clamav/libclamav/c++/llvm/docs/LangRef.html
Török Edvin 9da1704025 Merge LLVM upstream SVN r80601.
This brings in some memory leak fixes for LLVMCOntext.

Squashed commit of the following:

commit 4cfaf41d499ce05b11ecb62746c3e86b04440f62
Author: Bill Wendling <isanbard@gmail.com>
Date:   Mon Aug 31 18:26:48 2009 +0000

    Output a hex value, because all of the others are hex.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80601 91177308-0d34-0410-b5e6-96231b3b80d8

commit 7829e5a6558bb97589d47d61da3142f7ebbdaeac
Author: Dale Johannesen <dalej@apple.com>
Date:   Mon Aug 31 18:05:23 2009 +0000

    Fix some misspellings of XTARGET.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80598 91177308-0d34-0410-b5e6-96231b3b80d8

commit 8364630e4cb67b6f64a704960e73ae44ce3f10ed
Author: Dale Johannesen <dalej@apple.com>
Date:   Mon Aug 31 17:49:20 2009 +0000

    Mark test as passing on all x86, which it should,
    although I don't think anyone cares about this
    feature except Darwin.  PR 4825.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80596 91177308-0d34-0410-b5e6-96231b3b80d8

commit cf91fb4cb2e15b1fa07dc1282ac59c3659d80015
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 17:08:30 2009 +0000

    cleanups pointed out by duncan

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80595 91177308-0d34-0410-b5e6-96231b3b80d8

commit 752d366fe7a9d0f68258465ce554cdf40af2918e
Author: Duncan Sands <baldrick@free.fr>
Date:   Mon Aug 31 16:45:16 2009 +0000

    Revert commit 80428.  It completely broke exception
    handling on x86-32 linux.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80592 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3c8dfbb88bb125c2b7d1105645937b14dce9bcd3
Author: Edwin Török <edwintorok@gmail.com>
Date:   Mon Aug 31 16:14:59 2009 +0000

    Free the constants that have no uses in ~LLVMContext.
    This fixes leaks from LLVMContext in multithreaded apps.
    Since constants are only deleted if they have no uses, it is safe to not delete
    a Module on shutdown, as many single-threaded tools do.
    Multithreaded apps should however delete the Module before destroying the
    Context to ensure that there are no leaks (assuming they use a different context
    for each thread).

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80590 91177308-0d34-0410-b5e6-96231b3b80d8

commit 6d5f43b77a907a2b42ff405ab16e078c6598c70e
Author: Edwin Török <edwintorok@gmail.com>
Date:   Mon Aug 31 16:12:29 2009 +0000

    Fix ExplicitSymbols leak.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80589 91177308-0d34-0410-b5e6-96231b3b80d8

commit b759ebc5bc48ee93a9f4b031ec6ed3247028d77c
Author: Benjamin Kramer <benny.kra@googlemail.com>
Date:   Mon Aug 31 13:05:24 2009 +0000

    Normalize makefile comments and sort cmake file lists.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80584 91177308-0d34-0410-b5e6-96231b3b80d8

commit d79f43204be2893e74872f1062e2a44f023d39e1
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:09:28 2009 +0000

    llvm-mc: Pass values to MCStreamer as MCExprs, not MCValues.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80578 91177308-0d34-0410-b5e6-96231b3b80d8

commit f4c67959b5ea0bbd3a39085c91c2d3162c6fd973
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:09:09 2009 +0000

    llvm-mc: Simplify EmitAssignment ('.set' is identical to '=').

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80577 91177308-0d34-0410-b5e6-96231b3b80d8

commit b6a03e093598d90c10c8d1cab8425e3d107b12cf
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:08:50 2009 +0000

    llvm-mc: Remove MCAsmParser::Parse[Paren]RelocatableExpression.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80576 91177308-0d34-0410-b5e6-96231b3b80d8

commit 6e96621a502ddebc12cd4d139756b7a90fd1ca8a
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:08:38 2009 +0000

    llvm-mc: Switch MCInst to storing an MCExpr* instead of an MCValue.

    Also, use MCInst::print instead of custom code in MCAsmPrinter.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80575 91177308-0d34-0410-b5e6-96231b3b80d8

commit 667cfd44ac3394697e60f54f72bfd190436c061a
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:08:17 2009 +0000

    llvm-mc: Add MCAsmParser::Parse[Paren]Expression forms which return an MCExpr.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80574 91177308-0d34-0410-b5e6-96231b3b80d8

commit 22ad5f80f751da3ba986022d09c49fcc4416048a
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:08:06 2009 +0000

    llvm-mc: Make MCSymbolData symbol member const.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80573 91177308-0d34-0410-b5e6-96231b3b80d8

commit 29efe7e0c9d32aaefa2a2924a8ded5fd4c76ff28
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:07:55 2009 +0000

    llvm-mc: Add MCContext to MCAssembler.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80572 91177308-0d34-0410-b5e6-96231b3b80d8

commit 890ebe2d940760796e088902a2613cdf30b16e76
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:07:44 2009 +0000

    llvm-mc: Add MCAsmParser::getContext.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80571 91177308-0d34-0410-b5e6-96231b3b80d8

commit 510c1a5512b7de68dc9b272eaba0e5d6c3ddc8b9
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:07:33 2009 +0000

    llvm-mc: Add MCExpr::{dump,print}.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80570 91177308-0d34-0410-b5e6-96231b3b80d8

commit bc4d607b1a5fd13c1f19ef812ebb6fe814831d56
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:07:22 2009 +0000

    llvm-mc: Switch MCExpr construction to using static member functions, and taking the MCContext (which now owns all MCExprs).

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80569 91177308-0d34-0410-b5e6-96231b3b80d8

commit 6e3b031540ae25a464bfa37cdbd19e2cad301ee7
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:07:08 2009 +0000

    llvm-mc: Add some doxyment markers.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80568 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3679d2f3156d001053bae8fa5a162852b7700a27
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 31 08:06:59 2009 +0000

    llvm-mc: Move AsmExpr into MC lib (as MCExpr).

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80567 91177308-0d34-0410-b5e6-96231b3b80d8

commit 298ea10f4da28d9be51f8be5af59f88ea86ce7ec
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 07:23:46 2009 +0000

    Step #1 to giving Callgraph some sane invariants.  The problems with callgraph
    stem from the fact that we have two types of passes that need to update it:

    1. callgraphscc and module passes that are explicitly aware of it
    2. Functionpasses (and loop passes etc) that are interlaced with CGSCC passes
       by the CGSCC Passmgr.

    In the case of #1, we can reasonably expect the passes to update the call
    graph just like any analysis.  However, functionpasses are not and generally
    should not be CG aware.  This has caused us no end of problems, so this takes
    a new approach.  Logically, the CGSCC Pass manager can rescan every function
    after it runs a function pass over it to see if the functionpass made any
    updates to the IR that affect the callgraph.  This allows it to catch new calls
    introduced by the functionpass.

    In practice, doing this would be slow.  This implementation keeps track of
    whether or not the current scc is dirtied by a function pass, and, if so,
    delays updating the callgraph until it is actually needed again.  This was
    we avoid extraneous rescans, but we still have good invariants when the
    callgraph is needed.

    Step #2 of the "give Callgraph some sane invariants" is to change CallGraphNode
    to use a CallBackVH for the callsite entry of the CallGraphNode.  This way
    we can immediately remove entries from the callgraph when a FunctionPass is
    active instead of having dangling pointers.  The current pass tries to tolerate
    these dangling pointers, but it is just an evil hack.

    This is related to PR3601/4835/4029.  This also reverts r80541, a hack working
    around the sad lack of invariants.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80566 91177308-0d34-0410-b5e6-96231b3b80d8

commit 21d79e26df48405ff2fdfde682c4fdf6c646ef8a
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 06:57:37 2009 +0000

    fix some cases where instcombine would change hte IR but not return true
    from runOnFunction

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80562 91177308-0d34-0410-b5e6-96231b3b80d8

commit 223479b6087a6d9a1470c857c459e408ba51df84
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 06:01:21 2009 +0000

    cleanups, factor some code out to a helper function

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80542 91177308-0d34-0410-b5e6-96231b3b80d8

commit f5313424550268526a14fd910cfb59efb95e0f30
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 05:46:59 2009 +0000

    fix a crash building SPASS by tolerating a callsite that doesn't exist
    in the callgraph, see the big comment at the top of the testcase.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80541 91177308-0d34-0410-b5e6-96231b3b80d8

commit 4c76b7e8e15bf7ed6607393535f64a9070b6df8c
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 05:34:32 2009 +0000

    comment and simplify some code.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80540 91177308-0d34-0410-b5e6-96231b3b80d8

commit d441cd63a37ec3589fed1cfba11bbb177dab8fa6
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 05:22:48 2009 +0000

    add -debug output

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80539 91177308-0d34-0410-b5e6-96231b3b80d8

commit 26b7f945b3a935e44755202ef7be13fdee8c75b5
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 05:17:58 2009 +0000

    improve -debug output, so that -debug is more likely to print when
    instcombine is changing stuff.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80538 91177308-0d34-0410-b5e6-96231b3b80d8

commit adba7ea53650f26a6752f606041ac6d741c1fd4f
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 04:36:22 2009 +0000

    fix a bug I introduced with my 'instcombine builder' refactoring
    changes: SimplifyDemandedBits can't use the builder yet because it
    has the wrong insertion point.  This fixes a crash building
    MultiSource/Benchmarks/PAQ8p

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80537 91177308-0d34-0410-b5e6-96231b3b80d8

commit b74203603b43d08ddef33e9a4c9c03752d86aee6
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 04:09:04 2009 +0000

    simplify some code by making the SCCNodes set contain Function*'s
    instead of CallGraphNode*'s.  This also papers over a callgraph
    problem where a pass (in this case, MemCpyOpt) introduces a new
    function into the module (llvm.memset.i64) but doesn't add it to
    the call graph (nor should it, since it is a function pass).

    While it might be a good idea for MemCpyOpt to not synthesize
    functions in a runOnFunction(), there is no need for FunctionAttrs
    to be boneheaded, so fix it there.  This fixes an assertion building
    176.gcc.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80535 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3e30f91f1c190b8f3ba93de2c8746e0addaf056e
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 03:22:35 2009 +0000

    only print the override triple if it exists!

