2003-07-29 15:48:06 +00:00
|
|
|
/*
|
2025-02-14 10:24:30 -05:00
|
|
|
* Copyright (C) 2013-2025 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
|
2013-12-05 15:09:19 -08:00
|
|
|
* Copyright (C) 2007-2013 Sourcefire, Inc.
|
2008-02-01 00:17:44 +00:00
|
|
|
*
|
2008-04-02 15:24:51 +00:00
|
|
|
* Authors: Tomasz Kojm
|
2003-07-29 15:48:06 +00:00
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
2007-03-31 20:31:04 +00:00
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
2003-07-29 15:48:06 +00:00
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
2006-04-09 19:59:28 +00:00
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
|
|
* MA 02110-1301, USA.
|
2003-07-29 15:48:06 +00:00
|
|
|
*/
|
|
|
|
|
2004-02-06 13:46:08 +00:00
|
|
|
#if HAVE_CONFIG_H
|
|
|
|
#include "clamav-config.h"
|
|
|
|
#endif
|
|
|
|
|
2003-07-29 15:48:06 +00:00
|
|
|
#include <string.h>
|
2004-09-17 23:29:44 +00:00
|
|
|
#include <ctype.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/stat.h>
|
2018-12-03 12:40:13 -05:00
|
|
|
#ifdef HAVE_UNISTD_H
|
2004-09-17 23:29:44 +00:00
|
|
|
#include <unistd.h>
|
2006-10-09 15:23:50 +00:00
|
|
|
#endif
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
#include <stdbool.h>
|
2003-07-29 15:48:06 +00:00
|
|
|
|
|
|
|
#include "clamav.h"
|
2021-04-21 16:24:24 -07:00
|
|
|
#include "clamav_rust.h"
|
2003-07-29 15:48:06 +00:00
|
|
|
#include "others.h"
|
2004-07-19 17:54:40 +00:00
|
|
|
#include "matcher-ac.h"
|
|
|
|
#include "matcher-bm.h"
|
2014-10-01 17:16:09 -04:00
|
|
|
#include "matcher-pcre.h"
|
2004-07-02 23:00:58 +00:00
|
|
|
#include "filetypes.h"
|
2004-09-14 01:33:32 +00:00
|
|
|
#include "matcher.h"
|
2004-09-17 23:29:44 +00:00
|
|
|
#include "pe.h"
|
2005-09-18 23:19:28 +00:00
|
|
|
#include "elf.h"
|
|
|
|
#include "execs.h"
|
2004-09-30 00:26:52 +00:00
|
|
|
#include "special.h"
|
2010-08-24 12:28:16 +02:00
|
|
|
#include "scanners.h"
|
2006-06-03 21:57:47 +00:00
|
|
|
#include "str.h"
|
2008-12-29 17:55:30 +00:00
|
|
|
#include "default.h"
|
2009-07-13 21:29:46 +02:00
|
|
|
#include "macho.h"
|
2009-09-01 13:49:36 +02:00
|
|
|
#include "fmap.h"
|
2009-12-14 17:16:46 +01:00
|
|
|
#include "pe_icons.h"
|
2010-01-07 18:26:12 +01:00
|
|
|
#include "regex/regex.h"
|
2010-02-10 11:39:47 +02:00
|
|
|
#include "filtering.h"
|
|
|
|
#include "perflogging.h"
|
2010-08-02 17:04:35 +03:00
|
|
|
#include "bytecode_priv.h"
|
|
|
|
#include "bytecode_api_impl.h"
|
2015-07-21 16:35:48 -04:00
|
|
|
#ifdef HAVE_YARA
|
2015-03-18 18:26:59 -04:00
|
|
|
#include "yara_clam.h"
|
2015-06-01 14:32:04 -04:00
|
|
|
#include "yara_exec.h"
|
2015-07-21 16:35:48 -04:00
|
|
|
#endif
|
2010-05-07 19:47:11 +02:00
|
|
|
|
2010-02-10 11:39:47 +02:00
|
|
|
#ifdef CLI_PERF_LOGGING
|
|
|
|
|
2020-03-19 21:23:54 -04:00
|
|
|
static inline void perf_log_filter(int32_t pos, int32_t length, int8_t trie)
|
2010-02-10 11:39:47 +02:00
|
|
|
{
|
|
|
|
cli_perf_log_add(RAW_BYTES_SCANNED, length);
|
|
|
|
cli_perf_log_add(FILTER_BYTES_SCANNED, length - pos);
|
|
|
|
cli_perf_log_count2(TRIE_SCANNED, trie, length - pos);
|
|
|
|
}
|
|
|
|
|
2020-03-19 21:23:54 -04:00
|
|
|
static inline int perf_log_tries(int8_t acmode, int8_t bm_called, int32_t length)
|
2010-02-10 11:39:47 +02:00
|
|
|
{
|
|
|
|
if (bm_called)
|
2018-12-03 12:40:13 -05:00
|
|
|
cli_perf_log_add(BM_SCANNED, length);
|
2010-02-10 11:39:47 +02:00
|
|
|
if (acmode)
|
2018-12-03 12:40:13 -05:00
|
|
|
cli_perf_log_add(AC_SCANNED, length);
|
2010-02-10 11:39:47 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
2020-03-19 21:23:54 -04:00
|
|
|
static inline void perf_log_filter(int32_t pos, uint32_t length, int8_t trie)
|
2018-12-03 12:40:13 -05:00
|
|
|
{
|
2014-07-10 18:11:49 -04:00
|
|
|
UNUSEDPARAM(pos);
|
|
|
|
UNUSEDPARAM(length);
|
|
|
|
UNUSEDPARAM(trie);
|
|
|
|
}
|
|
|
|
|
2020-03-19 21:23:54 -04:00
|
|
|
static inline int perf_log_tries(int8_t acmode, int8_t bm_called, int32_t length)
|
2018-12-03 12:40:13 -05:00
|
|
|
{
|
2014-07-10 18:11:49 -04:00
|
|
|
UNUSEDPARAM(acmode);
|
|
|
|
UNUSEDPARAM(bm_called);
|
|
|
|
UNUSEDPARAM(length);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2010-02-10 11:39:47 +02:00
|
|
|
#endif
|
2006-12-02 00:09:02 +00:00
|
|
|
|
2020-03-21 11:36:53 -04:00
|
|
|
static inline cl_error_t matcher_run(const struct cli_matcher *root,
|
|
|
|
const unsigned char *buffer, uint32_t length,
|
|
|
|
const char **virname, struct cli_ac_data *mdata,
|
|
|
|
uint32_t offset,
|
|
|
|
const struct cli_target_info *tinfo,
|
|
|
|
cli_file_t ftype,
|
|
|
|
struct cli_matched_type **ftoffset,
|
|
|
|
unsigned int acmode,
|
|
|
|
unsigned int pcremode,
|
|
|
|
struct cli_ac_result **acres,
|
|
|
|
fmap_t *map,
|
|
|
|
struct cli_bm_off *offdata,
|
|
|
|
struct cli_pcre_off *poffdata,
|
|
|
|
cli_ctx *ctx)
|
2010-02-09 18:56:08 +02:00
|
|
|
{
|
2020-03-21 11:36:53 -04:00
|
|
|
cl_error_t ret, saved_ret = CL_CLEAN;
|
2010-02-10 11:39:47 +02:00
|
|
|
int32_t pos = 0;
|
|
|
|
struct filter_match_info info;
|
2010-02-22 15:44:23 +02:00
|
|
|
uint32_t orig_length, orig_offset;
|
2018-12-03 12:40:13 -05:00
|
|
|
const unsigned char *orig_buffer;
|
2010-02-22 15:44:23 +02:00
|
|
|
|
2010-02-10 11:39:47 +02:00
|
|
|
if (root->filter) {
|
2018-12-03 12:40:13 -05:00
|
|
|
if (filter_search_ext(root->filter, buffer, length, &info) == -1) {
|
|
|
|
/* for safety always scan last maxpatlen bytes */
|
|
|
|
pos = length - root->maxpatlen - 1;
|
|
|
|
if (pos < 0) pos = 0;
|
2020-03-19 21:23:54 -04:00
|
|
|
perf_log_filter(pos, length, root->type);
|
2018-12-03 12:40:13 -05:00
|
|
|
} else {
|
|
|
|
/* must not cut buffer for 64[4-4]6161, because we must be able to check
|
2020-03-19 21:23:54 -04:00
|
|
|
* 64! */
|
2018-12-03 12:40:13 -05:00
|
|
|
pos = info.first_match - root->maxpatlen - 1;
|
|
|
|
if (pos < 0) pos = 0;
|
2020-03-19 21:23:54 -04:00
|
|
|
perf_log_filter(pos, length, root->type);
|
2018-12-03 12:40:13 -05:00
|
|
|
}
|
2010-02-10 11:39:47 +02:00
|
|
|
} else {
|
2020-03-19 21:23:54 -04:00
|
|
|
perf_log_filter(0, length, root->type);
|
2010-02-10 11:39:47 +02:00
|
|
|
}
|
2010-02-22 15:44:23 +02:00
|
|
|
|
|
|
|
orig_length = length;
|
|
|
|
orig_buffer = buffer;
|
|
|
|
orig_offset = offset;
|
2010-02-10 11:39:47 +02:00
|
|
|
length -= pos;
|
|
|
|
buffer += pos;
|
|
|
|
offset += pos;
|
2010-02-22 15:44:23 +02:00
|
|
|
if (!root->ac_only) {
|
2020-03-19 21:23:54 -04:00
|
|
|
perf_log_tries(0, 1, length);
|
2018-12-03 12:40:13 -05:00
|
|
|
if (root->bm_offmode) {
|
|
|
|
/* Don't use prefiltering for BM offset mode, since BM keeps tracks
|
2020-03-19 21:23:54 -04:00
|
|
|
* of offsets itself, and doesn't work if we skip chunks of input
|
|
|
|
* data */
|
2018-12-03 12:40:13 -05:00
|
|
|
ret = cli_bm_scanbuff(orig_buffer, orig_length, virname, NULL, root, orig_offset, tinfo, offdata, ctx);
|
|
|
|
} else {
|
|
|
|
ret = cli_bm_scanbuff(buffer, length, virname, NULL, root, offset, tinfo, offdata, ctx);
|
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
if (ret != CL_SUCCESS) {
|
2018-12-03 12:40:13 -05:00
|
|
|
if (ret != CL_VIRUS)
|
|
|
|
return ret;
|
|
|
|
/* else (ret == CL_VIRUS) */
|
2022-08-18 20:00:33 -07:00
|
|
|
|
|
|
|
ret = cli_append_virus(ctx, *virname);
|
|
|
|
if (ret != CL_SUCCESS)
|
|
|
|
return ret;
|
2018-12-03 12:40:13 -05:00
|
|
|
}
|
2010-02-10 11:39:47 +02:00
|
|
|
}
|
2020-03-19 21:23:54 -04:00
|
|
|
perf_log_tries(acmode, 0, length);
|
2013-06-13 15:01:39 -04:00
|
|
|
ret = cli_ac_scanbuff(buffer, length, virname, NULL, acres, root, mdata, offset, ftype, ftoffset, acmode, ctx);
|
2022-08-18 20:00:33 -07:00
|
|
|
if (ret != CL_SUCCESS) {
|
2017-05-23 15:56:41 -04:00
|
|
|
if (ret == CL_VIRUS) {
|
2022-08-18 20:00:33 -07:00
|
|
|
ret = cli_append_virus(ctx, *virname);
|
|
|
|
if (ret != CL_SUCCESS)
|
|
|
|
return ret;
|
2021-04-21 16:24:24 -07:00
|
|
|
} else if (ret > CL_TYPENO && acmode & AC_SCAN_VIR) {
|
2016-05-25 17:32:04 -04:00
|
|
|
saved_ret = ret;
|
2021-04-21 16:24:24 -07:00
|
|
|
} else {
|
2016-04-13 13:16:24 -04:00
|
|
|
return ret;
|
2021-04-21 16:24:24 -07:00
|
|
|
}
|
2017-05-23 15:56:41 -04:00
|
|
|
}
|
2012-10-25 12:36:05 -07:00
|
|
|
|
2018-11-14 16:36:16 -05:00
|
|
|
if (root->bcomp_metas) {
|
Fix byte-compare subsignature premature alert
The byte compare feature in logical signatures will cause the rule to
alert if it successfully matches regardless of the rest of the logical
signature.
An easy way to test this is with a logical signature that has two
bcomp subsignatures and requires both to match for the rule to alert.
In the following example, we have 4 signatures where
- the first will match both bcomp subsigs.
- the second will match neither.
- the last two match just one bcomp subsig.
In an --allmatch test, you'll find that the 3 of these match, with the
first one matching *twice*, once for each bcomp subsig.
test.ldb:
```
bcomp.both;Engine:51-255,Target:0;0&1&2&3;4141;0(>>5#hb2#=123);4242;2(>>5#hb2#=255)
bcomp.neither;Engine:51-255,Target:0;0&1&2&3;4141;0(>>5#hb2#=124);4242;2(>>5#hb2#=254)
bcomp.second;Engine:51-255,Target:0;0&1&2&3;4141;0(>>5#hb2#=124);4242;2(>>5#hb2#=255)
bcomp.first;Engine:51-255,Target:0;0&1&2&3;4141;0(>>5#hb2#=123);4242;2(>>5#hb2#=254)
```
test.sample:
```
AA = 7B; BB = FF
```
You can also try a similar test to compare the behavior with regular
ac-pattern-match subsigs with this lsig-test.ldb:
```
pattern.both;Engine:51-255,Target:0;0&1;4141;4242
pattern.neither;Engine:51-255,Target:0;0&1;4140;4241
pattern.second;Engine:51-255,Target:0;0&1;4140;4242
pattern.first;Engine:51-255,Target:0;0&1;4141;4241
```
This commit fixes the issue by incrementing the logical subsignature
count for each bcomp subsig match instead of appending an alert for
each bcomp match.
