context", "64",
"--beam-size", "5",
"--no-prints",
"--no-timestamps",
"--output-txt",
"--output-file", output_file[:-4], # strip '.txt' file ending
audio_file], stdout=DEVNULL)
def cleanup_text(t: str) -> str:
t = t.replace("\n", "")
t = t.replace("\r", "")
t = t.strip()
return t
def split_text(t: str, max_tokens: int) -> List[str]: def split_text(t: str, max_tokens: int) -> List[str]:
'''Split text into semantic segments''' '''Split text into semantic segments'''
print("* Splitting up transcript into semantic segments")
tokenizer = Tokenizer.from_pretrained(NLP_MODEL) tokenizer = Tokenizer.from_pretrained(NLP_MODEL)
splitter = TextSplitter.from_huggingface_tokenizer( splitter = TextSplitter.from_huggingface_tokenizer(
tokenizer, (int(max_tokens*0.8), max_tokens)) tokenizer, (int(max_tokens*0.8), max_tokens))
@ -67,13 +51,17 @@ def split_text(t: str, max_tokens: int) -> List[str]:
def summarize(chunks: List[str], summary_min: int, summary_max: int) -> str: def summarize(chunks: List[str], summary_min: int, summary_max: int) -> str:
'''Summarize all segments (chunks) using a language model''' '''Summarize all segments (chunks) using a language model'''
print("* Summarizing transcript segments ", end="", flush=True)
chunks_summarized = [] chunks_summarized = []
summ = pipeline("summarization", model=NLP_MODEL) summ = pipeline("summarization", model=NLP_MODEL)
for c in chunks: for c in chunks:
print(".", end="", flush=True)
chunks_summarized.append( chunks_summarized.append(
summ(c, max_length=summary_max, min_length=summary_min, do_sample=False)[0]['summary_text'].strip()) summ(c, max_length=summary_max, min_length=summary_min, do_sample=False)[0]['summary_text'].strip())
print()
return "\n".join(chunks_summarized) return "\n".join(chunks_summarized)
# Main # Main
if __name__ == "__main__": if __name__ == "__main__":
@ -82,7 +70,8 @@ if __name__ == "__main__":
argp.add_argument("--summin", metavar="n", type=int, default=10, help="The minimum lenght of a segment summary [10, min: 5]") argp.add_argument("--summin", metavar="n", type=int, default=10, help="The minimum lenght of a segment summary [10, min: 5]")
argp.add_argument("--summax", metavar="n", type=int, default=90, help="The maximum lenght of a segment summary [90, min: 5]") argp.add_argument("--summax", metavar="n", type=int, default=90, help="The maximum lenght of a segment summary [90, min: 5]")
argp.add_argument("--segmax", metavar="n", type=int, default=375, help="The maximum number of tokens per segment [375, 5 - 500]") argp.add_argument("--segmax", metavar="n", type=int, default=375, help="The maximum number of tokens per segment [375, 5 - 500]")
argp.add_argument("-m", required=True, metavar="filepath", type=Path, help="The path to a whisper.cpp-compatible model file") argp.add_argument("--lang", metavar="lang", type=str, default="en", help="The language of the audio source ['en']")
argp.add_argument("-m", metavar="name", type=str, default="small.en", help="The name of the whisper model to be used ['small.en']")
argp.add_argument("-i", required=True, metavar="filepath", type=Path, help="The path to the media file") argp.add_argument("-i", required=True, metavar="filepath", type=Path, help="The path to the media file")
argp.add_argument("-o", required=True, metavar="filepath", type=Path, help="Where to save the output text to") argp.add_argument("-o", required=True, metavar="filepath", type=Path, help="Where to save the output text to")
args = argp.parse_args() args = argp.parse_args()
@ -90,21 +79,9 @@ if __name__ == "__main__":
args.summin = max(5, args.summin) args.summin = max(5, args.summin)
args.summax = max(5, args.summax) args.summax = max(5, args.summax)
args.segmax = max(5, min(args.segmax, 500)) args.segmax = max(5, min(args.segmax, 500))
# create tmpdir # transcribe
with TemporaryDirectory(suffix="as") as d: text = transcribe(args.m, args.i, args.lang).strip()
converted_audio_path = (Path(d) / "audio.wav").__str__() # split up into semantic segments & summarize
transcript_path = (Path(d) / "transcript.txt").__str__()
# convert using ffmpeg
print("* Converting media to the correct format ...")
convert_audio(args.i.__str__(), converted_audio_path)
# transcribe
print("* Transcribing audio ...")
transcribe(args.m.__str__(), converted_audio_path, transcript_path)
# read transcript
text = Path(transcript_path).read_text()
# cleanup text & summarize
print("* Summarizing transcript ...")
text = cleanup_text(text)
chunks = split_text(text, args.segmax) chunks = split_text(text, args.segmax)
summary = summarize(chunks, args.summin, args.summax) summary = summarize(chunks, args.summin, args.summax)
print(f"\n{summary}\n") print(f"\n{summary}\n")

View file

@ -1,3 +1,4 @@
faster-whisper
semantic-text-splitter semantic-text-splitter
torch torch
transformers transformers

View file

@ -1,32 +0,0 @@
#!/usr/bin/env bash
# init
oldcwd=$(pwd)
function cleanup {
cd ${oldcwd}
}
trap cleanup EXIT
export root_dir=$(realpath $(dirname $0))
export vendor_dir=${root_dir}/vendor
# Prepare installation of dependencies
mkdir -p ${vendor_dir}
cd ${vendor_dir}
# Install whisper.cpp
if [ ! -d ./whisper.cpp ]; then
git clone -b v1.6.2 https://github.com/ggerganov/whisper.cpp.git
fi
cd whisper.cpp
make
cd ${vendor_dir}
# Install python packages
if ! python3 -m pip install -r "${root_dir}/requirements.txt"; then
echo
echo "Make shure to run this script in a python virtual environment!"
fi