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80534 91177308-0d34-0410-b5e6-96231b3b80d8

commit fd7079292b43ca5eceae2c585fc2899033a448f7
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 03:15:49 2009 +0000

    Fix PR4834, a tricky case where the inliner would resolve an
    indirect function pointer, inline it, then go to delete the body.
    The problem is that the callgraph had other references to the function,
    though the inliner had no way to know it, so we got a dangling pointer
    and an invalid iterator out of the deal.

    The fix to this is pretty simple: stop the inliner from deleting the
    function by knowing that there are references to it.  Do this by making
    CallGraphNodes contain a refcount.  This requires moving deletion of
    available_externally functions to the module-level cleanup sweep where
    it belongs.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80533 91177308-0d34-0410-b5e6-96231b3b80d8

commit 7d7776f7adca3f51d05c3bbfbacaf65a5ae5167f
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 02:24:20 2009 +0000

    use an accessor instead of poking internals of a node.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80532 91177308-0d34-0410-b5e6-96231b3b80d8

commit 7032b5cbb5282c844008e780c7bbdddf8f8cf096
Author: Oscar Fuentes <ofv@wanadoo.es>
Date:   Mon Aug 31 01:58:50 2009 +0000

    CMake: updated library dependencies.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80531 91177308-0d34-0410-b5e6-96231b3b80d8

commit 54b6adfbb882f2f9b96c241fb87d0128ce840960
Author: Jim Grosbach <grosbach@apple.com>
Date:   Mon Aug 31 01:35:03 2009 +0000

    PR4747

    Shared landing pads run into trouble with SJLJ, as the dispatch table is
    mapped to call sites, and merging the pads will throw that off. There needs
    to be a one-to-one mapping of landing pad exception table entries to invoke
    call points.

    Detecting the shared pad during lowering of SJLJ info insn't sufficient, as
    the dispatch function may still need separate destinations to properly
    handle phi-nodes.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80530 91177308-0d34-0410-b5e6-96231b3b80d8

commit 86ab47ae9c388e9e046dedd9d9d554268290e450
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 00:28:46 2009 +0000

    update unit test for previous change.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80528 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3dab7152eedc0d822a9499102303eba526026021
Author: Chris Lattner <sabre@nondot.org>
Date:   Mon Aug 31 00:19:58 2009 +0000

    Fix some nasty callgraph dangling pointer problems in
    argpromotion and structretpromote.  Basically, when replacing
    a function, they used the 'changeFunction' api which changes
    the entry in the function map (and steals/reuses the callgraph
    node).

    This has some interesting effects: first, the problem is that it doesn't
    update the "callee" edges in any callees of the function in the call graph.
    Second, this covers for a major problem in all the CGSCC pass stuff, which
    is that it is completely broken when functions are deleted if they *don't*
    reuse a CGN.  (there is a cute little fixme about this though :).

    This patch changes the protocol that CGSCC passes must obey: now the CGSCC
    pass manager copies the SCC and preincrements its iterator to avoid passes
    invalidating it.  This allows CGSCC passes to mutate the current SCC.  However
    multiple passes may be run on that SCC, so if passes do this, they are now
    required to *update* the SCC to be current when they return.

    Other less interesting parts of this patch are that it makes passes update
    the CG more directly, eliminates changeFunction, and requires clients of
    replaceCallSite to specify the new callee CGN if they are changing it.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80527 91177308-0d34-0410-b5e6-96231b3b80d8

commit 637d133ffeaa961837ebc87ee6934be5ef401b8f
Author: Erick Tryzelaar <idadesub@users.sourceforge.net>
Date:   Sun Aug 30 23:41:20 2009 +0000

    Fix header comment for bindings/ocaml/llvm/Makefile.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80526 91177308-0d34-0410-b5e6-96231b3b80d8

commit ad465d7013a6ec529a34605d51377202af71b418
Author: Erick Tryzelaar <idadesub@users.sourceforge.net>
Date:   Sun Aug 30 23:38:06 2009 +0000

    Make sure we specify no arguments for context functions.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80525 91177308-0d34-0410-b5e6-96231b3b80d8

commit ba263e5f1b2320558e3935bbfbdc10c6d581c19d
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 22:24:32 2009 +0000

    add a dump() method on callgraph.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80524 91177308-0d34-0410-b5e6-96231b3b80d8

commit 72489759fa9fb63fdfa9f2e363222f0c45bf1340
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 22:14:17 2009 +0000

    rename test

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80523 91177308-0d34-0410-b5e6-96231b3b80d8

commit fae478e46e8ba5192eebbe569a627fdb954e587f
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 22:13:26 2009 +0000

    merge all sinking tests into one and convert them to filecheck.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80522 91177308-0d34-0410-b5e6-96231b3b80d8

commit a94b6974dd77e6457eba731fc6bf760d150f4207
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 22:08:19 2009 +0000

    convert scalar_promote to filecheck style and merge 2003-12-13-VolatilePromote.ll into it.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80521 91177308-0d34-0410-b5e6-96231b3b80d8

commit 9e2f641e11c20fa64e5f605e00168ecc7c0207b6
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 21:45:23 2009 +0000

    eliminate some uses of prcontext.  Any help here would be appreciated :)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80520 91177308-0d34-0410-b5e6-96231b3b80d8

commit b5d911fe3ad0daa3bab9f6ddb24931db969fed00
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 21:36:39 2009 +0000

    rename test so that name reflects what it is testing for.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80519 91177308-0d34-0410-b5e6-96231b3b80d8

commit 16078ca613ec085b395afbabf5b68b7062e0ac1c
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 21:36:06 2009 +0000

    convert to filecheck format.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80518 91177308-0d34-0410-b5e6-96231b3b80d8

commit 0799dd19d3f0c2f1beb1b17ef7842ae5b61043d2
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 21:31:34 2009 +0000

    suck a bunch more gep tests into getelementptr.ll and filecheckize them all.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80517 91177308-0d34-0410-b5e6-96231b3b80d8

commit 16d7262e7a2e523c97e2c8bb2b4ab8823cf05772
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Sun Aug 30 21:14:05 2009 +0000

    Tweak comment.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80516 91177308-0d34-0410-b5e6-96231b3b80d8

commit 6a8458c86c784f7955ab7815b4840fc21f27b2d8
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Sun Aug 30 21:13:58 2009 +0000

    Fix some possible-use-of-uninitialized warnings.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80515 91177308-0d34-0410-b5e6-96231b3b80d8

commit 909749e25e3d5442e5b407781d2de92871f81a64
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 21:02:36 2009 +0000

    consolodate various GEP tests into getelementptr.ll using filecheck.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80514 91177308-0d34-0410-b5e6-96231b3b80d8

commit ccf7551a0445599b24a0eae667242e67b5f5d298
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 21:02:02 2009 +0000

    another huge testcase, this time from 'gs' in llvm-test.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80513 91177308-0d34-0410-b5e6-96231b3b80d8

commit 1fa629a0ffe6aa837bda41389c098e236a5b0f0c
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 21:01:14 2009 +0000

    remove another poorly-reduced testcase which came from ldecod in llvm-test.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80512 91177308-0d34-0410-b5e6-96231b3b80d8

commit 36d9c48134861d576a78c09e001d7773a502ea76
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 21:00:11 2009 +0000

    this testcase is 500 lines long and is distilled from bzip2, just
    remove it.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80511 91177308-0d34-0410-b5e6-96231b3b80d8

commit 586de4da4bffce2aae9110a60a39a3318014674c
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 20:48:15 2009 +0000

    convert to filecheck

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80510 91177308-0d34-0410-b5e6-96231b3b80d8

commit 83288fa512830d723318bf99060d3ec4fbf53abc
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 20:38:21 2009 +0000

    Fix PR4748:  don't fold gep(bitcast(x)) into bitcast(gep) when x
    is itself a bitcast.  Since we have gep(bitcast(bitcast(y))) in this
    case, just wait for the two bitcasts to get zapped.  This prevents
    instcombine from confusing some aliasing stuff, and allows it to
    directly eliminate the load in the testcase.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80508 91177308-0d34-0410-b5e6-96231b3b80d8

commit f3a2359906e6939a2552c7c23877592693d757f1
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 20:36:46 2009 +0000

    misc cleanup

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80507 91177308-0d34-0410-b5e6-96231b3b80d8

commit 6807a24de176e563843a0c5a21c9358b5eeefc2d
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 20:06:40 2009 +0000

    add getPointerAddressSpace() to GEP instruction, use the method
    in a few scalar xforms to simplify things.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80506 91177308-0d34-0410-b5e6-96231b3b80d8

commit d6164c20cdaaa27a2cc7b340604b4df3f2b97129
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 20:01:10 2009 +0000

    eliminate InsertCastBefore, use the builder instead.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80505 91177308-0d34-0410-b5e6-96231b3b80d8

commit 78628294ebe9a062fbd7e55edf5240e9b7c53fce
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 19:47:22 2009 +0000

    eliminate InsertBitCastBefore, just use the builder instead.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80504 91177308-0d34-0410-b5e6-96231b3b80d8

commit b77b0464ba62108a07af655f626f5bfe3bd63162
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 19:45:21 2009 +0000

    add a "getPointerAddressSpace" helper method to LoadInst and StoreInst.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80503 91177308-0d34-0410-b5e6-96231b3b80d8

commit d33527768525e6447c6fdcf521ffb975165dbc7a
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Sun Aug 30 19:06:39 2009 +0000

    Add missed pattern

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80502 91177308-0d34-0410-b5e6-96231b3b80d8

commit ad7516ac00ede459691feba7f448a4c3654ea6fc
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 18:50:58 2009 +0000

    convert a bunch more calls to InsertNewInstBefore to use
    the new Instcombine builder.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80501 91177308-0d34-0410-b5e6-96231b3b80d8

commit 36ec3b4e9828905bdc6bf7ef91ac808ab11e7d45
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 17:53:59 2009 +0000

    fix typo

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80500 91177308-0d34-0410-b5e6-96231b3b80d8

commit 8ba22dd113839d66b3f2912aff6bdd27776b1608
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 17:44:10 2009 +0000

    hopefully unbreak the build by making this-> explicit for dependent
    base class lookup.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80499 91177308-0d34-0410-b5e6-96231b3b80d8

commit 243874430bb02c8f76b7603cbc8f31ebf2749785
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Sun Aug 30 17:14:54 2009 +0000

    EXTRACT_VECTOR_ELEMENT can have result type different from element type.
    Remove the assertion and generalize the code for ARM NEON stuff.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80498 91177308-0d34-0410-b5e6-96231b3b80d8

commit 42cee05a28e87ba96760daaf9699f8355ea53f6e
Author: Edwin Török <edwintorok@gmail.com>
Date:   Sun Aug 30 08:24:09 2009 +0000

    Add regular expression matching support, based on OpenBSD regexec()/regcomp()
    implementation.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80493 91177308-0d34-0410-b5e6-96231b3b80d8

commit c769485a593b86360597d913c083292279730695
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 07:44:24 2009 +0000

    give instcombine a custom IRBuilder that adds new instructions to the
    workslist and is set to insert new instructions before the current one.
    Convert a bunch of stuff that used to call InsertNewInstBefore over to
    use it, greatly simplifying code and making it more natural.