Also removed call to `lsig_sub_matched()` that didn't do anything.
2022-02-03 16:06:05 -08:00
|
|
|
ret = cli_bcomp_scanbuf(orig_buffer, orig_length, acres, root, mdata, ctx);
|
2018-09-21 16:49:38 -04:00
|
|
|
if (ret != CL_CLEAN) {
|
2021-04-21 16:24:24 -07:00
|
|
|
if (ret > CL_TYPENO && acmode & AC_SCAN_VIR) {
|
2018-09-21 16:49:38 -04:00
|
|
|
saved_ret = ret;
|
2021-04-21 16:24:24 -07:00
|
|
|
} else {
|
2018-09-21 16:49:38 -04:00
|
|
|
return ret;
|
2021-04-21 16:24:24 -07:00
|
|
|
}
|
2018-09-21 16:49:38 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-04-21 16:24:24 -07:00
|
|
|
switch (ftype) {
|
|
|
|
case CL_TYPE_GIF:
|
|
|
|
case CL_TYPE_TIFF:
|
|
|
|
case CL_TYPE_JPEG:
|
|
|
|
case CL_TYPE_PNG:
|
|
|
|
case CL_TYPE_GRAPHICS: {
|
2022-06-21 16:43:39 -07:00
|
|
|
if (ctx->recursion_stack[ctx->recursion_level].calculated_image_fuzzy_hash &&
|
|
|
|
!fuzzy_hash_check(root->fuzzy_hashmap, mdata, ctx->recursion_stack[ctx->recursion_level].image_fuzzy_hash)) {
|
2021-04-21 16:24:24 -07:00
|
|
|
cli_errmsg("Unexpected error when checking for fuzzy hash matches.\n");
|
|
|
|
return CL_ERROR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2014-09-18 13:54:57 -04:00
|
|
|
/* due to logical triggered, pcres cannot be evaluated until after full subsig matching */
|
|
|
|
/* cannot save pcre execution state without possible evasion; must scan entire buffer */
|
|
|
|
/* however, scanning the whole buffer may require the whole buffer being loaded into memory */
|
2014-10-10 11:15:01 -04:00
|
|
|
if (root->pcre_metas) {
|
2014-10-16 10:27:38 -04:00
|
|
|
int rc;
|
|
|
|
uint64_t maxfilesize;
|
|
|
|
|
2014-10-28 13:37:42 -04:00
|
|
|
if (map && (pcremode == PCRE_SCAN_FMAP)) {
|
2018-12-03 12:40:13 -05:00
|
|
|
if (offset + length >= map->len) {
|
2014-10-16 10:27:38 -04:00
|
|
|
/* check that scanned map does not exceed pcre maxfilesize limit */
|
|
|
|
maxfilesize = (uint64_t)cl_engine_get_num(ctx->engine, CL_ENGINE_PCRE_MAX_FILESIZE, &rc);
|
|
|
|
if (rc != CL_SUCCESS)
|
|
|
|
return rc;
|
|
|
|
if (maxfilesize && (map->len > maxfilesize)) {
|
2016-02-22 13:26:15 -05:00
|
|
|
cli_dbgmsg("matcher_run: pcre max filesize (map) exceeded (limit: %llu, needed: %llu)\n",
|
|
|
|
(long long unsigned)maxfilesize, (long long unsigned)map->len);
|
2014-10-16 10:27:38 -04:00
|
|
|
return CL_EMAXSIZE;
|
|
|
|
}
|
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
cli_dbgmsg("matcher_run: performing regex matching on full map: %u+%u(%u) >= %zu\n", offset, length, offset + length, map->len);
|
2014-10-10 12:27:23 -04:00
|
|
|
|
|
|
|
buffer = fmap_need_off_once(map, 0, map->len);
|
|
|
|
if (!buffer)
|
|
|
|
return CL_EMEM;
|
|
|
|
|
|
|
|
/* scan the full buffer */
|
2015-06-03 15:28:09 -04:00
|
|
|
ret = cli_pcre_scanbuf(buffer, map->len, virname, acres, root, mdata, poffdata, ctx);
|
2014-10-10 12:27:23 -04:00
|
|
|
}
|
2018-12-03 12:40:13 -05:00
|
|
|
} else if (pcremode == PCRE_SCAN_BUFF) {
|
2014-10-16 10:27:38 -04:00
|
|
|
/* check that scanned buffer does not exceed pcre maxfilesize limit */
|
|
|
|
maxfilesize = (uint64_t)cl_engine_get_num(ctx->engine, CL_ENGINE_PCRE_MAX_FILESIZE, &rc);
|
|
|
|
if (rc != CL_SUCCESS)
|
|
|
|
return rc;
|
|
|
|
if (maxfilesize && (length > maxfilesize)) {
|
2016-02-22 13:26:15 -05:00
|
|
|
cli_dbgmsg("matcher_run: pcre max filesize (buf) exceeded (limit: %llu, needed: %u)\n", (long long unsigned)maxfilesize, length);
|
2014-10-16 10:27:38 -04:00
|
|
|
return CL_EMAXSIZE;
|
|
|
|
}
|
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
cli_dbgmsg("matcher_run: performing regex matching on buffer with no map: %u+%u(%u)\n", offset, length, offset + length);
|
2014-10-10 12:27:23 -04:00
|
|
|
/* scan the specified buffer */
|
2015-06-03 15:28:09 -04:00
|
|
|
ret = cli_pcre_scanbuf(buffer, length, virname, acres, root, mdata, poffdata, ctx);
|
2014-10-10 11:15:01 -04:00
|
|
|
}
|
2014-09-18 13:54:57 -04:00
|
|
|
}
|
2024-03-25 10:32:38 -04:00
|
|
|
|
2014-09-18 13:54:57 -04:00
|
|
|
/* end experimental fragment */
|
2015-06-03 15:28:09 -04:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (ctx && ret == CL_VIRUS) {
|
|
|
|
ret = cli_append_virus(ctx, *virname);
|
|
|
|
if (ret != CL_SUCCESS)
|
|
|
|
return ret;
|
2018-09-21 16:49:38 -04:00
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
|
2018-09-21 16:49:38 -04:00
|
|
|
if (saved_ret && ret == CL_CLEAN) {
|
2016-05-25 17:32:04 -04:00
|
|
|
return saved_ret;
|
2018-09-21 16:49:38 -04:00
|
|
|
}
|
|
|
|
|
2010-02-09 18:56:08 +02:00
|
|
|
return ret;
|
|
|
|
}
|
2006-12-02 00:09:02 +00:00
|
|
|
|
2020-03-21 14:15:28 -04:00
|
|
|
cl_error_t cli_scan_buff(const unsigned char *buffer, uint32_t length, uint32_t offset, cli_ctx *ctx, cli_file_t ftype, struct cli_ac_data **acdata)
|
2004-07-19 17:54:40 +00:00
|
|
|
{
|
2019-02-27 00:47:38 -05:00
|
|
|
cl_error_t ret = CL_CLEAN;
|
2022-08-18 20:00:33 -07:00
|
|
|
unsigned int i = 0, j = 0;
|
2022-08-19 10:18:58 -07:00
|
|
|
struct cli_ac_data matcher_data;
|
2022-08-18 20:00:33 -07:00
|
|
|
struct cli_matcher *generic_ac_root, *target_ac_root = NULL;
|
2018-12-03 12:40:13 -05:00
|
|
|
const char *virname = NULL;
|
|
|
|
const struct cl_engine *engine = ctx->engine;
|
|
|
|
|
|
|
|
if (!engine) {
|
2020-03-21 14:15:28 -04:00
|
|
|
cli_errmsg("cli_scan_buff: engine == NULL\n");
|
2018-12-03 12:40:13 -05:00
|
|
|
return CL_ENULLARG;
|
2005-09-23 02:23:36 +00:00
|
|
|
}
|
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
generic_ac_root = engine->root[0]; /* generic signatures */
|
2005-09-23 02:23:36 +00:00
|
|
|
|
2022-08-19 10:18:58 -07:00
|
|
|
if (ftype != CL_TYPE_ANY) {
|
|
|
|
// Identify the target type, to find the matcher root for that target.
|
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
for (i = 1; i < CLI_MTARGETS; i++) {
|
2014-02-21 16:10:32 -05:00
|
|
|
for (j = 0; j < cli_mtargets[i].target_count; ++j) {
|
2018-12-03 12:40:13 -05:00
|
|
|
if (cli_mtargets[i].target[j] == ftype) {
|
2022-08-19 10:18:58 -07:00
|
|
|
// Identified the target type, now get the matcher root for that target.
|
2022-08-18 20:00:33 -07:00
|
|
|
target_ac_root = ctx->engine->root[i];
|
2022-08-19 10:18:58 -07:00
|
|
|
break; // Break out of inner loop
|
2014-02-21 16:10:32 -05:00
|
|
|
}
|
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
if (target_ac_root) break;
|
2014-02-21 16:10:32 -05:00
|
|
|
}
|
2005-09-23 02:23:36 +00:00
|
|
|
}
|
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (target_ac_root) {
|
2022-08-19 10:18:58 -07:00
|
|
|
/* If a target-specific specific signature root was found for the given file type, match with it. */
|
2005-09-23 02:23:36 +00:00
|
|
|
|
2022-08-19 10:18:58 -07:00
|
|
|
if (!acdata) {
|
|
|
|
// no ac matcher data was provided, so we need to initialize our own.
|
|
|
|
ret = cli_ac_initdata(&matcher_data, target_ac_root->ac_partsigs, target_ac_root->ac_lsigs, target_ac_root->ac_reloff_num, CLI_DEFAULT_AC_TRACKLEN);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
2005-09-23 02:23:36 +00:00
|
|
|
|
2022-08-19 10:18:58 -07:00
|
|
|
ret = matcher_run(target_ac_root, buffer, length, &virname,
|
|
|
|
acdata ? (acdata[0]) : (&matcher_data),
|
|
|
|
offset, NULL, ftype, NULL, AC_SCAN_VIR, PCRE_SCAN_BUFF, NULL, ctx->fmap, NULL, NULL, ctx);
|
2005-09-23 02:23:36 +00:00
|
|
|
|
2022-08-19 10:18:58 -07:00
|
|
|
if (!acdata) {
|
|
|
|
// no longer need our AC local matcher data (if using)
|
|
|
|
cli_ac_freedata(&matcher_data);
|
|
|
|
}
|
2005-09-23 02:23:36 +00:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (ret == CL_EMEM || ret == CL_VIRUS) {
|
2018-12-03 12:40:13 -05:00
|
|
|
return ret;
|
|
|
|
}
|
2005-09-23 02:23:36 +00:00
|
|
|
|
2022-08-19 10:18:58 -07:00
|
|
|
// reset virname back to NULL for matching with the generic AC root.
|
|
|
|
virname = NULL;
|
|
|
|
}
|
2012-10-18 14:12:58 -07:00
|
|
|
|
2022-08-19 10:18:58 -07:00
|
|
|
if (!acdata) {
|
|
|
|
// no ac matcher data was provided, so we need to initialize our own.
|
|
|
|
ret = cli_ac_initdata(&matcher_data, generic_ac_root->ac_partsigs, generic_ac_root->ac_lsigs, generic_ac_root->ac_reloff_num, CLI_DEFAULT_AC_TRACKLEN);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
2003-07-29 15:48:06 +00:00
|
|
|
|
2022-08-19 10:18:58 -07:00
|
|
|
ret = matcher_run(generic_ac_root, buffer, length, &virname,
|
|
|
|
acdata ? (acdata[1]) : (&matcher_data),
|
|
|
|
offset, NULL, ftype, NULL, AC_SCAN_VIR, PCRE_SCAN_BUFF, NULL, ctx->fmap, NULL, NULL, ctx);
|
2006-11-15 15:26:54 +00:00
|
|
|
|
2022-08-19 10:18:58 -07:00
|
|
|
if (!acdata) {
|
|
|
|
// no longer need our AC local matcher data (if using)
|
|
|
|
cli_ac_freedata(&matcher_data);
|
|
|
|
}
|
2004-07-19 17:54:40 +00:00
|
|
|
|
|
|
|
return ret;
|
2003-07-29 15:48:06 +00:00
|
|
|
}
|
|
|
|
|
2009-08-14 14:38:13 +02:00
|
|
|
/*
|
|
|
|
* offdata[0]: type
|
|
|
|
* offdata[1]: offset value
|
|
|
|
* offdata[2]: max shift
|
|
|
|
* offdata[3]: section number
|
|
|
|
*/
|
PE, ELF, Mach-O: code cleanup
The header parsing / executable metadata collecting functions for the
PE, ELF, and Mach-O file types were using `int` for the return type.
Mostly they were returning 0 for success and -1, -2, -3, or -4 for
failure. But in some cases they were returning cl_error_t enum values
for failure. Regardless, the function using them was treating 0 as
success and non-zero as failure, which it stored as -1 ... every time.
This commit switches them all to use cl_error_t. I am continuing to
storeo the final result as 0 / -1 in the `peinfo` struct, but outside of
that everything has been made consistent.
While I was working on that, I got a tad side tracked. I noticed that
the target type isn't an enum, or even a set of #defines. So I made an
enum and then changed the code that uses target types to use the enum.
I also removed the `target` parameter from a number of functions that
don't actually use it at all. Some recursion was masking the fact that
it was an unused parameter which is why there was no warning about it.