    There is still a lot more to go, but this is a good start.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80492 91177308-0d34-0410-b5e6-96231b3b80d8

commit f0b47f327e20f338c90202ea21001dd9b06f7ef5
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Sun Aug 30 07:01:09 2009 +0000

    Update test.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80490 91177308-0d34-0410-b5e6-96231b3b80d8

commit c5ad98f04a19b2b7d463713a77634471578d1a64
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 06:27:41 2009 +0000

    add a new InstCombineWorklist::AddValue method that works even
    if the operand is not an instruction.

    Simplify most uses of AddOperandsToWorkList to use AddValue and
    inline it into the one remaining callsite.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80488 91177308-0d34-0410-b5e6-96231b3b80d8

commit 4796b62fccd6f8c414b5a642ebe0f6dbbabd5b61
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 06:22:51 2009 +0000

    move AddUsersToWorkList to the worklist processing class, make the
    argument stronger typed.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80487 91177308-0d34-0410-b5e6-96231b3b80d8

commit 059cfc7570d47711c1b53c909ab0f9c347cb23c3
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 06:20:05 2009 +0000

    rename AddUsesToWorkList -> AddOperandsToWorkList.  The
    former looks too much like AddUsersToWorkList and keeps
    confusing me.

    Remove AddSoonDeadInstToWorklist and change its two callers
    to do the same thing in a simpler way.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80486 91177308-0d34-0410-b5e6-96231b3b80d8

commit a8d310b5231890e926000c6939540b93fe094b61
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Sun Aug 30 06:17:49 2009 +0000

    llvm-mc/X86: Encode constant MCValue's correctly.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80485 91177308-0d34-0410-b5e6-96231b3b80d8

commit b03d1179e934cb99e30190835fea1e7f4a59ecad
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Sun Aug 30 06:17:16 2009 +0000

    llvm-mc: MCStreamer cleanups. - Remove EmitLocalSymbol, this is unsupported for now.

    - Switch Emit{CommonSymbol,Zerofill} to take alignment in bytes (for consistency).

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80484 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3183fb6b613c15627c33a8257cbbfe10dbf0bb7f
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 06:13:40 2009 +0000

    inline the trivial AddToWorkList/RemoveFromWorkList methods
    into their callers.  simplify ReplaceInstUsesWith.  Make
    EraseInstFromFunction only add operands to the worklist if
    there aren't too many of them (this was a scalability win
    for crazy programs that was only infrequently enforced).
    Switch more code to using EraseInstFromFunction instead of
    duplicating it inline.  Change some fcmp/icmp optimizations
    to modify fcmp/icmp in place instead of creating a new one
    and deleting the old one just to change the predicate.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80483 91177308-0d34-0410-b5e6-96231b3b80d8

commit bf09d6330ea039406e250493d7e45d001f81734d
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 05:56:44 2009 +0000

    fix a bug I introduced in r80478 found by the build bot.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80482 91177308-0d34-0410-b5e6-96231b3b80d8

commit 5119c70d1620b79288c50ca2ad6a3ea4f11a3f35
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 05:55:36 2009 +0000

    refactor instcombine's worklist processing stuff out to its own class.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80481 91177308-0d34-0410-b5e6-96231b3b80d8

commit 1dde4eb8a0aef903bfd53d8dabfc61a560e1b327
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 05:55:04 2009 +0000

    make DenseMap::clear() early exit if there is nothing to do.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80480 91177308-0d34-0410-b5e6-96231b3b80d8

commit 69af0ff152a949c41ea8ff4550c74627306262f7
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 05:42:59 2009 +0000

    some minor cleanups to IRBuilder, factor the insertion
    hook out of the main IRBuilder class to allow clients to
    override it.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80479 91177308-0d34-0410-b5e6-96231b3b80d8

commit 1c641fc37fc42d878883b0325810a5c8c02a436c
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 05:30:55 2009 +0000

    more cleanups: remove some redundant code, and simplify some
    other places.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80478 91177308-0d34-0410-b5e6-96231b3b80d8

commit c2c8a0ac3f529c9e536862b213e18f67de05f422
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 05:08:50 2009 +0000

    eliminate the temporary SrcGEPOperands smallvector.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80477 91177308-0d34-0410-b5e6-96231b3b80d8

commit 95ba1ec4cbb14614f9ac26c9aabe5cac6640c4b0
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 05:00:50 2009 +0000

    simplify/detangle some control flow.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80476 91177308-0d34-0410-b5e6-96231b3b80d8

commit c0f553e874121b6a0feb35e580040c02da05ac3c
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 04:49:01 2009 +0000

    simplify and cleanup some code, remove some code that just
    does constant folding of gep's: this is already handled in
    a more general way.

    No functionality change.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80475 91177308-0d34-0410-b5e6-96231b3b80d8

commit 9da50553ef4596ea75c3a5434bf9ad356fb574ee
Author: Chris Lattner <sabre@nondot.org>
Date:   Sun Aug 30 04:25:40 2009 +0000

    default count-aa to -print-all.  The whole reason to use count-aa is
    to see what queries are being made by a transformation, we might as well
    default to printing them.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80474 91177308-0d34-0410-b5e6-96231b3b80d8

commit 09880947395319ff0df656549ddf0b080b7af385
Author: Bill Wendling <isanbard@gmail.com>
Date:   Sun Aug 30 00:28:57 2009 +0000

    Nuke moribund "std::string" version of EOL(..., Encoding).

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80466 91177308-0d34-0410-b5e6-96231b3b80d8

commit cdfb9b17b94bffa0de0e4862d22369fa1dcd9099
Author: Dan Gohman <gohman@apple.com>
Date:   Sat Aug 29 23:54:26 2009 +0000

    Add AutoGenerated.inc to svn:ignore.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80455 91177308-0d34-0410-b5e6-96231b3b80d8

commit 5d138f96f048cc7009397708ed10edea7cede5a6
Author: Dan Gohman <gohman@apple.com>
Date:   Sat Aug 29 23:39:38 2009 +0000

    Remove an unnecessary Context argument.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80454 91177308-0d34-0410-b5e6-96231b3b80d8

commit f928ad4af07aaac5e7e81757dcd514acbb5cb39c
Author: Dan Gohman <gohman@apple.com>
Date:   Sat Aug 29 23:37:49 2009 +0000

    Minor logic simplification.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80453 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3d9354c841746f1802babcd465e542d7a7ea2a10
Author: Dan Gohman <gohman@apple.com>
Date:   Sat Aug 29 23:36:57 2009 +0000

    Add some comments.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80452 91177308-0d34-0410-b5e6-96231b3b80d8

commit 18e06cf39d0313f80b055eb98dba8d8f42fd08cd
Author: Dan Gohman <gohman@apple.com>
Date:   Sat Aug 29 23:35:16 2009 +0000

    Cleanup whitespace and indentation.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80451 91177308-0d34-0410-b5e6-96231b3b80d8

commit b006a1010559be4bc9d5e577c50fc750194f34a6
Author: Dan Gohman <gohman@apple.com>
Date:   Sat Aug 29 23:34:14 2009 +0000

    Remove some unused fields.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80450 91177308-0d34-0410-b5e6-96231b3b80d8

commit 1596dd23f3e2df5225cdfcea0904a017f96aaa90
Author: Dan Gohman <gohman@apple.com>
Date:   Sat Aug 29 22:19:15 2009 +0000

    CMOV_GR8 clobbers EFLAGS when its expansion involves an xor to set
    a register to 0. This fixes PR4814.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80445 91177308-0d34-0410-b5e6-96231b3b80d8

commit ac09afaf40216429fad53899cce2f9fde8e267d4
Author: Benjamin Kramer <benny.kra@googlemail.com>
Date:   Sat Aug 29 13:38:21 2009 +0000

    Inline empty destructor.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80431 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3c5374802712a3d28cd13207ed3979a95457075c
Author: Bill Wendling <isanbard@gmail.com>
Date:   Sat Aug 29 12:31:38 2009 +0000

    Fix warning about non-virtual destructor.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80429 91177308-0d34-0410-b5e6-96231b3b80d8

commit b4ac493684cdeb2147000a6816a563269fcf3c70
Author: Bill Wendling <isanbard@gmail.com>
Date:   Sat Aug 29 12:20:54 2009 +0000

    - Add target lowering methods to get the preferred format for the FDE and LSDA
      encodings.
    - Make some of the values emitted by the FDEs dependent upon the pointer
      size. This is in line with how GCC does things. And it has the benefit of
      working for Darwin in 64-bit mode now.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80428 91177308-0d34-0410-b5e6-96231b3b80d8

commit 946b521498866b3d83c4447c9c0ece6095a56874
Author: Bill Wendling <isanbard@gmail.com>
Date:   Sat Aug 29 12:17:53 2009 +0000

    Add a form of EOL which emits the text version of a DWARF format encoding. This
    doesn't handle all values of the formatting. Those can be added as needed.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80427 91177308-0d34-0410-b5e6-96231b3b80d8

commit 502c35e863882790a94ad432d0a03c4a7e1a0aad
Author: Bob Wilson <bob.wilson@apple.com>
Date:   Sat Aug 29 05:53:25 2009 +0000

    PR4795: Remove EEVT::isFP, isInt and isVec types used by TableGen's type
    inferencing.  As far as I can tell, these are equivalent to the existing
    MVT::fAny, iAny and vAny types, and having both of them makes it harder
    to reason about and modify the type inferencing code.

    The specific problem in PR4795 occurs when updating a vAny type to be fAny
    or iAny, or vice versa.  Both iAny and fAny include vector types -- they
    intersect with the set of types represented by vAny.  When merging them,
    choose fAny/iAny to represent the intersection.  This is not perfect, since
    fAny/iAny also include scalar types, but it is good enough for TableGen's
    type inferencing.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80423 91177308-0d34-0410-b5e6-96231b3b80d8

commit 0ac7faa993d472be4a23e0e58fa6e9372960cfe8
Author: Eric Christopher <echristo@apple.com>
Date:   Sat Aug 29 01:12:46 2009 +0000

    Make the augmentation size and next set of bytes agree on size,
    and make the reference pointer size as it should be.

    Fixes an abort on a testcase derived from libunwind's personality
    test in 64-bit.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80414 91177308-0d34-0410-b5e6-96231b3b80d8

commit 83b551c5efdc49183f744103cd8e22a75117d07f
Author: Jeffrey Yasskin <jyasskin@google.com>
Date:   Sat Aug 29 00:44:16 2009 +0000

    Fix OProfile support after r80406 changed the DebugInfo interface from
    GlobalVariables to MDNodes.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80411 91177308-0d34-0410-b5e6-96231b3b80d8

commit e54c004ea5ea6c7e89b1cef9531ce05096122bbf
Author: David Goodwin <david_goodwin@apple.com>
Date:   Sat Aug 29 00:11:13 2009 +0000

    Another stab at fixing up register kill flags after post-RA scheduling.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80410 91177308-0d34-0410-b5e6-96231b3b80d8

commit cb7c98d9ef32354166106ff8218fb9fcbb8b2d24
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Sat Aug 29 00:08:18 2009 +0000

    Do not assert on too wide splats we don't support.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80409 91177308-0d34-0410-b5e6-96231b3b80d8

commit 44e0a6cee931258a05b190f9e6e411a6d276c96a
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Fri Aug 28 23:41:26 2009 +0000

    Add missed extract_element pattern

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80408 91177308-0d34-0410-b5e6-96231b3b80d8

commit 15e723d2c6021bbeacad9baa9c0d946d4a19867e
Author: Devang Patel <dpatel@apple.com>
Date:   Fri Aug 28 23:24:31 2009 +0000

    Reapply 79977.
    Use MDNodes to encode debug info in llvm IR.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80406 91177308-0d34-0410-b5e6-96231b3b80d8

commit c299914a58baed2d7cf594494dbba60880d476cd
Author: Evan Cheng <evan.cheng@apple.com>
Date:   Fri Aug 28 23:18:09 2009 +0000

    Let Darwin linker auto-synthesize stubs and lazy-pointers. This deletes a bunch of nasty code in ARM asm printer.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80404 91177308-0d34-0410-b5e6-96231b3b80d8

commit a14f4474b2d915579e9e9bd8bf4080d7f25e7dcd
Author: Eric Christopher <echristo@apple.com>
Date:   Fri Aug 28 22:33:43 2009 +0000

    Nuke trailing whitespace.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80401 91177308-0d34-0410-b5e6-96231b3b80d8

commit c6750c9bc8e555f632777eb1c69793b3b0dc40f6
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 16:14:46 2009 +0000

    Fix creation of .bca libraries with EXPORTED_SYMBOLS_LIST, this was putting the
    llvm-ld shell wrapper script in the archive, not the relinked object!

    Also, rename the temp file to avoid conflicts.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80373 91177308-0d34-0410-b5e6-96231b3b80d8

commit 72d34e1a91e3f2b58559f92e5c1716ba10586bf1
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Fri Aug 28 16:13:45 2009 +0000

    Read Makefile.config before using LLVMGCC.
    See http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20090824/085828.html

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80372 91177308-0d34-0410-b5e6-96231b3b80d8

commit ab4193ba50b6b5fcda5e2230e4705676ec07b463
Author: Edwin Török <edwintorok@gmail.com>
Date:   Fri Aug 28 16:12:48 2009 +0000

    install-sh chmods to 0755 by default, and this causes 'git diff' to show
    that all the Makefiles changed mode.
    Fix this by tellint install-sh to chmod
    only to 0644, these are not executable files after all!

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80371 91177308-0d34-0410-b5e6-96231b3b80d8

commit b5cc6d8ae5a5813f059b0f03511b29c101c3a8ba
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Fri Aug 28 16:06:41 2009 +0000

    Short-term workaround for frame-related weirdness on win64.
    Some other minor win64 fixes as well.

    Patch by Michael Beck!

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80370 91177308-0d34-0410-b5e6-96231b3b80d8

commit 422cc43971693fd61517993472065277cb0cc903
Author: Edwin Török <edwintorok@gmail.com>
Date:   Fri Aug 28 14:05:07 2009 +0000

    rm needs -f

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80363 91177308-0d34-0410-b5e6-96231b3b80d8

commit da6633bee39686d02cd348b5c79c9dfc14eea6fd
Author: Edwin Török <edwintorok@gmail.com>
Date:   Fri Aug 28 13:35:44 2009 +0000

    Remove the llvmprof.out from the test output, otherwise running
    make check in a non-clean directory causes it to fail (for example when running
    make check twice), since execution counts will differ.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80362 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3f10e8664f46c60e4153da5da0ce33cd6b0b2ea3
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Fri Aug 28 11:28:24 2009 +0000

    Preparation for Optimal Edge Profiling:
    This implements the maximum spanning tree algorithm on CFGs according to
    weights given by the ProfileEstimator. This is then used to implement Optimal
    Edge Profiling.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80358 91177308-0d34-0410-b5e6-96231b3b80d8

commit c99a43a3864aee1121af69db21545a3974226d41
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Fri Aug 28 10:38:26 2009 +0000

    Remove profiling output file because two consecutive runs of make check give
    error.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80357 91177308-0d34-0410-b5e6-96231b3b80d8

commit 354f75a94252e20f1d61ff7b047f34070dcccfc9
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Fri Aug 28 10:07:41 2009 +0000

    Removed unnecessary file creation during test.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80356 91177308-0d34-0410-b5e6-96231b3b80d8

commit 975ad9a72fa60d0e8946c9ec584eb5c29d14386e
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Fri Aug 28 10:00:28 2009 +0000

    Pulled all tests into one test. Removed some redundant tests. Rename.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80355 91177308-0d34-0410-b5e6-96231b3b80d8

commit f14af431e0f9724474dfa923ba940ecaf19316c7
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 08:08:22 2009 +0000

    Fix -Asserts warning, round two.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80354 91177308-0d34-0410-b5e6-96231b3b80d8

commit 796a639383578ff065b5c32539c88f9adb5327c2
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 07:08:47 2009 +0000

    llvm-mc: .lsym is more unsupported than unimplemented, pending a use case appearing.

    Also, all one of the file level flags are implemented.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80352 91177308-0d34-0410-b5e6-96231b3b80d8

commit 8388a8fed449aa79d848dd2e7b0cf8650e063028
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 07:08:35 2009 +0000

    llvm-mc: Support .comm emission.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80351 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3ab6715ba17ac6726bd92a4514c68c5e58c3c884
Author: Evan Cheng <evan.cheng@apple.com>
Date:   Fri Aug 28 06:59:37 2009 +0000

    Print a nl before pic labels so they start at a new line. This makes assembly more readable.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80350 91177308-0d34-0410-b5e6-96231b3b80d8

commit fd5e315e8d6dca8cab80789552b6bbfef4d960e0
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Fri Aug 28 06:48:25 2009 +0000

    Since all std::cout is gone, also remove iostream include.
    (See http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20090824/085620.html)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80349 91177308-0d34-0410-b5e6-96231b3b80d8

commit a2aca168e5c7bbb35569f6f77a3cd4e8bc17520a
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Fri Aug 28 06:41:00 2009 +0000

    Readded test from r79615, this tests the complete profiling tool chain. Furhter
    tests can test only parts of this system.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80348 91177308-0d34-0410-b5e6-96231b3b80d8

commit df98a14701fe2de1d0b83205f32edcdfef8ca141
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 05:49:21 2009 +0000

    llvm-mc: Support .zerofill emission.
     - I'm still trying to figure out the cleanest way to implement this and match the assembler, currently there are some substantial differences.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80347 91177308-0d34-0410-b5e6-96231b3b80d8

commit 1c215be1a50bfd6f0b994d61d0c0548fefa52795
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 05:49:04 2009 +0000

    llvm-mc: Tweak section alignment and size computation to match 'as' closer.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80345 91177308-0d34-0410-b5e6-96231b3b80d8

commit 91e7ee60faaf7867aebddbf4915e1422c6895337
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 05:48:54 2009 +0000

    llvm-mc: Factor getSectionData out of SwitchSection.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80344 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3f952b45c4791659fe6b6addfdc2812f11a21a41
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 05:48:46 2009 +0000

    llvm-mc: Emit .lcomm as .zerofill.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80343 91177308-0d34-0410-b5e6-96231b3b80d8

commit c12c27bdbc93d517025612eab112f28366256839
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 05:48:29 2009 +0000

    llvm-mc: Unique zero fill sections.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80342 91177308-0d34-0410-b5e6-96231b3b80d8

commit 15f1a5cc63c5f08b31c8a67884efd2604067711e
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 05:48:22 2009 +0000

    llvm-mc: Add const to EmitZeroFill section argument.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80341 91177308-0d34-0410-b5e6-96231b3b80d8

commit b6eff3bcb6f481500df60e028ceaff6b60336a1d
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 05:48:10 2009 +0000

    llvm-mc: Fix thinko in emitting values.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80340 91177308-0d34-0410-b5e6-96231b3b80d8

commit a8425d44b7ffa3397ac7d010598e9caab54e1ed4
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 05:48:04 2009 +0000

    Add MathExtras.h OffsetToAlignment, like RoundUpToAlignment but returns the
    offset to the next aligned integer.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80339 91177308-0d34-0410-b5e6-96231b3b80d8

commit c24bcdb66bd5b6904147ac443ca44da2660f9223
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 05:47:56 2009 +0000

    Fix -Asserts warning.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80338 91177308-0d34-0410-b5e6-96231b3b80d8

commit d7e5bacf57cba6f139d726a0c63cb195f38cd39d
Author: Chris Lattner <sabre@nondot.org>
Date:   Fri Aug 28 04:48:54 2009 +0000

    finish a half formed thought :)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80334 91177308-0d34-0410-b5e6-96231b3b80d8

commit ac6a9258ed6e7fa1e1e40ef505799ac54e852be4
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 03:06:28 2009 +0000

    Another NO_RUNTIME_LIBRARIES tweak...