2022-08-28 18:41:04 -07:00
|
|
|
cl_error_t cli_caloff(const char *offstr, const struct cli_target_info *info, cli_target_t target, uint32_t *offdata, uint32_t *offset_min, uint32_t *offset_max)
|
2004-09-17 23:29:44 +00:00
|
|
|
{
|
2021-07-30 09:24:06 -07:00
|
|
|
char offcpy[65] = {0};
|
|
|
|
unsigned int n = 0, val = 0;
|
|
|
|
char *pt = NULL;
|
2018-12-03 12:40:13 -05:00
|
|
|
|
|
|
|
if (!info) { /* decode offset string */
|
|
|
|
if (!offstr) {
|
|
|
|
cli_errmsg("cli_caloff: offstr == NULL\n");
|
|
|
|
return CL_ENULLARG;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!strcmp(offstr, "*")) {
|
|
|
|
offdata[0] = *offset_max = *offset_min = CLI_OFF_ANY;
|
|
|
|
return CL_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (strlen(offstr) > 64) {
|
|
|
|
cli_errmsg("cli_caloff: Offset string too long\n");
|
|
|
|
return CL_EMALFDB;
|
|
|
|
}
|
|
|
|
strcpy(offcpy, offstr);
|
|
|
|
|
|
|
|
if ((pt = strchr(offcpy, ','))) {
|
|
|
|
if (!cli_isnumber(pt + 1)) {
|
|
|
|
cli_errmsg("cli_caloff: Invalid offset shift value\n");
|
|
|
|
return CL_EMALFDB;
|
|
|
|
}
|
|
|
|
offdata[2] = atoi(pt + 1);
|
|
|
|
*pt = 0;
|
|
|
|
} else {
|
|
|
|
offdata[2] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
*offset_max = *offset_min = CLI_OFF_NONE;
|
|
|
|
|
|
|
|
if (!strncmp(offcpy, "EP+", 3) || !strncmp(offcpy, "EP-", 3)) {
|
|
|
|
if (offcpy[2] == '+')
|
|
|
|
offdata[0] = CLI_OFF_EP_PLUS;
|
|
|
|
else
|
|
|
|
offdata[0] = CLI_OFF_EP_MINUS;
|
|
|
|
|
|
|
|
if (!cli_isnumber(&offcpy[3])) {
|
|
|
|
cli_errmsg("cli_caloff: Invalid offset value\n");
|
|
|
|
return CL_EMALFDB;
|
|
|
|
}
|
|
|
|
offdata[1] = atoi(&offcpy[3]);
|
|
|
|
|
|
|
|
} else if (offcpy[0] == 'S') {
|
|
|
|
if (offcpy[1] == 'E') {
|
|
|
|
if (!cli_isnumber(&offcpy[2])) {
|
|
|
|
cli_errmsg("cli_caloff: Invalid section number\n");
|
|
|
|
return CL_EMALFDB;
|
|
|
|
}
|
|
|
|
offdata[0] = CLI_OFF_SE;
|
|
|
|
offdata[3] = atoi(&offcpy[2]);
|
|
|
|
|
|
|
|
} else if (!strncmp(offstr, "SL+", 3)) {
|
|
|
|
offdata[0] = CLI_OFF_SL_PLUS;
|
|
|
|
if (!cli_isnumber(&offcpy[3])) {
|
|
|
|
cli_errmsg("cli_caloff: Invalid offset value\n");
|
|
|
|
return CL_EMALFDB;
|
|
|
|
}
|
|
|
|
offdata[1] = atoi(&offcpy[3]);
|
|
|
|
|
|
|
|
} else if (sscanf(offcpy, "S%u+%u", &n, &val) == 2) {
|
|
|
|
offdata[0] = CLI_OFF_SX_PLUS;
|
|
|
|
offdata[1] = val;
|
|
|
|
offdata[3] = n;
|
|
|
|
} else {
|
|
|
|
cli_errmsg("cli_caloff: Invalid offset string\n");
|
|
|
|
return CL_EMALFDB;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (!strncmp(offcpy, "EOF-", 4)) {
|
|
|
|
offdata[0] = CLI_OFF_EOF_MINUS;
|
|
|
|
if (!cli_isnumber(&offcpy[4])) {
|
|
|
|
cli_errmsg("cli_caloff: Invalid offset value\n");
|
|
|
|
return CL_EMALFDB;
|
|
|
|
}
|
|
|
|
offdata[1] = atoi(&offcpy[4]);
|
|
|
|
} else if (!strncmp(offcpy, "VI", 2)) {
|
|
|
|
/* versioninfo */
|
|
|
|
offdata[0] = CLI_OFF_VERSION;
|
|
|
|
} else if (strchr(offcpy, '$')) {
|
|
|
|
if (sscanf(offcpy, "$%u$", &n) != 1) {
|
|
|
|
cli_errmsg("cli_caloff: Invalid macro($) in offset: %s\n", offcpy);
|
|
|
|
return CL_EMALFDB;
|
|
|
|
}
|
|
|
|
if (n >= 32) {
|
|
|
|
cli_errmsg("cli_caloff: at most 32 macro groups supported\n");
|
|
|
|
return CL_EMALFDB;
|
|
|
|
}
|
|
|
|
offdata[0] = CLI_OFF_MACRO;
|
|
|
|
offdata[1] = n;
|
|
|
|
} else {
|
|
|
|
offdata[0] = CLI_OFF_ABSOLUTE;
|
|
|
|
if (!cli_isnumber(offcpy)) {
|
|
|
|
cli_errmsg("cli_caloff: Invalid offset value\n");
|
|
|
|
return CL_EMALFDB;
|
|
|
|
}
|
|
|
|
*offset_min = offdata[1] = atoi(offcpy);
|
|
|
|
*offset_max = *offset_min + offdata[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (offdata[0] != CLI_OFF_ANY && offdata[0] != CLI_OFF_ABSOLUTE &&
|
|
|
|
offdata[0] != CLI_OFF_EOF_MINUS && offdata[0] != CLI_OFF_MACRO) {
|
PE, ELF, Mach-O: code cleanup
The header parsing / executable metadata collecting functions for the
PE, ELF, and Mach-O file types were using `int` for the return type.
Mostly they were returning 0 for success and -1, -2, -3, or -4 for
failure. But in some cases they were returning cl_error_t enum values
for failure. Regardless, the function using them was treating 0 as
success and non-zero as failure, which it stored as -1 ... every time.
This commit switches them all to use cl_error_t. I am continuing to
storeo the final result as 0 / -1 in the `peinfo` struct, but outside of
that everything has been made consistent.
While I was working on that, I got a tad side tracked. I noticed that
the target type isn't an enum, or even a set of #defines. So I made an
enum and then changed the code that uses target types to use the enum.
I also removed the `target` parameter from a number of functions that
don't actually use it at all. Some recursion was masking the fact that
it was an unused parameter which is why there was no warning about it.
2022-08-28 18:41:04 -07:00
|
|
|
if (target != TARGET_PE && target != TARGET_ELF && target != TARGET_MACHO) {
|
2018-12-03 12:40:13 -05:00
|
|
|
cli_errmsg("cli_caloff: Invalid offset type for target %u\n", target);
|
|
|
|
return CL_EMALFDB;
|
|
|
|
}
|
|
|
|
}
|
2004-09-17 23:29:44 +00:00
|
|
|
|
2009-08-14 14:38:13 +02:00
|
|
|
} else {
|
2018-12-03 12:40:13 -05:00
|
|
|
/* calculate relative offsets */
|
|
|
|
*offset_min = CLI_OFF_NONE;
|
2012-07-12 10:21:00 -04:00
|
|
|
if (offset_max)
|
2018-12-03 12:40:13 -05:00
|
|
|
*offset_max = CLI_OFF_NONE;
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
if (info->status == -1) {
|
2019-01-14 23:22:36 -05:00
|
|
|
// If the executable headers weren't parsed successfully then we
|
|
|
|
// can't process any ndb/ldb EOF-n/EP+n/EP-n/Sx+n/SEx/SL+n subsigs
|
2018-12-03 12:40:13 -05:00
|
|
|
return CL_SUCCESS;
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
}
|
2018-12-03 12:40:13 -05:00
|
|
|
|
|
|
|
switch (offdata[0]) {
|
|
|
|
case CLI_OFF_EOF_MINUS:
|
|
|
|
*offset_min = info->fsize - offdata[1];
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CLI_OFF_EP_PLUS:
|
|
|
|
*offset_min = info->exeinfo.ep + offdata[1];
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CLI_OFF_EP_MINUS:
|
|
|
|
*offset_min = info->exeinfo.ep - offdata[1];
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CLI_OFF_SL_PLUS:
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
*offset_min = info->exeinfo.sections[info->exeinfo.nsections - 1].raw + offdata[1];
|
2018-12-03 12:40:13 -05:00
|
|
|
break;
|
|
|
|
|
|
|
|
case CLI_OFF_SX_PLUS:
|
|
|
|
if (offdata[3] >= info->exeinfo.nsections)
|
|
|
|
*offset_min = CLI_OFF_NONE;
|
|
|
|
else
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
*offset_min = info->exeinfo.sections[offdata[3]].raw + offdata[1];
|
2018-12-03 12:40:13 -05:00
|
|
|
break;
|
|
|
|
|
|
|
|
case CLI_OFF_SE:
|
|
|
|
if (offdata[3] >= info->exeinfo.nsections) {
|
|
|
|
*offset_min = CLI_OFF_NONE;
|
|
|
|
} else {
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
*offset_min = info->exeinfo.sections[offdata[3]].raw;
|
2018-12-03 12:40:13 -05:00
|
|
|
if (offset_max)
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
*offset_max = *offset_min + info->exeinfo.sections[offdata[3]].rsz + offdata[2];
|
|
|
|
// TODO offdata[2] == MaxShift. Won't this make offset_max
|
|
|
|
// extend beyond the end of the section? This doesn't seem like
|
|
|
|
// what we want...
|
2018-12-03 12:40:13 -05:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CLI_OFF_VERSION:
|
|
|
|
if (offset_max)
|
|
|
|
*offset_min = *offset_max = CLI_OFF_ANY;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
cli_errmsg("cli_caloff: Not a relative offset (type: %u)\n", offdata[0]);
|
|
|
|
return CL_EARG;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (offset_max && *offset_max == CLI_OFF_NONE && *offset_min != CLI_OFF_NONE)
|
|
|
|
*offset_max = *offset_min + offdata[2];
|
2004-09-17 23:29:44 +00:00
|
|
|
}
|
|
|
|
|
2009-08-14 14:38:13 +02:00
|
|
|
return CL_SUCCESS;
|
2004-09-17 23:29:44 +00:00
|
|
|
}
|
|
|
|
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
void cli_targetinfo_init(struct cli_target_info *info)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (NULL == info) {
|
|
|
|
return;
|
|
|
|
}
|
2019-03-12 12:45:19 -04:00
|
|
|
info->status = 0;
|
|
|
|
cli_exe_info_init(&(info->exeinfo), 0);
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
}
|
|
|
|
|
PE, ELF, Mach-O: code cleanup
The header parsing / executable metadata collecting functions for the
PE, ELF, and Mach-O file types were using `int` for the return type.
Mostly they were returning 0 for success and -1, -2, -3, or -4 for
failure. But in some cases they were returning cl_error_t enum values
for failure. Regardless, the function using them was treating 0 as
success and non-zero as failure, which it stored as -1 ... every time.
This commit switches them all to use cl_error_t. I am continuing to
storeo the final result as 0 / -1 in the `peinfo` struct, but outside of
that everything has been made consistent.
While I was working on that, I got a tad side tracked. I noticed that
the target type isn't an enum, or even a set of #defines. So I made an
enum and then changed the code that uses target types to use the enum.
I also removed the `target` parameter from a number of functions that
don't actually use it at all. Some recursion was masking the fact that
it was an unused parameter which is why there was no warning about it.
2022-08-28 18:41:04 -07:00
|
|
|
void cli_targetinfo(struct cli_target_info *info, cli_target_t target, cli_ctx *ctx)
|
2010-06-18 15:41:39 +02:00
|
|
|
{
|
PE, ELF, Mach-O: code cleanup
The header parsing / executable metadata collecting functions for the
PE, ELF, and Mach-O file types were using `int` for the return type.
Mostly they were returning 0 for success and -1, -2, -3, or -4 for
failure. But in some cases they were returning cl_error_t enum values
for failure. Regardless, the function using them was treating 0 as
success and non-zero as failure, which it stored as -1 ... every time.
This commit switches them all to use cl_error_t. I am continuing to
storeo the final result as 0 / -1 in the `peinfo` struct, but outside of
that everything has been made consistent.
While I was working on that, I got a tad side tracked. I noticed that
the target type isn't an enum, or even a set of #defines. So I made an
enum and then changed the code that uses target types to use the enum.
I also removed the `target` parameter from a number of functions that
don't actually use it at all. Some recursion was masking the fact that
it was an unused parameter which is why there was no warning about it.
2022-08-28 18:41:04 -07:00
|
|
|
cl_error_t (*einfo)(cli_ctx *, struct cli_exe_info *) = NULL;
|
2010-06-18 15:41:39 +02:00
|
|
|
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
info->fsize = ctx->fmap->len;
|
2010-06-18 15:41:39 +02:00
|
|
|
|
PE, ELF, Mach-O: code cleanup
The header parsing / executable metadata collecting functions for the
PE, ELF, and Mach-O file types were using `int` for the return type.
Mostly they were returning 0 for success and -1, -2, -3, or -4 for
failure. But in some cases they were returning cl_error_t enum values
for failure. Regardless, the function using them was treating 0 as
success and non-zero as failure, which it stored as -1 ... every time.
This commit switches them all to use cl_error_t. I am continuing to
storeo the final result as 0 / -1 in the `peinfo` struct, but outside of
that everything has been made consistent.
While I was working on that, I got a tad side tracked. I noticed that
the target type isn't an enum, or even a set of #defines. So I made an
enum and then changed the code that uses target types to use the enum.
I also removed the `target` parameter from a number of functions that
don't actually use it at all. Some recursion was masking the fact that
it was an unused parameter which is why there was no warning about it.
2022-08-28 18:41:04 -07:00
|
|
|
switch (target) {
|
|
|
|
case TARGET_PE:
|
|
|
|
einfo = cli_pe_targetinfo;
|
|
|
|
break;
|
|
|
|
case TARGET_ELF:
|
|
|
|
einfo = cli_elfheader;
|
|
|
|
break;
|
|
|
|
case TARGET_MACHO:
|
|
|
|
einfo = cli_machoheader;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return;
|
|
|
|
}
|
2010-06-18 15:41:39 +02:00
|
|
|
|
PE, ELF, Mach-O: code cleanup
The header parsing / executable metadata collecting functions for the
PE, ELF, and Mach-O file types were using `int` for the return type.