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80331 91177308-0d34-0410-b5e6-96231b3b80d8

commit 1497c39481d4d8616d4ba1fb2cde490cfc100baa
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Fri Aug 28 02:20:39 2009 +0000

    Tweak NO_RUNTIME_LIBS.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80330 91177308-0d34-0410-b5e6-96231b3b80d8

commit c4823b9ee92e32a666e03406c46a530fcdbdda1a
Author: Chris Lattner <sabre@nondot.org>
Date:   Fri Aug 28 00:45:47 2009 +0000

    Mark Andersen's as experimental.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80328 91177308-0d34-0410-b5e6-96231b3b80d8

commit a8b647dc112f792cb21b0b675e6d2b300207a4fa
Author: Chris Lattner <sabre@nondot.org>
Date:   Fri Aug 28 00:43:14 2009 +0000

    Fix PR3913, patch by Jakub Staszak!

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80327 91177308-0d34-0410-b5e6-96231b3b80d8

commit 5e1d21856de4bf387cccf8365885c45c87642dfb
Author: Evan Cheng <evan.cheng@apple.com>
Date:   Fri Aug 28 00:31:43 2009 +0000

    v4, v5 does not support sxtb / sxth.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80322 91177308-0d34-0410-b5e6-96231b3b80d8

commit 66f3f9e7356761c91f8063a38b37293ce750c1c2
Author: Bob Wilson <bob.wilson@apple.com>
Date:   Fri Aug 28 00:21:13 2009 +0000

    Disable optional bindings for Apple-style builds.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80319 91177308-0d34-0410-b5e6-96231b3b80d8

commit dc8f15c7a771649ab75bdf2dea1b27067ee9f269
Author: Bob Wilson <bob.wilson@apple.com>
Date:   Fri Aug 28 00:10:15 2009 +0000

    Revert 76080.  This broke some powerpc cross compiles.
    It also makes the llvmCore build dependent on whatever version of llvm-gcc
    happens to be installed on the build machine.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80316 91177308-0d34-0410-b5e6-96231b3b80d8

commit 6decb644026d266aaed9bc51e5840529a4af8df0
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 23:58:10 2009 +0000

    Revert r80305, I forgot a dependent change.

    --- Reverse-merging r80305 into '.':
    U    tools/llvm-mc/AsmParser.cpp

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80309 91177308-0d34-0410-b5e6-96231b3b80d8

commit 20b3210d23b9c5633787e3d8bbd98d7cc0083c32
Author: Devang Patel <dpatel@apple.com>
Date:   Thu Aug 27 23:51:51 2009 +0000

    Closure is a very generic name. Use AppleBlock instead.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80307 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3edc5f01bcfec50757d8cbdb7cd0fb6abb561d67
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 23:45:06 2009 +0000

    llvm-mc: Unique sections in .zerofill.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80305 91177308-0d34-0410-b5e6-96231b3b80d8

commit ab36e15e689a516f8ff2af4c2c0210a90a423652
Author: Gabor Greif <ggreif@gmail.com>
Date:   Thu Aug 27 23:44:33 2009 +0000

    eliminate all 80-col violations that I have introduced in my recent checkins (and some others more)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80304 91177308-0d34-0410-b5e6-96231b3b80d8

commit 41d850e034d4f33728c8d8d51a3811dbe0fccf8c
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 23:43:28 2009 +0000

    Don't build runtime libraries in an Apple style build.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80303 91177308-0d34-0410-b5e6-96231b3b80d8

commit f5b6d86316d71c3eae687ecb56abfdfd12679a54
Author: Bruno Cardoso Lopes <bruno.cardoso@gmail.com>
Date:   Thu Aug 27 19:57:56 2009 +0000

    Revert 80278 for now, it caused a lot of MIPS tests to fail

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80280 91177308-0d34-0410-b5e6-96231b3b80d8

commit 862f67b71f0aaeccdd24a0cbd4d99a9a9413c43a
Author: Bruno Cardoso Lopes <bruno.cardoso@gmail.com>
Date:   Thu Aug 27 19:40:40 2009 +0000

    Revamp our friend Mips :)
    Add MO flags to simplify the printing of relocations.
    Remove the support for printing large code model relocs (which
    aren't supported anyway).

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80278 91177308-0d34-0410-b5e6-96231b3b80d8

commit 90adb6c4bd8c285660db59e5ac10fd71fa3c1076
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 18:16:24 2009 +0000

    Don't mark CMOV_GR8 as two-address, or commutable, since it's a pseudo.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80271 91177308-0d34-0410-b5e6-96231b3b80d8

commit fa4c3253f6dd9f328549aa73e2710981ac3a2881
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 18:14:26 2009 +0000

    Adjust the MachineBasicBlock verifier rules to be more
    tolerant of blocks that end with "unreachable".

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80270 91177308-0d34-0410-b5e6-96231b3b80d8

commit 20391ca63ee850ffd6fb86bfd058ff61b698197d
Author: Eric Christopher <echristo@apple.com>
Date:   Thu Aug 27 18:08:16 2009 +0000

    Add FIXME for when we support more specific XMM registers.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80269 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3d82bbd2ddfb775d59f271cc25cade73551f976c
Author: Eric Christopher <echristo@apple.com>
Date:   Thu Aug 27 18:07:15 2009 +0000

    Nuke trailing whitespace.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80268 91177308-0d34-0410-b5e6-96231b3b80d8

commit f8b840f45084d2486be3fd074807d9a37564a33d
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 18:02:03 2009 +0000

    Use stripPointerCasts instead of doing the same manually.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80267 91177308-0d34-0410-b5e6-96231b3b80d8

commit a578538e9fde98cb05ce9740d7c63aafbd1c69f4
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 17:59:08 2009 +0000

    Minor code simplification.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80266 91177308-0d34-0410-b5e6-96231b3b80d8

commit c99596ddbf78116260c177edcfad9261bf186b68
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 17:55:13 2009 +0000

    Teach getUnderlyingObject and skipPointerCasts about GlobalAliases.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80265 91177308-0d34-0410-b5e6-96231b3b80d8

commit fe1256903404065be182735c1402411c4940e9e5
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 17:54:15 2009 +0000

    Be somewhat more consistent about const qualifiers.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80264 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3c8455152e3d41b8e5f7b33c3ed99c7a8105f5a8
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 17:52:56 2009 +0000

    Global Aliases are not identifiable objects.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80263 91177308-0d34-0410-b5e6-96231b3b80d8

commit 54e98d921f7eabfd3baae5399e835ddc39a75e6c
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 17:51:25 2009 +0000

    Handle TargetData with const.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80262 91177308-0d34-0410-b5e6-96231b3b80d8

commit ec966442362eeff9b24c9eee2b11188ab4a5246b
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 17:29:49 2009 +0000

    Strip trailing whitespace from blank lines.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80259 91177308-0d34-0410-b5e6-96231b3b80d8

commit 7bec0f5f90c6d917beb4b1433c847aa132cdfacf
Author: Gabor Greif <ggreif@gmail.com>
Date:   Thu Aug 27 17:07:35 2009 +0000

    re-apply r80197, now that iterator.h is not mentioned any more

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80254 91177308-0d34-0410-b5e6-96231b3b80d8

commit aa152ae811d8e0ffd01c7a8b454d595cb1a1a31f
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Thu Aug 27 16:25:49 2009 +0000

    Hopefully the final missing part :(
    scalar_to_vector is fully legal now

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80251 91177308-0d34-0410-b5e6-96231b3b80d8

commit 872393c20ee29eaae1746deed115f06192526f64
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Thu Aug 27 16:10:17 2009 +0000

    Forgot about actual change :)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80250 91177308-0d34-0410-b5e6-96231b3b80d8

commit 0a21bce095161b98a3671b2aa0e63a020b03e120
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Thu Aug 27 16:04:47 2009 +0000

    scalar_to_vector is fully legal now (implemented as subreg accesses)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80249 91177308-0d34-0410-b5e6-96231b3b80d8

commit 2b6e274f8669337cb148c1df4e060a41af14cc1e
Author: Devang Patel <dpatel@apple.com>
Date:   Thu Aug 27 15:32:38 2009 +0000

    Remove an entry from ValueMap before removing elements.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80247 91177308-0d34-0410-b5e6-96231b3b80d8

commit 6e8275030925dbd3beeb873d0bf605f0c0c67f0b
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Thu Aug 27 14:51:42 2009 +0000

    Ok, sometimes it's profitable to turn scalar_to_vector stuff into subreg access.
    Add a testcase.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80246 91177308-0d34-0410-b5e6-96231b3b80d8

commit baee7b2a5501a45a59554b5bafd87264a2edc442
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Thu Aug 27 14:38:44 2009 +0000

    Transform float scalar_to_vector into subreg accesses.
    No idea whether this is profitable or not.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80245 91177308-0d34-0410-b5e6-96231b3b80d8

commit 9daa0677ac901b0f54bdba31dc3913b92df58e50
Author: Misha Brukman <brukman+llvm@gmail.com>
Date:   Thu Aug 27 14:14:21 2009 +0000

    STRD and LDRD require ARMv5TE, not just ARMv5T.
    See http://llvm.org/PR4687 for more info and links.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80244 91177308-0d34-0410-b5e6-96231b3b80d8

commit 4dd75744b70c1a3f686ce5a43952124fb0de7ad9
Author: Benjamin Kramer <benny.kra@googlemail.com>
Date:   Thu Aug 27 12:02:34 2009 +0000

    Inverse logic to increase portability.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80240 91177308-0d34-0410-b5e6-96231b3b80d8

commit 07f1cdae7f327c15cdfc0d68c8500a275dba72b2
Author: Sanjiv Gupta <sanjiv.gupta@microchip.com>
Date:   Thu Aug 27 11:54:38 2009 +0000

    To make mcc16 run correctly on mac.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80239 91177308-0d34-0410-b5e6-96231b3b80d8

commit 006e46ee524c49f00fdfa4d0b582c7ecd693c95b
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 08:17:51 2009 +0000

    llvm-mc/Mach-O: Add MCCodeEmitter support, for encoding instructions.
     - No relocations yet, of course.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80235 91177308-0d34-0410-b5e6-96231b3b80d8

commit 2f37963b50b496c99300850683ed41db4f9431b6
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 08:12:55 2009 +0000

    llvm-mc/X86: Implement single instruction encoding interface for MC.
     - Note, this is a gigantic hack, with the sole purpose of unblocking further
       work on the assembler (its also possible to test the mathcer more completely
       now).