Mostly they were returning 0 for success and -1, -2, -3, or -4 for
failure. But in some cases they were returning cl_error_t enum values
for failure. Regardless, the function using them was treating 0 as
success and non-zero as failure, which it stored as -1 ... every time.
This commit switches them all to use cl_error_t. I am continuing to
storeo the final result as 0 / -1 in the `peinfo` struct, but outside of
that everything has been made consistent.
While I was working on that, I got a tad side tracked. I noticed that
the target type isn't an enum, or even a set of #defines. So I made an
enum and then changed the code that uses target types to use the enum.
I also removed the `target` parameter from a number of functions that
don't actually use it at all. Some recursion was masking the fact that
it was an unused parameter which is why there was no warning about it.
2022-08-28 18:41:04 -07:00
|
|
|
if (CL_SUCCESS != einfo(ctx, &info->exeinfo))
|
2018-12-03 12:40:13 -05:00
|
|
|
info->status = -1;
|
2010-06-18 15:41:39 +02:00
|
|
|
else
|
2018-12-03 12:40:13 -05:00
|
|
|
info->status = 1;
|
2010-06-18 15:41:39 +02:00
|
|
|
}
|
|
|
|
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
void cli_targetinfo_destroy(struct cli_target_info *info)
|
|
|
|
{
|
|
|
|
|
2019-03-12 12:45:19 -04:00
|
|
|
if (NULL == info) {
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
cli_exe_info_destroy(&(info->exeinfo));
|
2019-03-12 12:45:19 -04:00
|
|
|
info->status = 0;
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
}
|
|
|
|
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
cl_error_t cli_check_fp(cli_ctx *ctx, const char *vname)
|
2005-03-06 23:40:57 +00:00
|
|
|
{
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
cl_error_t status = CL_VIRUS;
|
2025-06-03 19:03:20 -04:00
|
|
|
cl_error_t ret;
|
|
|
|
|
|
|
|
size_t i;
|
2018-12-03 12:40:13 -05:00
|
|
|
const char *virname = NULL;
|
2014-01-20 15:36:11 -05:00
|
|
|
fmap_t *map;
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
int32_t stack_index;
|
2025-06-03 19:03:20 -04:00
|
|
|
|
|
|
|
uint8_t *hash;
|
|
|
|
cli_hash_type_t hash_type;
|
|
|
|
char hash_string[SHA256_HASH_SIZE * 2 + 1];
|
|
|
|
|
|
|
|
bool need_hash[CLI_HASH_AVAIL_TYPES] = {false};
|
2020-08-03 12:11:56 -07:00
|
|
|
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
stack_index = (int32_t)ctx->recursion_level;
|
2020-08-03 12:11:56 -07:00
|
|
|
|
2025-08-10 20:01:55 -04:00
|
|
|
char *source = NULL;
|
|
|
|
size_t source_len;
|
|
|
|
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
while (stack_index >= 0) {
|
|
|
|
map = ctx->recursion_stack[stack_index].fmap;
|
2005-03-06 23:40:57 +00:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
need_hash[CLI_HASH_MD5] = cli_hm_have_size(ctx->engine->hm_fp, CLI_HASH_MD5, map->len) ||
|
|
|
|
cli_hm_have_wild(ctx->engine->hm_fp, CLI_HASH_MD5);
|
2014-01-20 15:36:11 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
need_hash[CLI_HASH_SHA1] = cli_hm_have_size(ctx->engine->hm_fp, CLI_HASH_SHA1, map->len) ||
|
|
|
|
cli_hm_have_wild(ctx->engine->hm_fp, CLI_HASH_SHA1) ||
|
|
|
|
cli_hm_have_size(ctx->engine->hm_fp, CLI_HASH_SHA1, 1);
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
need_hash[CLI_HASH_SHA2_256] = cli_hm_have_size(ctx->engine->hm_fp, CLI_HASH_SHA2_256, map->len) ||
|
|
|
|
cli_hm_have_wild(ctx->engine->hm_fp, CLI_HASH_SHA2_256) ||
|
Reduce unnecessary scanning of embedded file FPs (#1571)
When embedded file type recognition finds a possible embedded file, it
is being scanned as a new embedded file even if it turns out it was a
false positive and parsing fails. My solution is to pre-parse the file
headers as little possible to determine if it is valid. If possible,
also determine the file size based on the headers. That will make it so
we don't have to scan additional data when the embedded file is not at
the very end.
This commit adds header checks prior to embedded ZIP, ARJ, and CAB
scanning. For these types I was also able to use the header checks to
determine the object size so as to prevent excessive pattern matching.
TODO: Add the same for RAR, EGG, 7Z, NULSFT, AUTOIT, IShield, and PDF.
This commit also removes duplicate matching for embedded MSEXE.
The embedded MSEXE detection and scanning logic was accidentally
creating an extra duplicate layer in between scanning and detection
because of the logic within the `cli_scanembpe()` function.
That function was effectively doing the header check which this commit
adds for ZIP, ARJ, and CAB but minus the size check.
Note: It is unfortunately not possible to get an accurage size from PE
file headers.
The `cli_scanembpe()` function also used to dump to a temp file for no
reason since FMAPs were extended to support windows into other FMAPs.
So this commit removes the intermediate layer as well as dropping a temp
file for each embedded PE file.
Further, this commit adds configuration and DCONF safeguards around all
embedded file type scanning.
Finally, this commit adds a set of tests to validate proper extraction
of embedded ZIP, ARJ, CAB, and MSEXE files.
CLAM-2862
Co-authored-by: TheRaynMan <draynor@sourcefire.com>
2025-09-23 15:57:28 -04:00
|
|
|
cli_hm_have_size(ctx->engine->hm_fp, CLI_HASH_SHA2_256, 1) ||
|
|
|
|
// If debug logging is enabled, we want to calculate SHA256 hashes for all layers.
|
|
|
|
// Some users rely on the debug log output to create new FP signatures.
|
|
|
|
cli_debug_flag;
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
/* Set fmap to need hash later if required.
|
|
|
|
* This is an optimization so we can calculate all needed hashes in one pass. */
|
|
|
|
for (hash_type = CLI_HASH_MD5; hash_type < CLI_HASH_AVAIL_TYPES; hash_type++) {
|
|
|
|
if (need_hash[hash_type]) {
|
|
|
|
ret = fmap_will_need_hash_later(map, hash_type);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
cli_dbgmsg("cli_check_fp: Failed to set fmap to need MD5 hash later\n");
|
|
|
|
status = CL_VIRUS;
|
|
|
|
goto done;
|
2019-11-20 15:49:43 -05:00
|
|
|
}
|
2014-01-20 15:36:11 -05:00
|
|
|
}
|
|
|
|
}
|
2012-01-08 17:13:59 +01:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
for (hash_type = CLI_HASH_MD5; hash_type < CLI_HASH_AVAIL_TYPES; hash_type++) {
|
|
|
|
if (need_hash[hash_type]) {
|
|
|
|
size_t hash_len = cli_hash_len(hash_type);
|
2014-01-20 15:36:11 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
/* If we need a hash, we will calculate it now */
|
|
|
|
ret = fmap_get_hash(map, &hash, hash_type);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
cli_dbgmsg("cli_check_fp: Failed to get hash for the map at stack index # %u\n", stack_index);
|
|
|
|
status = CL_VIRUS;
|
|
|
|
goto done;
|
|
|
|
}
|
2010-05-07 19:47:11 +02:00
|
|
|
|
Reduce unnecessary scanning of embedded file FPs (#1571)
When embedded file type recognition finds a possible embedded file, it
is being scanned as a new embedded file even if it turns out it was a
false positive and parsing fails. My solution is to pre-parse the file
headers as little possible to determine if it is valid. If possible,
also determine the file size based on the headers. That will make it so
we don't have to scan additional data when the embedded file is not at
the very end.
This commit adds header checks prior to embedded ZIP, ARJ, and CAB
scanning. For these types I was also able to use the header checks to
determine the object size so as to prevent excessive pattern matching.
TODO: Add the same for RAR, EGG, 7Z, NULSFT, AUTOIT, IShield, and PDF.
This commit also removes duplicate matching for embedded MSEXE.
The embedded MSEXE detection and scanning logic was accidentally
creating an extra duplicate layer in between scanning and detection
because of the logic within the `cli_scanembpe()` function.
That function was effectively doing the header check which this commit
adds for ZIP, ARJ, and CAB but minus the size check.
Note: It is unfortunately not possible to get an accurage size from PE
file headers.
The `cli_scanembpe()` function also used to dump to a temp file for no
reason since FMAPs were extended to support windows into other FMAPs.
So this commit removes the intermediate layer as well as dropping a temp
file for each embedded PE file.
Further, this commit adds configuration and DCONF safeguards around all
embedded file type scanning.
Finally, this commit adds a set of tests to validate proper extraction
of embedded ZIP, ARJ, CAB, and MSEXE files.
CLAM-2862
Co-authored-by: TheRaynMan <draynor@sourcefire.com>
2025-09-23 15:57:28 -04:00
|
|
|
if (cli_debug_flag ||
|
|
|
|
((CLI_HASH_MD5 == hash_type) && (ctx->engine->cb_hash))) {
|
|
|
|
/* Convert hash to string */
|
|
|
|
for (i = 0; i < hash_len; i++) {
|
|
|
|
sprintf(hash_string + i * 2, "%02x", hash[i]);
|
|
|
|
}
|
|
|
|
hash_string[hash_len * 2] = 0;
|
2014-01-20 15:36:11 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
const char *name = ctx->recursion_stack[stack_index].fmap->name;
|
|
|
|
const char *type = cli_ftname(ctx->recursion_stack[stack_index].type);
|
2010-05-07 19:47:11 +02:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
cli_dbgmsg("FP SIGNATURE: %s:%u:%s # Name: %s, Type: %s\n",
|
|
|
|
hash_string, (unsigned int)map->len, vname ? vname : "Name", name ? name : "n/a", type);
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
}
|
2014-01-20 15:36:11 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
if (CLI_HASH_MD5 == hash_type) {
|
|
|
|
/* Run legacy callbacks that include MD5 hash */
|
|
|
|
if (ctx->engine->cb_hash) {
|
|
|
|
ctx->engine->cb_hash(fmap_fd(ctx->fmap), map->len, hash_string, vname ? vname : "noname", ctx->cb_ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ctx->engine->cb_stats_add_sample) {
|
|
|
|
stats_section_t sections;
|
|
|
|
memset(§ions, 0x00, sizeof(stats_section_t));
|
2010-05-07 19:47:11 +02:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
if (!(ctx->engine->engine_options & ENGINE_OPTIONS_DISABLE_PE_STATS) &&
|
|
|
|
!(ctx->engine->dconf->stats & (DCONF_STATS_DISABLED | DCONF_STATS_PE_SECTION_DISABLED))) {
|
2010-07-06 19:46:55 +02:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
cli_genhash_pe(ctx, CL_GENHASH_PE_CLASS_SECTION, 1, §ions);
|
|
|
|
}
|
2019-02-04 18:48:22 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
// TODO We probably only want to call cb_stats_add_sample when
|
|
|
|
// sections.section != NULL... leaving as is for now
|
|
|
|
ctx->engine->cb_stats_add_sample(vname ? vname : "noname", hash, map->len, §ions, ctx->engine->stats_data);
|
2019-02-04 18:48:22 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
if (sections.sections) {
|
|
|
|
free(sections.sections);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2013-10-25 10:17:22 -04:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
if (cli_hm_scan(hash, map->len, &virname, ctx->engine->hm_fp, hash_type) == CL_VIRUS) {
|
|
|
|
cli_dbgmsg("cli_check_fp: Found false positive detection for %s (fp sig: %s)\n", cli_hash_name(hash_type), virname);
|
2025-07-27 22:47:29 -04:00
|
|
|
|
2025-08-10 20:01:55 -04:00
|
|
|
source_len = strlen(virname) + strlen("false positive signature match: ") + 1;
|
|
|
|
source = malloc(source_len);
|
|
|
|
if (source) {
|
|
|
|
snprintf(source, source_len, "false positive signature match: %s", virname);
|
|
|
|
}
|
|
|
|
|
2025-07-27 22:47:29 -04:00
|
|
|
// Remove any evidence and set the verdict to trusted for the layer where the FP hash matched, and for all contained layers.
|
2025-08-10 20:01:55 -04:00
|
|
|
(void)cli_trust_layers(ctx, (uint32_t)stack_index, ctx->recursion_level, source);
|
|
|
|
|
|
|
|
free(source);
|
|
|
|
source = NULL;
|
2025-07-27 22:47:29 -04:00
|
|
|
|
|
|
|
status = CL_VERIFIED;
|
2025-06-03 19:03:20 -04:00
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
if (cli_hm_scan_wild(hash, &virname, ctx->engine->hm_fp, hash_type) == CL_VIRUS) {
|
|
|
|
cli_dbgmsg("cli_check_fp: Found false positive detection for %s (fp sig: %s)\n", cli_hash_name(hash_type), virname);
|
2025-07-27 22:47:29 -04:00
|
|
|
|
2025-08-10 20:01:55 -04:00
|
|
|
source_len = strlen(virname) + strlen("false positive signature match: ") + 1;
|
|
|
|
source = malloc(source_len);
|
|
|
|
if (source) {
|
|
|
|
snprintf(source, source_len, "false positive signature match: %s", virname);
|
|
|
|
}
|
|
|
|
|
2025-07-27 22:47:29 -04:00
|
|
|
// Remove any evidence and set the verdict to trusted for the layer where the FP hash matched, and for all contained layers.
|
2025-08-10 20:01:55 -04:00
|
|
|
(void)cli_trust_layers(ctx, (uint32_t)stack_index, ctx->recursion_level, source);
|
|
|
|
|
|
|
|
free(source);
|
|
|
|
source = NULL;
|
2025-07-27 22:47:29 -04:00
|
|
|
|
|
|
|
status = CL_VERIFIED;
|
2025-06-03 19:03:20 -04:00
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CLI_HASH_MD5 != hash_type) {
|
|
|
|
/* See whether the hash matches those loaded in from .cat files
|
|
|
|
* (associated with the .CAB file type) */
|
|
|
|
if (cli_hm_scan(hash, 1, &virname, ctx->engine->hm_fp, hash_type) == CL_VIRUS) {
|
|
|
|
cli_dbgmsg("cli_check_fp: Found .CAB false positive detection for %s via catalog file\n", cli_hash_name(hash_type));
|
2025-07-27 22:47:29 -04:00
|
|
|
|
2025-08-10 20:01:55 -04:00
|
|
|
source_len = strlen(virname) + strlen("false positive signature match: ") + 1;
|
|
|
|
source = malloc(source_len);
|
|
|
|
if (source) {
|
|
|
|
snprintf(source, source_len, "false positive signature match: %s", virname);
|
|
|
|
}
|
|
|
|
|
2025-07-27 22:47:29 -04:00
|
|
|
// Remove any evidence and set the verdict to trusted for the layer where the FP hash matched, and for all contained layers.
|
2025-08-10 20:01:55 -04:00
|
|
|
(void)cli_trust_layers(ctx, (uint32_t)stack_index, ctx->recursion_level, source);
|
|
|
|
|
|
|
|
free(source);
|
|
|
|
source = NULL;
|
2025-07-27 22:47:29 -04:00
|
|
|
|
|
|
|
status = CL_VERIFIED;
|
2025-06-03 19:03:20 -04:00
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
}
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
}
|
2019-02-04 18:48:22 -05:00
|
|
|
}
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
|
|
|
|
stack_index -= 1;
|
2019-02-04 18:48:22 -05:00
|
|
|
}
|
2014-01-22 21:15:19 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
done:
|
|
|
|
|
2025-08-10 20:01:55 -04:00
|
|
|
if (NULL != source) {
|
|
|
|
free(source);
|
|
|
|
}
|
|
|
|
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
return status;
|
2005-03-06 23:40:57 +00:00
|
|
|
}
|
|
|
|
|
2020-03-21 11:36:53 -04:00
|
|
|
static cl_error_t matchicon(cli_ctx *ctx, struct cli_exe_info *exeinfo, const char *grp1, const char *grp2)
|
2009-12-14 17:16:46 +01:00
|
|
|
{
|
2014-03-05 12:47:41 -05:00
|
|
|
icon_groupset iconset;
|
2009-12-14 17:16:46 +01:00
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
if (!ctx ||
|
|
|
|
!ctx->engine ||
|
|
|
|
!ctx->engine->iconcheck ||
|
|
|
|
!ctx->engine->iconcheck->group_counts[0] ||
|
|
|
|
!ctx->engine->iconcheck->group_counts[1] ||
|
|
|
|
!exeinfo->res_addr) return CL_CLEAN;
|
2010-07-30 15:54:15 +02:00
|
|
|
|
2014-03-05 12:47:41 -05:00
|
|
|
if (!(ctx->dconf->pe & PE_CONF_MATCHICON))
|
|
|
|
return CL_CLEAN;
|
|
|
|
|
2009-12-14 17:16:46 +01:00
|
|
|
cli_icongroupset_init(&iconset);
|
|
|
|
cli_icongroupset_add(grp1 ? grp1 : "*", &iconset, 0, ctx);
|
|
|
|
cli_icongroupset_add(grp2 ? grp2 : "*", &iconset, 1, ctx);
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
return cli_scanicon(&iconset, ctx, exeinfo);
|
2009-12-14 17:16:46 +01:00
|
|
|
}
|
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
int32_t cli_bcapi_matchicon(struct cli_bc_ctx *ctx, const uint8_t *grp1, int32_t grp1len,
|
|
|
|
const uint8_t *grp2, int32_t grp2len)
|
2010-08-02 17:04:35 +03:00
|
|
|
{
|
2020-03-21 11:36:53 -04:00
|
|
|
cl_error_t ret;
|
2010-08-02 17:04:35 +03:00
|
|
|
char group1[128], group2[128];
|
2010-08-02 19:33:38 +03:00
|
|
|
struct cli_exe_info info;
|
|
|
|
|
2019-03-12 12:45:19 -04:00
|
|
|
// TODO This isn't a good check, since EP will be zero for DLLs and
|
|
|
|
// (assuming pedata->ep is populated from exeinfo->pe) non-zero for
|
|
|
|
// some MachO and ELF executables
|
2010-08-02 21:50:14 +03:00
|
|
|
if (!ctx->hooks.pedata->ep) {
|
2018-12-03 12:40:13 -05:00
|
|
|
cli_dbgmsg("bytecode: matchicon only works with PE files\n");
|
|
|
|
return -1;
|
2010-08-02 17:04:35 +03:00
|
|
|
}
|
2018-12-03 12:40:13 -05:00
|
|
|
if ((size_t)grp1len > sizeof(group1) - 1 ||
|
|
|
|
(size_t)grp2len > sizeof(group2) - 1)
|
|
|
|
return -1;
|
2022-08-03 20:34:48 -07:00
|
|
|
|
2010-08-02 17:04:35 +03:00
|
|
|
memcpy(group1, grp1, grp1len);
|
|
|
|
memcpy(group2, grp2, grp2len);
|
|
|
|
group1[grp1len] = 0;
|
2010-08-02 21:50:14 +03:00
|
|
|
group2[grp2len] = 0;
|
2010-08-02 19:33:38 +03:00
|
|
|
memset(&info, 0, sizeof(info));
|
2010-09-02 18:04:00 +03:00
|
|
|
if (ctx->bc->kind == BC_PE_UNPACKER || ctx->bc->kind == BC_PE_ALL) {
|
2018-12-03 12:40:13 -05:00
|
|
|
if (le16_to_host(ctx->hooks.pedata->file_hdr.Characteristics) & 0x2000 ||
|
|
|
|
!ctx->hooks.pedata->dirs[2].Size)
|
|
|
|
info.res_addr = 0;
|
|
|
|
else
|
2023-01-06 21:42:30 +01:00
|
|
|
info.res_addr = ctx->hooks.pedata->dirs[2].VirtualAddress;
|
2010-08-02 21:50:14 +03:00
|
|
|
} else
|
2018-12-03 12:40:13 -05:00
|
|
|
info.res_addr = ctx->resaddr; /* from target_info */
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
info.sections = (struct cli_exe_section *)ctx->sections;
|
2010-08-02 17:04:35 +03:00
|
|
|
info.nsections = ctx->hooks.pedata->nsections;
|
2018-12-03 12:40:13 -05:00
|
|
|
info.hdr_size = ctx->hooks.pedata->hdr_size;
|
2010-08-02 21:50:14 +03:00
|
|
|
cli_dbgmsg("bytecode matchicon %s %s\n", group1, group2);
|
2022-08-03 20:34:48 -07:00
|
|
|
ret = matchicon(ctx->ctx, &info, group1[0] ? group1 : NULL,
|
2018-12-03 12:40:13 -05:00
|
|
|
group2[0] ? group2 : NULL);
|
2022-08-03 20:34:48 -07:00
|
|
|
|
2020-03-21 11:36:53 -04:00
|
|
|
return (int32_t)ret;
|
2010-08-02 17:04:35 +03:00
|
|
|
}
|
|
|
|
|
2025-06-08 01:12:33 -04:00
|
|
|
cl_error_t cli_scan_desc(int desc, cli_ctx *ctx, cli_file_t ftype, bool filetype_only, struct cli_matched_type **ftoffset, unsigned int acmode, struct cli_ac_result **acres, const char *name, const char *path, uint32_t attributes)
|
2003-07-29 15:48:06 +00:00
|
|
|
{
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
cl_error_t status = CL_CLEAN;
|
2019-02-27 00:47:38 -05:00
|
|
|
int empty;
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
fmap_t *new_map = NULL;
|
|
|
|
|
2025-06-08 01:12:33 -04:00
|
|
|
new_map = fmap_check_empty(desc, 0, 0, &empty, name, path);
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
if (NULL == new_map) {
|
|
|
|
if (!empty) {
|
|
|
|
cli_dbgmsg("cli_scan_desc: Failed to allocate new map for file descriptor scan.\n");
|
|
|
|
status = CL_EMEM;
|
|
|
|
}
|
|
|
|
goto done;
|
|
|
|
}
|
2004-05-30 01:42:19 +00:00
|
|
|
|
2022-03-09 22:26:40 -08:00
|
|
|
status = cli_recursion_stack_push(ctx, new_map, ftype, true, attributes); /* Perform scan with child fmap */
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
if (CL_SUCCESS != status) {
|
|
|
|
cli_dbgmsg("cli_scan_desc: Failed to scan fmap.\n");
|
|
|
|
goto done;
|
2004-05-30 01:42:19 +00:00
|
|
|
}
|
2020-02-28 18:29:35 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
status = cli_scan_fmap(ctx, ftype, filetype_only, ftoffset, acmode, acres);
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
|
|
|
|
(void)cli_recursion_stack_pop(ctx); /* Restore the parent fmap */
|
|
|
|
|
|
|
|
done:
|
|
|
|
if (NULL != new_map) {
|
2025-06-08 01:12:33 -04:00
|
|
|
fmap_free(new_map);
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
return status;
|
2004-05-30 01:42:19 +00:00
|
|
|
}
|
2009-08-31 04:41:06 +02:00
|
|
|
|
2017-01-23 13:11:03 -05:00
|
|
|
static int intermediates_eval(cli_ctx *ctx, struct cli_ac_lsig *ac_lsig)
|
|
|
|
{
|
|
|
|
uint32_t i, icnt = ac_lsig->tdb.intermediates[0];
|
2022-07-05 11:02:49 -07:00
|
|
|
|
|
|
|
// -1 is the deepest layer (the current layer), so we start at -2, which is the first ancestor
|
|
|
|
int32_t j = -2;
|
2017-01-23 13:11:03 -05:00
|
|
|
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
if (ctx->recursion_level < icnt)
|
2017-01-23 13:11:03 -05:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
for (i = icnt; i > 0; i--) {
|
|
|
|
if (ac_lsig->tdb.intermediates[i] == CL_TYPE_ANY)
|
|
|
|
continue;
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
if (ac_lsig->tdb.intermediates[i] != cli_recursion_stack_get_type(ctx, j--))
|
2017-01-23 13:11:03 -05:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
static cl_error_t lsig_eval(cli_ctx *ctx, struct cli_matcher *root, struct cli_ac_data *acdata, struct cli_target_info *target_info, uint32_t lsid)
|
2010-05-04 21:59:21 +02:00
|
|
|
{
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
cl_error_t status = CL_CLEAN;
|
2018-12-03 12:40:13 -05:00
|
|
|
unsigned evalcnt = 0;
|
|
|
|
uint64_t evalids = 0;
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
fmap_t *new_map = NULL;
|
2015-03-03 19:25:13 -05:00
|
|
|
struct cli_ac_lsig *ac_lsig = root->ac_lsigtable[lsid];
|
2018-12-03 12:40:13 -05:00
|
|
|
char *exp = ac_lsig->u.logic;
|
|
|
|
char *exp_end = exp + strlen(exp);
|
2010-05-04 21:59:21 +02:00
|
|
|
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
status = cli_ac_chkmacro(root, acdata, lsid);
|
|
|
|
if (status != CL_SUCCESS)
|
|
|
|
return status;
|
|
|
|
|
2022-10-04 09:37:49 -07:00
|
|
|
if (cli_ac_chklsig(exp, exp_end, acdata->lsigcnt[lsid], &evalcnt, &evalids, 0) != 1) {
|
|
|
|
// Logical expression did not match.