     - Despite being a hack, its actually good enough to work over all of 403.gcc
       (although some encodings are probably incorrect). This is a testament to the
       beauty of X86's MachineInstr, no doubt! ;)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80234 91177308-0d34-0410-b5e6-96231b3b80d8

commit 1f32816fdaf9ba3a7e6e5705f94be145fafde497
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 07:58:57 2009 +0000

    llvm-mc: Print encodings after the instruction, and only when we have an asm
    printer.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80233 91177308-0d34-0410-b5e6-96231b3b80d8

commit 75513bd24edb8ea2142145b448df7a4cdaeaa335
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 07:58:05 2009 +0000

    X86: Mark EH_RETURN as code-gen-only.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80232 91177308-0d34-0410-b5e6-96231b3b80d8

commit 0125384b4a902da228354e5a201cd4cf4f2f1a4a
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 07:57:12 2009 +0000

    Add {MCInst,MCOperand}::{print,dump}

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80231 91177308-0d34-0410-b5e6-96231b3b80d8

commit 160f252aa8189beba57b0b025b0206a3910c4ae9
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 07:56:39 2009 +0000

    llvm-mc: Only show instruction encodings with --show-encoding.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80230 91177308-0d34-0410-b5e6-96231b3b80d8

commit f449eb343e70f1e4e8f982939d53c083a1bc5ba3
Author: Gabor Greif <ggreif@gmail.com>
Date:   Thu Aug 27 06:59:20 2009 +0000

    the buildbots revealed one more breakage. fix. (why didn't I see this?)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80227 91177308-0d34-0410-b5e6-96231b3b80d8

commit 765f012f22956a3085e1e84441af9d880bf65f35
Author: Gabor Greif <ggreif@gmail.com>
Date:   Thu Aug 27 06:41:46 2009 +0000

    Clean up the minor mess I caused with removing iterator.h. I shall take care of 80-col violations and the FIXME later. (Thanks goodness that I live in another continent, so the monkeypox did not strike me :-)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80224 91177308-0d34-0410-b5e6-96231b3b80d8

commit bc42440879f2a302f2801e224828cfdccd5a92a7
Author: Chris Lattner <sabre@nondot.org>
Date:   Thu Aug 27 06:29:33 2009 +0000

    Implement a new optimization in the inliner: if inlining multiple
    calls into a function and if the calls bring in arrays, try to merge
    them together to reduce stack size.  For example, in the testcase
    we'd previously end up with 4 allocas, now we end up with 2 allocas.

    As described in the comments, this is not really the ideal solution
    to this problem, but it is surprisingly effective.  For example, on
    176.gcc, we end up eliminating 67 arrays at "gccas" time and another
    24 at "llvm-ld" time.

    One piece of concern that I didn't look into: at -O0 -g with
    forced inlining this will almost certainly result in worse debug
    info.  I think this is acceptable though given that this is a case
    of "debugging optimized code", and we don't want debug info to
    prevent the optimizer from doing things anyway.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80215 91177308-0d34-0410-b5e6-96231b3b80d8

commit 2d1272cbbc0ba9bffbc702e67c59a8d12ec93660
Author: Chris Lattner <sabre@nondot.org>
Date:   Thu Aug 27 06:20:45 2009 +0000

    the inliner shouldn't crash on this.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80214 91177308-0d34-0410-b5e6-96231b3b80d8

commit ea3bccb555f65187ecbb134d26aab8103ca167b2
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 06:11:15 2009 +0000

    For now, only run MC tests if X86 is configured.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80213 91177308-0d34-0410-b5e6-96231b3b80d8

commit 17d1a4db879f7af0fd20dd78f704ff9f82aabbe1
Author: Bill Wendling <isanbard@gmail.com>
Date:   Thu Aug 27 05:49:50 2009 +0000

    This is passing for PPC on Mac OS X.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80210 91177308-0d34-0410-b5e6-96231b3b80d8

commit cf5d1d8ceb34c56f21bd3f41f5329407e8d090ce
Author: Bill Wendling <isanbard@gmail.com>
Date:   Thu Aug 27 05:35:28 2009 +0000

    Revert accidental commit.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80208 91177308-0d34-0410-b5e6-96231b3b80d8

commit f659a56d993743e0d51beb2c94fbe187637e5918
Author: Chris Lattner <sabre@nondot.org>
Date:   Thu Aug 27 04:43:05 2009 +0000

    unbreak the build, yay for symlinks + makefiles. :(

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80205 91177308-0d34-0410-b5e6-96231b3b80d8

commit d1586b1a1d27d5efeb8e487bbeb7ed255159e53b
Author: Chris Lattner <sabre@nondot.org>
Date:   Thu Aug 27 04:32:07 2009 +0000

    reduce header #include'age

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80204 91177308-0d34-0410-b5e6-96231b3b80d8

commit 1ba292d8cfe7b5bf705c5bb307f63f0c0bbe8979
Author: Chris Lattner <sabre@nondot.org>
Date:   Thu Aug 27 04:20:52 2009 +0000

    enhance InlineFunction to be able to optionally return
    a the list of static allocas that it inlined.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80203 91177308-0d34-0410-b5e6-96231b3b80d8

commit eb87590c5346b7c17032242e2232a6c1d217f964
Author: Chris Lattner <sabre@nondot.org>
Date:   Thu Aug 27 04:02:30 2009 +0000

    smallvectorize the list of returns built by CloneAndPruneFunctionInto.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80202 91177308-0d34-0410-b5e6-96231b3b80d8

commit 612956220f38126feaacceb378cf105043739271
Author: Chris Lattner <sabre@nondot.org>
Date:   Thu Aug 27 03:56:43 2009 +0000

    remove CloneTrace, which appears to be dead since 2004.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80201 91177308-0d34-0410-b5e6-96231b3b80d8

commit ae56c0de911bf5328ffda48e51ce37bcd7aa0d76
Author: Chris Lattner <sabre@nondot.org>
Date:   Thu Aug 27 03:51:50 2009 +0000

    reduce inlining factor some stuff out to a static helper function,
    and other code cleanups.  No functionality change.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80199 91177308-0d34-0410-b5e6-96231b3b80d8

commit 5537c20c55869fac64e4f5738f8eab2080cc79c6
Author: Bill Wendling <isanbard@gmail.com>
Date:   Thu Aug 27 03:32:50 2009 +0000

    Revert accidental commit.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80198 91177308-0d34-0410-b5e6-96231b3b80d8

commit 25cd944a98bcf3b1542c71d2654fe61e28562867
Author: Bill Wendling <isanbard@gmail.com>
Date:   Thu Aug 27 03:29:26 2009 +0000

    --- Reverse-merging r80147 into '.':
    A    include/llvm/ADT/iterator.cmake
    U    autoconf/configure.ac
    --- Reverse-merging r80161 into '.':
    U    cmake/config-ix.cmake
    --- Reverse-merging r80171 into '.':
    U    Makefile
    --- Reverse-merging r80173 into '.':
    U    configure
    U    include/llvm/Config/config.h.in
    --- Reverse-merging r80180 into '.':
    A    include/llvm/ADT/iterator.h.in

    Despite common miscomceptions, iterator.h is alive and well. It broke the build
    bots for several hours. And yet no one bothered to look at them.

    Gabor and Doug, please review your changes and make sure that they actually
    build before resubmitting them.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80197 91177308-0d34-0410-b5e6-96231b3b80d8

commit 0d0598f6281c0b1ae107b2fa2fabd69ec21263c4
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 02:43:49 2009 +0000

    Add some checks for MachineCFG consistency. Use AnalyzeBranch and
    do extra checking when it succeeds, as those are cases where
    CodeGen will be doing particularly interesting CFG modifications.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80196 91177308-0d34-0410-b5e6-96231b3b80d8

commit 92e5548870b7945deb93f7956ea816f67d34b73f
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 02:08:37 2009 +0000

    Update CMake

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80195 91177308-0d34-0410-b5e6-96231b3b80d8

commit 2f377df6bba8110c3bc0bf5185d33d1f46b54c6b
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 01:34:22 2009 +0000

    llvm-mc: Tweak MCCodeEmitter skeleton.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80193 91177308-0d34-0410-b5e6-96231b3b80d8

commit cdde2975f55c43493f3318630985e7a1e8e14384
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 01:25:57 2009 +0000

    Initialize the PoisonMemory member before initializing
    members that call methods that read the PoisonMemory member.
    This fixes potential spurious (though probably otherwise
    harmless) poising of unused memory, and fixes the
    associated valgrind error.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80192 91177308-0d34-0410-b5e6-96231b3b80d8

commit 363cd759d4186bdae7b49e89a0d434749d6198aa
Author: Evan Cheng <evan.cheng@apple.com>
Date:   Thu Aug 27 01:23:50 2009 +0000

    Fix PR4789. Teach eliminateFrameIndex how to handle VLDRQ and VSTRQ which cannot fold any immediate offset.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80191 91177308-0d34-0410-b5e6-96231b3b80d8

commit 511e71114c34c8ddae2b44b996502a5efe1adc3a
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 01:15:54 2009 +0000

    Add missing declarations.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80190 91177308-0d34-0410-b5e6-96231b3b80d8

commit 12266adfd9dc571aafb7ec7f8b69d85c7a6e352a
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 00:51:57 2009 +0000

    Sketch TargetRegistry support for MCCodeEmitter abstract interface.
     - Of course, nothing actually can provide this interface yet.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80188 91177308-0d34-0410-b5e6-96231b3b80d8

commit adb77e4c37d183af9a2f29b6df8b0dfee562bbba
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Thu Aug 27 00:38:04 2009 +0000

    Try to make MSVC just a little happier.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80187 91177308-0d34-0410-b5e6-96231b3b80d8

commit b59f15a1d2c40f978d93f43b006546f455a65f04
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 00:31:47 2009 +0000