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Logical expression matched.
|
|
|
|
// Need to check the other conditions, like target description block, icon group, bytecode, etc.
|
|
|
|
|
2022-10-14 16:00:51 -07:00
|
|
|
// If the lsig requires a specific container type, check if check that it matches
|
|
|
|
if (ac_lsig->tdb.container &&
|
|
|
|
ac_lsig->tdb.container[0] != cli_recursion_stack_get_type(ctx, -2)) {
|
|
|
|
// So far the match is good, but the container type doesn't match.
|
|
|
|
// Because this may need to match in a different scenario where the
|
|
|
|
// container does match, we do not want to cache this result.
|
|
|
|
ctx->fmap->dont_cache_flag = 1;
|
|
|
|
|
2022-10-04 09:37:49 -07:00
|
|
|
goto done;
|
2022-10-14 16:00:51 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
// If the lsig has intermediates, check if they match the current recursion stack
|
|
|
|
if (ac_lsig->tdb.intermediates &&
|
|
|
|
!intermediates_eval(ctx, ac_lsig)) {
|
|
|
|
// So far the match is good, but the intermediates type(s) do not match.
|
|
|
|
// Because this may need to match in a different scenario where the
|
|
|
|
// intermediates do match, we do not want to cache this result.
|
|
|
|
ctx->fmap->dont_cache_flag = 1;
|
|
|
|
|
2022-10-04 09:37:49 -07:00
|
|
|
goto done;
|
2022-10-14 16:00:51 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
// If the lsig has filesize requirements, check if they match
|
|
|
|
if (ac_lsig->tdb.filesize && (ac_lsig->tdb.filesize[0] > ctx->fmap->len || ac_lsig->tdb.filesize[1] < ctx->fmap->len)) {
|
2022-10-04 09:37:49 -07:00
|
|
|
goto done;
|
2022-10-14 16:00:51 -07:00
|
|
|
}
|
2022-10-04 09:37:49 -07:00
|
|
|
|
|
|
|
if (ac_lsig->tdb.ep || ac_lsig->tdb.nos) {
|
|
|
|
if (!target_info || target_info->status != 1)
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
goto done;
|
2022-10-04 09:37:49 -07:00
|
|
|
if (ac_lsig->tdb.ep && (ac_lsig->tdb.ep[0] > target_info->exeinfo.ep || ac_lsig->tdb.ep[1] < target_info->exeinfo.ep))
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
goto done;
|
2022-10-04 09:37:49 -07:00
|
|
|
if (ac_lsig->tdb.nos && (ac_lsig->tdb.nos[0] > target_info->exeinfo.nsections || ac_lsig->tdb.nos[1] < target_info->exeinfo.nsections))
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
goto done;
|
2022-10-04 09:37:49 -07:00
|
|
|
}
|
2010-07-29 16:58:27 +02:00
|
|
|
|
2022-10-04 09:37:49 -07:00
|
|
|
if (ac_lsig->tdb.handlertype) {
|
|
|
|
// This logical signature has a handler type, which means it's effectively a complex file type signature.
|
|
|
|
// Instead of alerting, we'll make a duplicate fmap (add recursion depth, to prevent infinite loops) and
|
|
|
|
// scan the file with the handler type.
|
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
/*
|
|
|
|
* If the current layer was re-typed already, then prevent HandlerType from being applied again.
|
|
|
|
*/
|
|
|
|
if (!(ctx->recursion_stack[ctx->recursion_level].attributes & LAYER_ATTRIBUTES_RETYPED)) {
|
2022-10-04 09:37:49 -07:00
|
|
|
/*
|
|
|
|
* Create an fmap window into our current fmap using the original offset & length, and rescan as the new type
|
|
|
|
*
|
|
|
|
* TODO: Unsure if creating an fmap is the right move, or if we should rescan with the current fmap as-is,
|
2023-11-26 15:01:19 -08:00
|
|
|
* since it's not really a container so much as it is type reassignment. This new fmap layer protect against
|
2022-10-04 09:37:49 -07:00
|
|
|
* a possible infinite loop by applying the scan recursion limit, but maybe there's a better way?
|
|
|
|
* Testing with both HandlerType type reassignment sigs + Container/Intermediates sigs should indicate if
|
|
|
|
* a change is needed.
|
|
|
|
*/
|
|
|
|
new_map = fmap_duplicate(ctx->fmap, 0, ctx->fmap->len, ctx->fmap->name);
|
|
|
|
if (NULL == new_map) {
|
|
|
|
status = CL_EMEM;
|
|
|
|
cli_dbgmsg("Failed to duplicate the current fmap for a re-scan as a different type.\n");
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
goto done;
|
2022-10-04 09:37:49 -07:00
|
|
|
}
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
status = cli_recursion_stack_push(ctx, new_map, ac_lsig->tdb.handlertype[0], true, LAYER_ATTRIBUTES_RETYPED); /* Perform scan with child fmap */
|
2022-10-04 09:37:49 -07:00
|
|
|
if (CL_SUCCESS != status) {
|
|
|
|
cli_dbgmsg("Failed to re-scan fmap as a new type.\n");
|
|
|
|
goto done;
|
|
|
|
}
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
|
2022-10-04 09:37:49 -07:00
|
|
|
status = cli_magic_scan(ctx, ac_lsig->tdb.handlertype[0]);
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
|
2022-10-04 09:37:49 -07:00
|
|
|
(void)cli_recursion_stack_pop(ctx); /* Restore the parent fmap */
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
|
2022-10-04 09:37:49 -07:00
|
|
|
goto done;
|
2015-03-03 19:25:13 -05:00
|
|
|
}
|
2022-10-04 09:37:49 -07:00
|
|
|
}
|
2018-12-03 12:40:13 -05:00
|
|
|
|
2022-10-04 09:37:49 -07:00
|
|
|
if (ac_lsig->tdb.icongrp1 || ac_lsig->tdb.icongrp2) {
|
|
|
|
// Logical sig depends on icon match. Check for the icon match.
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
|
2022-10-04 09:37:49 -07:00
|
|
|
if (!target_info || target_info->status != TARGET_PE) {
|
|
|
|
// Icon group feature only applies to PE files, so target description must match a PE file.
|
|
|
|
// This is a signature issue and should have been caught at load time, but just in case, we're checking again here.
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
goto done;
|
2015-03-03 19:25:13 -05:00
|
|
|
}
|
2022-10-04 09:37:49 -07:00
|
|
|
|
|
|
|
if (CL_VIRUS != matchicon(ctx, &target_info->exeinfo, ac_lsig->tdb.icongrp1, ac_lsig->tdb.icongrp2)) {
|
|
|
|
// No icon match!
|
|
|
|
goto done;
|
2015-03-03 19:25:13 -05:00
|
|
|
}
|
2022-10-04 09:37:49 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
if (!ac_lsig->bc_idx) {
|
|
|
|
// Logical sig does not depend on bytecode match. Report the virus.
|
|
|
|
status = cli_append_virus(ctx, ac_lsig->virname);
|
|
|
|
if (status != CL_SUCCESS) {
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Logical sig depends on bytecode match. Check for the bytecode match.
|
2022-10-03 18:23:05 -07:00
|
|
|
status = cli_bytecode_runlsig(ctx, target_info, &ctx->engine->bcs, ac_lsig->bc_idx, acdata->lsigcnt[lsid], acdata->lsigsuboff_first[lsid], ctx->fmap);
|
|
|
|
if (CL_SUCCESS != status) {
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
goto done;
|
2015-03-03 19:25:13 -05:00
|
|
|
}
|
2022-11-04 11:58:24 -07:00
|
|
|
|
|
|
|
// Check time limit here, because bytecode functions may take a while.
|
|
|
|
status = cli_checktimelimit(ctx);
|
|
|
|
if (CL_SUCCESS != status) {
|
|
|
|
goto done;
|
|
|
|
}
|
2015-03-03 19:25:13 -05:00
|
|
|
}
|
2018-12-03 12:40:13 -05:00
|
|
|
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
done:
|
|
|
|
if (NULL != new_map) {
|
|
|
|
free_duplicate_fmap(new_map);
|
|
|
|
}
|
|
|
|
|
|
|
|
return status;
|
2015-03-03 19:25:13 -05:00
|
|
|
}
|
|
|
|
|
2015-07-21 16:35:48 -04:00
|
|
|
#ifdef HAVE_YARA
|
2025-06-03 19:03:20 -04:00
|
|
|
static cl_error_t yara_eval(cli_ctx *ctx, struct cli_matcher *root, struct cli_ac_data *acdata, struct cli_target_info *target_info, uint32_t lsid)
|
2015-03-03 19:25:13 -05:00
|
|
|
{
|
2015-03-18 18:26:59 -04:00
|
|
|
struct cli_ac_lsig *ac_lsig = root->ac_lsigtable[lsid];
|
2020-03-21 11:36:53 -04:00
|
|
|
cl_error_t rc;
|
2017-09-21 13:10:01 -04:00
|
|
|
YR_SCAN_CONTEXT context;
|
|
|
|
|
|
|
|
memset(&context, 0, sizeof(YR_SCAN_CONTEXT));
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
context.fmap = ctx->fmap;
|
|
|
|
context.file_size = ctx->fmap->len;
|
2015-03-20 12:31:13 -04:00
|
|
|
if (target_info != NULL) {
|
2018-12-03 12:40:13 -05:00
|
|
|
if (target_info->status == 1)
|
2015-03-20 12:31:13 -04:00
|
|
|
context.entry_point = target_info->exeinfo.ep;
|
|
|
|
}
|
|
|
|
|
2015-03-18 18:26:59 -04:00
|
|
|
rc = yr_execute_code(ac_lsig, acdata, &context, 0, 0);
|
|
|
|
|
2015-06-19 16:33:59 -04:00
|
|
|
if (rc == CL_VIRUS) {
|
|
|
|
if (ac_lsig->flag & CLI_LSIG_FLAG_PRIVATE) {
|
|
|
|
rc = CL_CLEAN;
|
|
|
|
} else {
|
2017-04-18 12:03:36 -04:00
|
|
|
rc = cli_append_virus(ctx, ac_lsig->virname);
|
2015-06-19 16:33:59 -04:00
|
|
|
}
|
|
|
|
}
|
2015-03-18 18:26:59 -04:00
|
|
|
return rc;
|
2015-03-03 19:25:13 -05:00
|
|
|
}
|
2015-07-21 16:35:48 -04:00
|
|
|
#endif
|
2015-03-03 19:25:13 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
cl_error_t cli_exp_eval(cli_ctx *ctx, struct cli_matcher *root, struct cli_ac_data *acdata, struct cli_target_info *target_info)
|
2015-03-03 19:25:13 -05:00
|
|
|
{
|
|
|
|
uint32_t i;
|
2022-10-03 18:23:05 -07:00
|
|
|
cl_error_t status = CL_SUCCESS;
|
2015-03-03 19:25:13 -05:00
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
for (i = 0; i < root->ac_lsigs; i++) {
|
2022-10-03 18:23:05 -07:00
|
|
|
if (root->ac_lsigtable[i]->type == CLI_LSIG_NORMAL) {
|
2025-06-03 19:03:20 -04:00
|
|
|
status = lsig_eval(ctx, root, acdata, target_info, i);
|
2022-10-03 18:23:05 -07:00
|
|
|
}
|
2015-07-21 16:35:48 -04:00
|
|
|
#ifdef HAVE_YARA
|
2022-10-03 18:23:05 -07:00
|
|
|
else if (root->ac_lsigtable[i]->type == CLI_YARA_NORMAL || root->ac_lsigtable[i]->type == CLI_YARA_OFFSET) {
|
2025-06-03 19:03:20 -04:00
|
|
|
status = yara_eval(ctx, root, acdata, target_info, i);
|
2022-10-03 18:23:05 -07:00
|
|
|
}
|
2015-07-21 16:35:48 -04:00
|
|
|
#endif
|
2022-10-03 18:23:05 -07:00
|
|
|
|
|
|
|
if (CL_SUCCESS != status) {
|
2015-03-03 19:25:13 -05:00
|
|
|
break;
|
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
|
2022-11-04 11:58:24 -07:00
|
|
|
if (i % 10 == 0) {
|
|
|
|
// Check the time limit every n'th lsig.
|
|
|
|
// In testing with a large signature set, we found n = 10 to be just as fast as 100 or
|
|
|
|
// 1000 and has a significant performance improvement over checking with every lsig.
|
|
|
|
status = cli_checktimelimit(ctx);
|
|
|
|
if (CL_SUCCESS != status) {
|
|
|
|
cli_dbgmsg("Exceeded scan time limit while evaluating logical and yara signatures (max: %u)\n", ctx->engine->maxscantime);
|
|
|
|
break;
|
|
|
|
}
|
2022-10-03 18:23:05 -07:00
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
}
|
2022-10-03 18:23:05 -07:00
|
|
|
|
|
|
|
return status;
|
2010-05-04 21:59:21 +02:00
|
|
|
}
|
2009-08-31 04:41:06 +02:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
cl_error_t cli_scan_fmap(cli_ctx *ctx, cli_file_t ftype, bool filetype_only, struct cli_matched_type **ftoffset, unsigned int acmode, struct cli_ac_result **acres)
|
2009-08-31 04:41:06 +02:00
|
|
|
{
|
2014-02-08 00:31:12 -05:00
|
|
|
const unsigned char *buff;
|
2019-02-27 00:47:38 -05:00
|
|
|
cl_error_t ret = CL_CLEAN, type = CL_CLEAN;
|
2025-06-03 19:03:20 -04:00
|
|
|
|
|
|
|
cli_hash_type_t hash_type;
|
|
|
|
bool need_hash[CLI_HASH_AVAIL_TYPES] = {false};
|
|
|
|
void *hashctx[CLI_HASH_AVAIL_TYPES] = {NULL};
|
|
|
|
unsigned char digest[CLI_HASH_AVAIL_TYPES][CLI_HASHLEN_MAX];
|
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
unsigned int i = 0, j = 0;
|
|
|
|
uint32_t maxpatlen, bytes, offset = 0;
|
|
|
|
|
|
|
|
struct cli_ac_data generic_ac_data;
|
|
|
|
bool gdata_initialized = false;
|
|
|
|
|
|
|
|
struct cli_ac_data target_ac_data;
|
|
|
|
bool tdata_initialized = false;
|
|
|
|
|
|
|
|
struct cli_bm_off bm_offsets_table;
|
|
|
|
bool bm_offsets_table_initialized = false;
|
|
|
|
|
|
|
|
struct cli_pcre_off generic_pcre_offsets_table;
|
|
|
|
bool generic_pcre_offsets_table_initialized = false;
|
|
|
|
|
|
|
|
struct cli_pcre_off target_pcre_offsets_table;
|
|
|
|
bool target_pcre_offsets_table_initialized = false;
|
|
|
|
|
|
|
|
struct cli_matcher *generic_ac_root = NULL, *target_ac_root = NULL;
|
|
|
|
|
2014-02-08 00:31:12 -05:00
|
|
|
struct cli_target_info info;
|
2022-08-18 20:00:33 -07:00
|
|
|
bool info_initialized = false;
|
|
|
|
|
2014-02-08 00:31:12 -05:00
|
|
|
struct cli_matcher *hdb, *fp;
|
2022-08-18 20:00:33 -07:00
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
if (!ctx->engine) {
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
cli_errmsg("cli_scan_fmap: engine == NULL\n");
|
2022-08-18 20:00:33 -07:00
|
|
|
ret = CL_ENULLARG;
|
|
|
|
goto done;
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (!filetype_only) {
|
|
|
|
generic_ac_root = ctx->engine->root[0]; /* generic signatures */
|
2014-02-13 13:05:50 -05:00
|
|
|
}
|
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (ftype != CL_TYPE_ANY) {
|
|
|
|
// Identify the target type, to find the matcher root for that target.
|
2005-09-23 02:23:36 +00:00
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
for (i = 1; i < CLI_MTARGETS; i++) {
|
2014-02-21 16:10:32 -05:00
|
|
|
for (j = 0; j < cli_mtargets[i].target_count; ++j) {
|
2018-12-03 12:40:13 -05:00
|
|
|
if (cli_mtargets[i].target[j] == ftype) {
|
2022-08-18 20:00:33 -07:00
|
|
|
// Identified the target type, now get the matcher root for that target.
|
|
|
|
target_ac_root = ctx->engine->root[i];
|
|
|
|
break; // Break out of inner loop
|
2014-02-21 16:10:32 -05:00
|
|
|
}
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
if (target_ac_root) break;
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
2005-09-23 02:23:36 +00:00
|
|
|
}
|
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (!generic_ac_root) {
|
|
|
|
if (!target_ac_root) {
|
|
|
|
// Don't have a matcher root for either generic signatures or target-specific signatures.
|
|
|
|
// Nothing to do!
|
|
|
|
ret = CL_CLEAN;
|
|
|
|
goto done;
|
2014-02-12 17:42:48 -05:00
|
|
|
}
|
2007-01-08 20:05:07 +00:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
// Only have a matcher root for target-specific signatures.
|
|
|
|
maxpatlen = target_ac_root->maxpatlen;
|
2007-01-08 20:05:07 +00:00
|
|
|
} else {
|
2022-08-18 20:00:33 -07:00
|
|
|
if (target_ac_root) {
|
|
|
|
// Have both generic and target-specific signatures.
|
|
|
|
maxpatlen = MAX(target_ac_root->maxpatlen, generic_ac_root->maxpatlen);
|
|
|
|
} else {
|
|
|
|
// Only have generic signatures.
|
|
|
|
maxpatlen = generic_ac_root->maxpatlen;
|
|
|
|
}
|
2007-01-08 20:05:07 +00:00
|
|
|
}
|
2005-09-23 02:23:36 +00:00
|
|
|
|
PE parsing code improvements, db loading bug fixes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
2019-01-08 00:09:08 -05:00
|
|
|
cli_targetinfo_init(&info);
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
cli_targetinfo(&info, i, ctx);
|
2022-08-18 20:00:33 -07:00
|
|
|
info_initialized = true;
|
2010-06-18 15:41:39 +02:00
|
|
|
|
2019-01-14 23:22:36 -05:00
|
|
|
if (-1 == info.status) {
|
2020-03-21 14:15:28 -04:00
|
|
|
cli_dbgmsg("cli_scan_fmap: Failed to successfully parse the executable header. "
|
2019-01-14 23:22:36 -05:00
|
|
|
"Scan features will be disabled, such as "
|
|
|
|
"NDB/LDB subsigs using EOF-n/EP+n/EP-n/Sx+n/SEx/SL+n, "
|
|
|
|
"fuzzy icon matching, "
|
|
|
|
"MDB/IMP sigs, "
|
|
|
|
"and bytecode sigs that require exe metadata\n");
|
|
|
|
}
|
|
|
|
|
2019-02-12 15:10:04 -05:00
|
|
|
/* If it's a PE, check the Authenticode header. This would be more
|
2020-03-21 14:15:28 -04:00
|
|
|
* appropriate in cli_scanpe, but scanraw->cli_scan_fmap gets
|
2021-05-27 13:15:52 -07:00
|
|
|
* called first for PEs, and we want to determine the trust/block
|
2019-02-12 15:10:04 -05:00
|
|
|
* status early on so we can skip things like embedded PE extraction
|
|
|
|
* (which is broken for signed binaries within signed binaries).
|
2019-02-27 00:47:38 -05:00
|
|
|
*
|
2019-02-12 15:10:04 -05:00
|
|
|
* If we want to add support for more signature parsing in the future
|
2019-03-12 12:45:19 -04:00
|
|
|
* (Ex: MachO sigs), do that here too.
|
|
|
|
*
|
|
|
|
* One benefit of not continuing on to scan files with trusted signatures
|
|
|
|
* is that the bytes associated with the exe won't get counted against the
|
|
|
|
* scansize limits, which means we have an increased chance of catching
|
|
|
|
* malware in container types (NSIS, iShield, etc.) where the file size is
|
|
|
|
* large. A common case where this occurs is installers that embed one
|
|
|
|
* or more of the various Microsoft Redistributable Setup packages. These
|
|
|
|
* can easily be 5 MB or more in size, and might appear before malware
|
|
|
|
* does in a given sample.
|
|
|
|
*/
|
|
|
|
|
2019-02-12 15:10:04 -05:00
|
|
|
if (1 == info.status && i == 1) {
|
2019-02-18 16:04:46 -05:00
|
|
|
ret = cli_check_auth_header(ctx, &(info.exeinfo));
|
2022-08-18 20:00:33 -07:00
|
|
|
if (ret == CL_VIRUS || ret == CL_VERIFIED) {
|
|
|
|
goto done;
|
2019-02-12 15:10:04 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
ret = CL_CLEAN;
|
|
|
|
}
|
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (!filetype_only) {
|
|
|
|
/* If we're not doing a filetype-only scan, so we definitely need to include generic signatures.
|
|
|
|
So initialize the ac data for the generic signatures root. */
|
|
|
|
|
|
|
|
ret = cli_ac_initdata(&generic_ac_data, generic_ac_root->ac_partsigs, generic_ac_root->ac_lsigs, generic_ac_root->ac_reloff_num, CLI_DEFAULT_AC_TRACKLEN);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
goto done;
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
gdata_initialized = true;
|
|
|
|
|
|
|
|
/* Recalculate the relative offsets in ac sigs (e.g. those that are based on pe/elf/macho section start/end). */
|
|
|
|
ret = cli_ac_caloff(generic_ac_root, &generic_ac_data, &info);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Recalculate the pcre offsets.
|
|
|
|
This does an allocation, that we will need to free later. */
|
|
|
|
ret = cli_pcre_recaloff(generic_ac_root, &generic_pcre_offsets_table, &info, ctx);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
goto done;
|
2014-10-22 16:08:36 -04:00
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
generic_pcre_offsets_table_initialized = true;
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
2003-07-29 15:48:06 +00:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (target_ac_root) {
|
|
|
|
/* We have to match against target-specific signatures.
|
|
|
|
So initialize the ac data for the target-specific signatures root. */
|
|
|
|
|
|
|
|
ret = cli_ac_initdata(&target_ac_data, target_ac_root->ac_partsigs, target_ac_root->ac_lsigs, target_ac_root->ac_reloff_num, CLI_DEFAULT_AC_TRACKLEN);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
goto done;
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
tdata_initialized = true;
|
2014-02-08 00:31:12 -05:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
/* Recalculate the relative offsets in ac sigs (e.g. those that are based on pe/elf/macho section start/end). */
|
|
|
|
ret = cli_ac_caloff(target_ac_root, &target_ac_data, &info);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
goto done;
|
|
|
|
}
|
2014-02-08 00:31:12 -05:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (target_ac_root->bm_offmode) {
|
|
|
|
if (ctx->fmap->len >= CLI_DEFAULT_BM_OFFMODE_FSIZE) {
|
|
|
|
/* Recalculate the relative offsets in boyer-moore signatures (e.g. those that are based on pe/elf/macho section start/end). */
|
|
|
|
ret = cli_bm_initoff(target_ac_root, &bm_offsets_table, &info);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
bm_offsets_table_initialized = true;
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
|
|
|
}
|
2014-10-22 16:08:36 -04:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
/* Recalculate the pcre offsets.
|
|
|
|
This does an allocation, that we will need to free later. */
|
|
|
|
ret = cli_pcre_recaloff(target_ac_root, &target_pcre_offsets_table, &info, ctx);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
goto done;
|
2014-10-22 16:08:36 -04:00
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
target_pcre_offsets_table_initialized = true;
|
2005-09-23 02:23:36 +00:00
|
|
|
}
|
|
|
|
|
2011-01-14 20:09:40 +01:00
|
|
|
hdb = ctx->engine->hm_hdb;
|
2018-12-03 12:40:13 -05:00
|
|
|
fp = ctx->engine->hm_fp;
|
2011-01-14 20:09:40 +01:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (!filetype_only && hdb) {
|
|
|
|
/* We're not just doing file typing, we're checking for viruses.
|
|
|
|
So we need to compute the hash sigs, if there are any.
|
|
|
|
|
|
|
|
Computing the hash in chunks the same size and time that we do for
|
|
|
|
matching with the AC & BM pattern matchers is an optimization so we
|
|
|
|
we can do both processes while the cache is still hot. */
|
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
need_hash[CLI_HASH_MD5] = cli_hm_have_size(hdb, CLI_HASH_MD5, ctx->fmap->len) ||
|
|
|
|
cli_hm_have_wild(hdb, CLI_HASH_MD5) ||
|
|
|
|
cli_hm_have_size(fp, CLI_HASH_MD5, ctx->fmap->len) ||
|
|
|
|
cli_hm_have_wild(fp, CLI_HASH_MD5);
|
2014-02-08 00:31:12 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
need_hash[CLI_HASH_SHA1] = cli_hm_have_size(hdb, CLI_HASH_SHA1, ctx->fmap->len) ||
|
|
|
|
cli_hm_have_wild(hdb, CLI_HASH_SHA1) ||
|
|
|
|
cli_hm_have_size(fp, CLI_HASH_SHA1, ctx->fmap->len) ||
|
|
|
|
cli_hm_have_wild(fp, CLI_HASH_SHA1);
|
2011-01-14 20:09:40 +01:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
need_hash[CLI_HASH_SHA2_256] = cli_hm_have_size(hdb, CLI_HASH_SHA2_256, ctx->fmap->len) ||
|
|
|
|
cli_hm_have_wild(hdb, CLI_HASH_SHA2_256) ||
|
|
|
|
cli_hm_have_size(fp, CLI_HASH_SHA2_256, ctx->fmap->len) ||
|
|
|
|
cli_hm_have_wild(fp, CLI_HASH_SHA2_256);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize hash contexts for the hashes that we need to compute.
|
|
|
|
*/
|
|
|
|
for (hash_type = CLI_HASH_MD5; hash_type < CLI_HASH_AVAIL_TYPES; hash_type++) {
|
|
|
|
if (need_hash[hash_type] && !ctx->fmap->have_hash[hash_type]) {
|
|
|
|
const char *hash_name = cli_hash_name(hash_type);
|
|
|
|
|
|
|
|
hashctx[hash_type] = cl_hash_init(hash_name);
|
|
|
|
if (NULL == hashctx[hash_type]) {
|
|
|
|
cli_errmsg("cli_scan_fmap: Error initializing %s hash context\n", hash_name);
|
|
|
|
ret = CL_EARG;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
}
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
2011-01-14 20:09:40 +01:00
|
|
|
}
|
2003-07-29 15:48:06 +00:00
|
|
|
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
while (offset < ctx->fmap->len) {
|
2022-10-17 08:23:40 -07:00
|
|
|
if (cli_checktimelimit(ctx) != CL_SUCCESS) {
|
|
|
|
cli_dbgmsg("Exceeded scan time limit while scanning fmap (max: %u)\n", ctx->engine->maxscantime);
|
|
|
|
ret = CL_ETIMEOUT;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
bytes = MIN(ctx->fmap->len - offset, SCANBUFF);
|
|
|
|
if (!(buff = fmap_need_off_once(ctx->fmap, offset, bytes)))
|
2014-02-08 00:31:12 -05:00
|
|
|
break;
|
2018-12-03 12:40:13 -05:00
|
|
|
if (ctx->scanned)
|
ClamScan & libclamav: improve precision of bytes-scanned, bytes-read
The ClamScan scan summary prints bytes scanned and bytes read in
multiples of 4096 (aka `CL_COUNT_PRECISION`), as is provided by the
`cl_scanfile()`, `cl_scandesc()`, `cl_scanfile_callback()`, and
`cl_scandesc_callback()` functions.
I believe this imprecision was the result of using an `unsigned long int`
which may be 64bit or 32bit, depending on platform. I believe the
intention was to be able to support scanning more than 4 GiB of data.
Since the new `cl_scan*_ex()` functions use a `uint64_t`, which
guarantees a 64bit integer and supports ~16,777,216 terabytes, I find no
reason not to report an accurate count.
For the legacy scan functions (above) I've kept the `CL_COUNT_PRECISION`
behavior to maintain backwards compatibility.
I have also improved the bytes scanned/read output to report GiB, MiB,
KiB, or B as appropriate. Previously, it always report "MB".