    X86FastISel support for loading and storing values of type i1.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80186 91177308-0d34-0410-b5e6-96231b3b80d8

commit 29b998f5248398e6cfe323a5ebd7419bb77975b4
Author: Dan Gohman <gohman@apple.com>
Date:   Thu Aug 27 00:14:12 2009 +0000

    Expand i8 selects into control flow instead of 16-bit conditional
    moves. This avoids the need to promote the operands (or implicitly
    extend them, a partial register update condition), and can reduce
    i8 register pressure. This substantially speeds up code such as
    write_hex in lib/Support/raw_ostream.cpp.

    subclass-coalesce.ll is too trivial and no longer tests what it was
    originally intended to test.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80184 91177308-0d34-0410-b5e6-96231b3b80d8

commit a7bddb52ed1bb68e8c654c522b885f941c540d04
Author: Gabor Greif <ggreif@gmail.com>
Date:   Wed Aug 26 23:35:33 2009 +0000

    now that include/llvm/ADT/iterator.h.in is not attempted to be built, its prerequisite can go away too

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80180 91177308-0d34-0410-b5e6-96231b3b80d8

commit b5b99e6fa820047460b362d5d981766ac313b1ce
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 23:12:33 2009 +0000

    Simplify.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80176 91177308-0d34-0410-b5e6-96231b3b80d8

commit 2eff5fff4d600df3d29f74dd195bc564a48206b4
Author: Douglas Gregor <doug.gregor@gmail.com>
Date:   Wed Aug 26 22:59:05 2009 +0000

    Regenerate configure

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80173 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3eace462948ecfec5ee53127c445e4d0d5f1ae89
Author: Gabor Greif <ggreif@gmail.com>
Date:   Wed Aug 26 22:55:19 2009 +0000

    eliminate references to ADT/iterator.h

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80171 91177308-0d34-0410-b5e6-96231b3b80d8

commit d68b1af98ca9bb39ac51d046a37266ceb24e38b5
Author: Owen Anderson <resistor@mac.com>
Date:   Wed Aug 26 22:55:11 2009 +0000

    Make this into a static method.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80170 91177308-0d34-0410-b5e6-96231b3b80d8

commit 2f01e9983a054713a49d2ac2124e8ca26d128574
Author: Bob Wilson <bob.wilson@apple.com>
Date:   Wed Aug 26 22:50:39 2009 +0000

    Fix bad length argument to substr calls.  Apparently I'm the first one to
    attempt more than 2 constraints on an instruction.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80169 91177308-0d34-0410-b5e6-96231b3b80d8

commit 418706d9a8a304630ddecc3709598d823bee8188
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 22:49:51 2009 +0000

    llvm-mc/Mach-O: Unique sections properly, so we don't get duplicate text
    sections, etc.
     - The quick and dirty way, just clone the TargetLoweringObjectFile
       code. Eventually this should be shared... somehow.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80168 91177308-0d34-0410-b5e6-96231b3b80d8

commit 1ea86df7ddb44659fbf694934abb2177beed8637
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 22:13:22 2009 +0000

    llvm-mc/Mach-O: Don't put assembler temporary labels in the symbol table.
     - I moved section creation back into AsmParser. I think policy decisions like
       this should be pushed higher, not lower, when possible (in addition the
       assembler has flags which change this behavior, for example).

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80162 91177308-0d34-0410-b5e6-96231b3b80d8

commit b003759e247f0edb3b691849598ba252f51ae624
Author: Douglas Gregor <doug.gregor@gmail.com>
Date:   Wed Aug 26 22:12:02 2009 +0000

    De-bork CMake build

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80161 91177308-0d34-0410-b5e6-96231b3b80d8

commit e92cc8d5591cb7ded636c91cc98c741af62ec85f
Author: Eric Christopher <echristo@apple.com>
Date:   Wed Aug 26 21:44:57 2009 +0000

    Rework getPersonalityIndex slightly - 0 is now a valid and not-NULL
    personality function.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80153 91177308-0d34-0410-b5e6-96231b3b80d8

commit 2a1099a6809307eee7521b1f725ef89370f7ebd1
Author: Gabor Greif <ggreif@gmail.com>
Date:   Wed Aug 26 21:36:59 2009 +0000

    nobody includes llvm/ADT/iterator.h any more,
    so get rid of this monstrosity. iterator.h.in is scheduled for deletion in my working copy,
    but I wait till I see that configure gets regenerated, as it depends on it. I'll commit
    then.
    There are still some AC_* tests in the configure.ac dealing with iterators, those can
    be zapped probably too.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80147 91177308-0d34-0410-b5e6-96231b3b80d8

commit c87d5ae938fe0c3b0afc3aefef1dc6a9873516e4
Author: Eric Christopher <echristo@apple.com>
Date:   Wed Aug 26 21:30:49 2009 +0000

    If we're emitting additional CIEs due to personality functions
    don't emit the default one. Explicitly check for the NULL
    CIE later.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80146 91177308-0d34-0410-b5e6-96231b3b80d8

commit 84603633a7609ec55de5d8145048efbbf45e5c9c
Author: Eric Christopher <echristo@apple.com>
Date:   Wed Aug 26 21:27:09 2009 +0000

    Nuke trailing whitespace.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80145 91177308-0d34-0410-b5e6-96231b3b80d8

commit f8c4bb7da634d77a7f2cff601b8d3f53c143e9ad
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 21:22:22 2009 +0000

    llvm-mc/Mach-O: Set .subsections_via_symbols flag properly.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80144 91177308-0d34-0410-b5e6-96231b3b80d8

commit 87f46499f001931c031002473a73793772852e51
Author: Bill Wendling <isanbard@gmail.com>
Date:   Wed Aug 26 21:00:34 2009 +0000

    Don't submit test directory.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80139 91177308-0d34-0410-b5e6-96231b3b80d8

commit 441e205eb82a0ebd70b807d8560c5a76188eabc5
Author: Reid Kleckner <reid@kleckner.net>
Date:   Wed Aug 26 20:58:25 2009 +0000

    Allocate the module provider in the Kaleidoscope code on the heap, not the stack, so that it can be properly deleted.  Also update the tutorial with the new code.  This fixes PR4762, hopefully better than the last time.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80138 91177308-0d34-0410-b5e6-96231b3b80d8

commit 4952aa5163ff4e87910d461f06316cc793ca95b8
Author: Gabor Greif <ggreif@gmail.com>
Date:   Wed Aug 26 19:16:32 2009 +0000

    Remove all the LLVM_COMPACTIFY_SENTINELS-related macro magic as discussed with Chris on IRC. Anybody wanting to debug sentinel dereferencing problems must revert this patch and perform the indicated modifications.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80128 91177308-0d34-0410-b5e6-96231b3b80d8

commit ffefef35790db7819c72ba7e53c73b8e5931e851
Author: Oscar Fuentes <ofv@wanadoo.es>
Date:   Wed Aug 26 18:37:05 2009 +0000

    CMake: Removed outdated TODO.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80124 91177308-0d34-0410-b5e6-96231b3b80d8

commit 66448030685cdc3c9bfd52449e4027258aaba480
Author: Venkatraman Govindaraju <venkatra@cs.wisc.edu>
Date:   Wed Aug 26 18:24:12 2009 +0000

    Generate section for bss and enable weak symbols

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80121 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3a392c8714c745ffdc77da0a8589c7b0df03515f
Author: Bob Wilson <bob.wilson@apple.com>
Date:   Wed Aug 26 18:11:50 2009 +0000

    Convert some more Neon tests to FileCheck.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80120 91177308-0d34-0410-b5e6-96231b3b80d8

commit 5e69950d5391bdf294b415bf39dd44f9f40556a1
Author: Dale Johannesen <dalej@apple.com>
Date:   Wed Aug 26 18:10:32 2009 +0000

    Alter 79292 to produce output that actually assembles.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80119 91177308-0d34-0410-b5e6-96231b3b80d8

commit 23f2034aaff80f52b309ee17bfa7a9fc801c9677
Author: Mike Stump <mrs@apple.com>
Date:   Wed Aug 26 18:02:19 2009 +0000

    Allow unsigned long long DenseMapInfo.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80118 91177308-0d34-0410-b5e6-96231b3b80d8

commit b1b88455b18224867a8d2fc6c3202b6ce12e0a1c
Author: Bob Wilson <bob.wilson@apple.com>
Date:   Wed Aug 26 17:39:53 2009 +0000

    Remove unneeded ARM-specific DAG nodes for VLD* and VST* Neon operations.
    The instructions can be selected directly from the intrinsics.  We will need
    to add some ARM-specific nodes for VLD/VST of 3 and 4 128-bit vectors, but
    those are not yet implemented.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80117 91177308-0d34-0410-b5e6-96231b3b80d8

commit 0defefd8ce9f13cecba8c988897c3224a25e96f8
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Wed Aug 26 17:39:40 2009 +0000

    Add extload expansion for f128

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80116 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3e72169c1b197ef8c5b4c663e2eee4551a3a7178
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Wed Aug 26 17:39:23 2009 +0000

    Unbreak FP128 stuff in cbe

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80115 91177308-0d34-0410-b5e6-96231b3b80d8

commit 644cdc3c64cb485c6a21d1bfb126c107e5b40d64
Author: Oscar Fuentes <ofv@wanadoo.es>
Date:   Wed Aug 26 17:05:06 2009 +0000

    Ignore -fPIC test on Windows. Suggested by Yonggang Luo.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80111 91177308-0d34-0410-b5e6-96231b3b80d8

commit 8427b6b0529e66663737b39ea51a1fbdbbbbd534
Author: Douglas Gregor <doug.gregor@gmail.com>
Date:   Wed Aug 26 16:33:57 2009 +0000

    Unbreak CMake build

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80109 91177308-0d34-0410-b5e6-96231b3b80d8

commit 886f20275a78a1b03b83a8145a62f5e4cfbb1c99
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Wed Aug 26 16:26:09 2009 +0000

    Expand scalar_to_vector - we don't have any isel logic for it now

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80107 91177308-0d34-0410-b5e6-96231b3b80d8

commit 75c687bcc528eb81dc693d63f7aff9185b29e56f
Author: Dan Gohman <gohman@apple.com>
Date:   Wed Aug 26 16:06:11 2009 +0000