CLAM-1433
2025-06-25 14:39:11 -04:00
|
|
|
*ctx->scanned += bytes;
|
2014-02-08 00:31:12 -05:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (target_ac_root) {
|
|
|
|
const char *virname = NULL;
|
2014-02-08 00:31:12 -05:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
ret = matcher_run(target_ac_root, buff, bytes, &virname, &target_ac_data, offset,
|
|
|
|
&info, ftype, ftoffset, acmode, PCRE_SCAN_FMAP, acres, ctx->fmap,
|
|
|
|
bm_offsets_table_initialized ? &bm_offsets_table : NULL,
|
|
|
|
&target_pcre_offsets_table, ctx);
|
|
|
|
if (ret == CL_VIRUS || ret == CL_EMEM) {
|
|
|
|
goto done;
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
|
|
|
}
|
2003-07-29 15:48:06 +00:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (!filetype_only) {
|
|
|
|
const char *virname = NULL;
|
2005-12-12 21:05:26 +00:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
ret = matcher_run(generic_ac_root, buff, bytes, &virname, &generic_ac_data, offset,
|
|
|
|
&info, ftype, ftoffset, acmode, PCRE_SCAN_FMAP, acres, ctx->fmap,
|
|
|
|
NULL,
|
|
|
|
&generic_pcre_offsets_table, ctx);
|
|
|
|
if (ret == CL_VIRUS || ret == CL_EMEM) {
|
|
|
|
goto done;
|
2019-08-22 18:09:18 -04:00
|
|
|
} else if ((acmode & AC_SCAN_FT) && ((cli_file_t)ret >= CL_TYPENO)) {
|
2018-12-03 12:40:13 -05:00
|
|
|
if (ret > type)
|
2014-02-08 00:31:12 -05:00
|
|
|
type = ret;
|
|
|
|
}
|
2003-07-29 15:48:06 +00:00
|
|
|
|
2015-02-25 14:55:21 -05:00
|
|
|
/* if (bytes <= (maxpatlen * (offset!=0))), it means the last window finished the file hashing *
|
|
|
|
* since the last window is responsible for adding intersection between windows (maxpatlen) */
|
2018-12-03 12:40:13 -05:00
|
|
|
if (hdb && (bytes > (maxpatlen * (offset != 0)))) {
|
|
|
|
const void *data = buff + maxpatlen * (offset != 0);
|
|
|
|
uint32_t data_len = bytes - maxpatlen * (offset != 0);
|
2011-01-14 20:09:40 +01:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
for (hash_type = CLI_HASH_MD5; hash_type < CLI_HASH_AVAIL_TYPES; hash_type++) {
|
|
|
|
/*
|
|
|
|
* Compute the hash for the current data chunk, if we need to.
|
|
|
|
*/
|
|
|
|
if (need_hash[hash_type] && !ctx->fmap->have_hash[hash_type]) {
|
|
|
|
if (cl_update_hash(hashctx[hash_type], data, data_len)) {
|
|
|
|
const char *hash_name = cli_hash_name(hash_type);
|
|
|
|
cli_errmsg("cli_scan_fmap: Error calculating %s hash!\n", hash_name);
|
|
|
|
ret = CL_EREAD;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
|
|
|
}
|
2006-03-10 15:11:38 +00:00
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
if (bytes < SCANBUFF)
|
2014-02-08 00:31:12 -05:00
|
|
|
break;
|
|
|
|
|
|
|
|
offset += bytes - maxpatlen;
|
2004-07-19 17:54:40 +00:00
|
|
|
}
|
2004-07-08 13:48:58 +00:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (!filetype_only && hdb) {
|
2022-08-19 10:18:58 -07:00
|
|
|
/* We're not just doing file typing, we're scanning for malware.
|
2022-08-18 20:00:33 -07:00
|
|
|
So we need to check the hash sigs, if there are any. */
|
2025-06-03 19:03:20 -04:00
|
|
|
for (hash_type = CLI_HASH_MD5; hash_type < CLI_HASH_AVAIL_TYPES; hash_type++) {
|
|
|
|
/*
|
|
|
|
* Compute the hash for the current data chunk, if we need to.
|
|
|
|
*/
|
|
|
|
if (need_hash[hash_type] && !ctx->fmap->have_hash[hash_type]) {
|
|
|
|
cl_finish_hash(hashctx[hash_type], digest[hash_type]);
|
|
|
|
hashctx[hash_type] = NULL;
|
2022-08-18 20:00:33 -07:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
fmap_set_hash(ctx->fmap, digest[hash_type], hash_type);
|
|
|
|
}
|
2014-02-12 17:42:48 -05:00
|
|
|
}
|
2014-02-08 00:31:12 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
for (hash_type = CLI_HASH_MD5; hash_type < CLI_HASH_AVAIL_TYPES; hash_type++) {
|
2022-08-18 20:00:33 -07:00
|
|
|
const char *virname = NULL;
|
2018-12-03 12:40:13 -05:00
|
|
|
const char *virname_w = NULL;
|
2025-06-03 19:03:20 -04:00
|
|
|
uint8_t *hash = NULL;
|
2014-02-08 00:31:12 -05:00
|
|
|
|
|
|
|
/* If no hash, skip to next type */
|
2025-06-03 19:03:20 -04:00
|
|
|
if (!need_hash[hash_type]) {
|
2014-02-08 00:31:12 -05:00
|
|
|
continue;
|
|
|
|
}
|
2013-03-08 18:10:07 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
/* Get the hash for the current type.
|
|
|
|
* We already calculated all the needed ones, so this is a simple lookup.
|
|
|
|
* Yes, I know there is the digest[] array, but that one may be hashes calculated before this function. */
|
|
|
|
ret = fmap_get_hash(ctx->fmap, &hash, hash_type);
|
|
|
|
if (CL_SUCCESS != ret) {
|
|
|
|
cli_dbgmsg("cli_scan_fmap: Error getting hash for type %d\n", hash_type);
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Do hash scan checking hash sigs with specific size.
|
|
|
|
* This part is fast, so we aren't checking if there are any of hash sigs for this type of hash at this file size */
|
|
|
|
ret = cli_hm_scan(hash, ctx->fmap->len, &virname, hdb, hash_type);
|
2022-08-18 20:00:33 -07:00
|
|
|
if (ret == CL_VIRUS) {
|
|
|
|
/* Matched with size-based hash ... */
|
|
|
|
ret = cli_append_virus(ctx, virname);
|
|
|
|
if (ret != CL_SUCCESS) {
|
|
|
|
goto done;
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
|
|
|
}
|
2013-03-08 18:10:07 -05:00
|
|
|
|
2025-06-03 19:03:20 -04:00
|
|
|
/* Do hash scan checking hash sigs with wildcard size.
|
|
|
|
* This part is fast, so we aren't checking if there are any hash sigs for this type of hash with wildcard size */
|
|
|
|
ret = cli_hm_scan_wild(hash, &virname_w, hdb, hash_type);
|
2022-08-18 20:00:33 -07:00
|
|
|
if (ret == CL_VIRUS) {
|
|
|
|
/* Matched with size-agnostic hash ... */
|
|
|
|
ret = cli_append_virus(ctx, virname_w);
|
|
|
|
if (ret != CL_SUCCESS) {
|
|
|
|
goto done;
|
|
|
|
}
|
2018-12-03 12:40:13 -05:00
|
|
|
}
|
2014-02-08 00:31:12 -05:00
|
|
|
}
|
2011-01-03 16:42:04 +01:00
|
|
|
}
|
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
/*
|
|
|
|
* Evaluate the logical expressions for clamav logical signatures and YARA rules.
|
|
|
|
*/
|
2023-11-26 15:01:19 -08:00
|
|
|
// Evaluate for the target-specific signature AC matches.
|
2022-08-18 20:00:33 -07:00
|
|
|
if (NULL != target_ac_root) {
|
|
|
|
if (ret != CL_VIRUS) {
|
2025-06-03 19:03:20 -04:00
|
|
|
ret = cli_exp_eval(ctx, target_ac_root, &target_ac_data, &info);
|
2022-08-18 20:00:33 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-11-26 15:01:19 -08:00
|
|
|
// Evaluate for the generic signature AC matches.
|
2022-08-18 20:00:33 -07:00
|
|
|
if (NULL != generic_ac_root) {
|
|
|
|
if (ret != CL_VIRUS) {
|
2025-06-03 19:03:20 -04:00
|
|
|
ret = cli_exp_eval(ctx, generic_ac_root, &generic_ac_data, &info);
|
2022-08-18 20:00:33 -07:00
|
|
|
}
|
|
|
|
}
|
2014-02-12 17:42:48 -05:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
done:
|
2025-06-03 19:03:20 -04:00
|
|
|
for (hash_type = CLI_HASH_MD5; hash_type < CLI_HASH_AVAIL_TYPES; hash_type++) {
|
|
|
|
if (NULL != hashctx[hash_type]) {
|
|
|
|
cl_hash_destroy(hashctx[hash_type]);
|
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
}
|
2014-02-08 00:31:12 -05:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (gdata_initialized) {
|
|
|
|
cli_ac_freedata(&generic_ac_data);
|
|
|
|
}
|
|
|
|
if (tdata_initialized) {
|
|
|
|
cli_ac_freedata(&target_ac_data);
|
2008-07-25 23:11:23 +00:00
|
|
|
}
|
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (generic_pcre_offsets_table_initialized) {
|
|
|
|
cli_pcre_freeoff(&generic_pcre_offsets_table);
|
|
|
|
}
|
|
|
|
if (target_pcre_offsets_table_initialized) {
|
|
|
|
cli_pcre_freeoff(&target_pcre_offsets_table);
|
2008-07-25 23:11:23 +00:00
|
|
|
}
|
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (info_initialized) {
|
|
|
|
cli_targetinfo_destroy(&info);
|
|
|
|
}
|
2010-07-29 16:58:27 +02:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (bm_offsets_table_initialized) {
|
|
|
|
cli_bm_freeoff(&bm_offsets_table);
|
2018-09-21 16:49:38 -04:00
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
|
2022-10-19 20:53:41 -07:00
|
|
|
if (ret != CL_SUCCESS) {
|
|
|
|
return ret;
|
2018-09-21 16:49:38 -04:00
|
|
|
}
|
2004-05-30 01:42:19 +00:00
|
|
|
|
2022-10-19 20:53:41 -07:00
|
|
|
return (acmode & AC_SCAN_FT) ? type : CL_SUCCESS;
|
2004-05-30 01:42:19 +00:00
|
|
|
}
|
2010-01-07 18:26:12 +01:00
|
|
|
|
2021-10-03 14:13:55 -07:00
|
|
|
#define CDBRANGE(field, val) \
|
|
|
|
if (field[0] != CLI_OFF_ANY) { \
|
|
|
|
if (field[0] == field[1] && field[0] != val) \
|
|
|
|
continue; \
|
|
|
|
else if (field[0] != field[1] && ((field[0] && field[0] > val) || \
|
|
|
|
(field[1] && field[1] < val))) \
|
|
|
|
continue; \
|
|
|
|
}
|
|
|
|
|
2023-11-07 23:00:30 -05:00
|
|
|
cl_error_t cli_matchmeta(cli_ctx *ctx, const char *fname, size_t fsizec, size_t fsizer, int encrypted, unsigned int filepos, int res1)
|
2010-01-07 18:26:12 +01:00
|
|
|
{
|
2018-12-03 12:40:13 -05:00
|
|
|
const struct cli_cdb *cdb;
|
2022-08-18 20:00:33 -07:00
|
|
|
cl_error_t ret = CL_SUCCESS;
|
2010-01-07 18:26:12 +01:00
|
|
|
|
2023-11-07 23:00:30 -05:00
|
|
|
cli_dbgmsg("CDBNAME:%s:%llu:%s:%llu:%llu:%d:%u:%u\n",
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
cli_ftname(cli_recursion_stack_get_type(ctx, -1)), (long long unsigned)fsizec, fname, (long long unsigned)fsizec, (long long unsigned)fsizer,
|
2023-11-07 23:00:30 -05:00
|
|
|
encrypted, filepos, res1);
|
2011-08-22 15:22:55 +03:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (ctx->engine && ctx->engine->cb_meta) {
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
if (ctx->engine->cb_meta(cli_ftname(cli_recursion_stack_get_type(ctx, -1)), fsizec, fname, fsizer, encrypted, filepos, ctx->cb_ctx) == CL_VIRUS) {
|
2021-05-27 13:15:52 -07:00
|
|
|
cli_dbgmsg("inner file blocked by callback: %s\n", fname);
|
2012-10-18 14:12:58 -07:00
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
ret = cli_append_virus(ctx, "Detected.By.Callback");
|
2022-08-18 20:00:33 -07:00
|
|
|
if (ret != CL_SUCCESS) {
|
2018-12-03 12:40:13 -05:00
|
|
|
return ret;
|
2022-08-18 20:00:33 -07:00
|
|
|
}
|
2018-12-03 12:40:13 -05:00
|
|
|
}
|
2022-08-18 20:00:33 -07:00
|
|
|
}
|
2011-08-22 15:22:55 +03:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
if (NULL == ctx->engine || (NULL == (cdb = ctx->engine->cdb))) {
|
2018-12-03 12:40:13 -05:00
|
|
|
return CL_CLEAN;
|
2022-08-18 20:00:33 -07:00
|
|
|
}
|
2010-01-07 18:26:12 +01:00
|
|
|
|
|
|
|
do {
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
if (cdb->ctype != CL_TYPE_ANY && cdb->ctype != cli_recursion_stack_get_type(ctx, -1))
|
2018-12-03 12:40:13 -05:00
|
|
|
continue;
|
|
|
|
|
|
|
|
if (cdb->encrypted != 2 && cdb->encrypted != encrypted)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (cdb->res1 && (cdb->ctype == CL_TYPE_ZIP || cdb->ctype == CL_TYPE_RAR) && cdb->res1 != res1)
|
|
|
|
continue;
|
|
|
|
|
libclamav: Fix scan recursion tracking
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
2021-09-11 14:15:21 -07:00
|
|
|
CDBRANGE(cdb->csize, cli_recursion_stack_get_size(ctx, -1));
|
2018-12-03 12:40:13 -05:00
|
|
|
CDBRANGE(cdb->fsizec, fsizec);
|
|
|
|
CDBRANGE(cdb->fsizer, fsizer);
|
|
|
|
CDBRANGE(cdb->filepos, filepos);
|
2010-01-07 18:26:12 +01:00
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
if (cdb->name.re_magic && (!fname || cli_regexec(&cdb->name, fname, 0, NULL, 0) == REG_NOMATCH))
|
|
|
|
continue;
|
2010-01-07 18:26:12 +01:00
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
ret = cli_append_virus(ctx, cdb->virname);
|
2022-08-18 20:00:33 -07:00
|
|
|
if (ret != CL_SUCCESS) {
|
2018-12-03 12:40:13 -05:00
|
|
|
return ret;
|
2022-08-18 20:00:33 -07:00
|
|
|
}
|
2010-01-07 18:26:12 +01:00
|
|
|
|
2018-12-03 12:40:13 -05:00
|
|
|
} while ((cdb = cdb->next));
|
2010-01-07 18:26:12 +01:00
|
|
|
|
2022-08-18 20:00:33 -07:00
|
|
|
return ret;
|
2010-01-07 18:26:12 +01:00
|
|
|
}
|