    Add comments detailing a known bug, so that people writing other
    backends don't use it as an example.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80105 91177308-0d34-0410-b5e6-96231b3b80d8

commit 32b17ffaa8593d25728c9ebad7e82a45c16f817c
Author: Dan Gohman <gohman@apple.com>
Date:   Wed Aug 26 15:57:57 2009 +0000

    -fast is now -O0. -fast-isel is no longer experimental.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80104 91177308-0d34-0410-b5e6-96231b3b80d8

commit 4637d177299aed45c6be7ca24e003771f33fd5d6
Author: Dan Gohman <gohman@apple.com>
Date:   Wed Aug 26 15:56:38 2009 +0000

    Move ProfileInfo::Edge's operator<< out of line. Among other benefits,
    this eliminates the ATTRIBUTE_USED, which wasn't being used in a manner
    acceptable to some GCC versions, according to the buildbots.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80103 91177308-0d34-0410-b5e6-96231b3b80d8

commit a064a395489f954b0eaafb351d15b456699dea8e
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Wed Aug 26 15:18:38 2009 +0000

    Bugfix for r80100, forgot include. Sorry.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80101 91177308-0d34-0410-b5e6-96231b3b80d8

commit 70eeb51888ed9e73d058a3b0c889c295219e2109
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Wed Aug 26 15:13:44 2009 +0000

    Implemented comments from Daniel Dunbar.
    (See http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20090817/084958.html)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80100 91177308-0d34-0410-b5e6-96231b3b80d8

commit 9959b052347ceddec3576013485f2564b99b944e
Author: Dan Gohman <gohman@apple.com>
Date:   Wed Aug 26 14:59:13 2009 +0000

    Don't use INSERT_SUBREG to model anyext operations on x86-64, as it
    leads to partial-register definitions. To help avoid redundant
    zero-extensions, also teach the h-register matching patterns that
    use movzbl to match anyext as well as zext.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80099 91177308-0d34-0410-b5e6-96231b3b80d8

commit 9927f829a68b645ed5813b25e21a881d94fc80d8
Author: Dan Gohman <gohman@apple.com>
Date:   Wed Aug 26 14:53:06 2009 +0000

    Create a ScalarEvolution-based AliasAnalysis implementation.

    This is a simple AliasAnalysis implementation which works by making
    ScalarEvolution queries. ScalarEvolution has a more complete understanding
    of arithmetic than BasicAA's collection of ad-hoc checks, so it handles
    some cases that BasicAA misses, for example p[i] and p[i+1] within the
    same iteration of a loop.

    This is currently experimental. It may be that the main use for this pass
    will be to help find cases where BasicAA can be profitably extended, or
    to help in the development of the overall AliasAnalysis infrastructure,
    however it's also possible that it could grow up to become a directly
    useful pass.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80098 91177308-0d34-0410-b5e6-96231b3b80d8

commit 596114dc06489e5bd79e3e8ffc60d43bbf3668e3
Author: Dan Gohman <gohman@apple.com>
Date:   Wed Aug 26 14:34:12 2009 +0000

    Fix a missing newline, now that Value's operator<< doesn't add one of its own.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80096 91177308-0d34-0410-b5e6-96231b3b80d8

commit 84c793aef4170e0d5be4d2c6fcb26a9e56cad21b
Author: Dan Gohman <gohman@apple.com>
Date:   Wed Aug 26 14:32:17 2009 +0000

    Use SetVector instead of std::set so that alias relations are tested and
    printed in a deterministic order.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80095 91177308-0d34-0410-b5e6-96231b3b80d8

commit 8fa9da2b34655a15102a0845617a9951ee945ed6
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 13:58:10 2009 +0000

    llvm-mc/Mach-O: Add support for relocations.
     - I haven't really tried to find the "right" way to store the fixups or apply
       them, yet. This works, but isn't particularly elegant or fast.

     - Still no evaluation support, so we don't actually ever not turn a fixup into
       a relocation entry.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80089 91177308-0d34-0410-b5e6-96231b3b80d8

commit c3c1992d46f418c45a8e0b5fdb3c452c90aa960e
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 13:57:54 2009 +0000

    llvm-mc/Mach-O: Move symbol indices into the MCSymbolData structure.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80088 91177308-0d34-0410-b5e6-96231b3b80d8

commit cefbda1f46cc612e074fdcc1d8aab712aba085e7
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 13:57:44 2009 +0000

    llvm-mc/Mach-O: Dump relocations and section data (optionally) in my Mach-O dumper.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80087 91177308-0d34-0410-b5e6-96231b3b80d8

commit 4486ac16542e9dd843778c5f684e1cd9d7bb3945
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 13:57:37 2009 +0000

    llvm-mc: Add symbol entries for undefined symbols used in .fill and .org.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80086 91177308-0d34-0410-b5e6-96231b3b80d8

commit 7c672df8b969b7514438228bed80cfad6e9c473e
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Wed Aug 26 13:44:29 2009 +0000

    Add dummy inline asm handling for 'r' constraint. This fixes PR4778

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80085 91177308-0d34-0410-b5e6-96231b3b80d8

commit 39fd40ae8671ecff6a1857b5a0156e52284c4e5c
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Wed Aug 26 13:33:09 2009 +0000

    Moved isDeclaration() check further down to allow for function counts for
    declarations if necessary.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80084 91177308-0d34-0410-b5e6-96231b3b80d8

commit 92183c031a21857a580b38795272ce80863b9ebf
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 09:16:57 2009 +0000

    llvm-mc: Change MCContext value table to take const MCSymbol*s.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80079 91177308-0d34-0410-b5e6-96231b3b80d8

commit b9d13ac6e4228451c6fe54566064978597aabc1b
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 09:16:46 2009 +0000

    llvm-mc: Make MCValue take const MCSymbol*s.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80078 91177308-0d34-0410-b5e6-96231b3b80d8

commit cb73cfe2496d5e70d8cc4c89e7de29373b348353
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 09:16:34 2009 +0000

    llvm-mc: Make non-sensical max bytes to .align an error.

    Also, warn about overflow in alignment values.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80077 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3e64a6cc0e75cf654fd23ac9ffa1a9a1d3d911e9
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Wed Aug 26 09:05:21 2009 +0000

    Changed std::cout to outs(), retaining formating.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80076 91177308-0d34-0410-b5e6-96231b3b80d8

commit 94060421ce73922e71c183fba0fda8bace7d0e2d
Author: Devang Patel <dpatel@apple.com>
Date:   Wed Aug 26 05:01:18 2009 +0000

    Revert 79977. It causes llvm-gcc bootstrap failures on some platforms.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80073 91177308-0d34-0410-b5e6-96231b3b80d8

commit 66d02907de42fa311fb2b512e820277bb1a61e7c
Author: Chris Lattner <sabre@nondot.org>
Date:   Wed Aug 26 05:00:16 2009 +0000

    some mips and some sparc compilers apparently
    predefine mips and sparc respectively.  Just overrule them :)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80072 91177308-0d34-0410-b5e6-96231b3b80d8

commit 202ced1e32f5a88a8c865e62ea10c88a712c3fab
Author: Venkatraman Govindaraju <venkatra@cs.wisc.edu>
Date:   Wed Aug 26 04:50:17 2009 +0000

    test commit

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80070 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3eb9a3f37ed8ee8e026d2dfebe6bae08df4e615d
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 04:28:45 2009 +0000

    llvm-mc: Fix tests for python variations in int printing, sigh.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80069 91177308-0d34-0410-b5e6-96231b3b80d8

commit 53a9082d2e95f33980ef2b7f5104e0cc46d6342d
Author: Chris Lattner <sabre@nondot.org>
Date:   Wed Aug 26 04:21:30 2009 +0000

    fix some funky indentation

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80068 91177308-0d34-0410-b5e6-96231b3b80d8

commit 0f56d41709c27ec2f0637e19881fefd90e31c22b
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 04:13:32 2009 +0000

    llvm-mc/Mach-O: Add section padding where needed (to align the next section).

    Also, simplify some of Mach-O writer code which can now use section addresses.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80067 91177308-0d34-0410-b5e6-96231b3b80d8

commit b3730b1a3de7fe37a660bd30d3d0d55bcea22d1d
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 02:48:04 2009 +0000

    llvm-mc/Mach-O: Set addresses for symbols.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80065 91177308-0d34-0410-b5e6-96231b3b80d8

commit 7fd6b0fff74a7c9fbc054b3303fee1a8f22002b2
Author: Dale Johannesen <dalej@apple.com>
Date:   Wed Aug 26 01:08:21 2009 +0000

    Add an 'inline hint' attribute to represent source
    code hints that it would be a good idea to inline
    a function ("inline" keyword).  No functional change
    yet; FEs do not emit this and inliner does not use it.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80063 91177308-0d34-0410-b5e6-96231b3b80d8

commit 2e1a5d0b91503b8d5ada9fe0b19567daca2f1c6f
Author: Devang Patel <dpatel@apple.com>
Date:   Wed Aug 26 00:39:50 2009 +0000

    Add isClosure() predicate. This is used to add DW_AT_APPLE_block attribute.
    Patch by Caroline Tice.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80061 91177308-0d34-0410-b5e6-96231b3b80d8

commit 6d294da8f845a8d611529759d194315b76b44a6e
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 00:18:21 2009 +0000

    llvm-mc: Improve indirect symbol support (add the indirect index table).

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80059 91177308-0d34-0410-b5e6-96231b3b80d8

commit 3b126fbc67c6279898f8ca0c31f233a3a56b31d9
Author: Dan Gohman <gohman@apple.com>
Date:   Wed Aug 26 00:13:22 2009 +0000

    Remove unused variables.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80058 91177308-0d34-0410-b5e6-96231b3b80d8

commit bdd4dc67fb10d0f304bec21c924263f8444ae7a7
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Wed Aug 26 00:10:55 2009 +0000

    llvm-mc: Add MCSection::isDefined()

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80057 91177308-0d34-0410-b5e6-96231b3b80d8

commit 917614663633aa0ff1bdf7208862e8b7e25dd911
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 23:27:45 2009 +0000

    Fix the InsertAtEnd form of ShuffleVectorInst constructor to use
    the correct type.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80050 91177308-0d34-0410-b5e6-96231b3b80d8

commit e6803b821738076b5b2299c1cd496be0d0042362
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 23:17:54 2009 +0000

    Eliminate the unused Context argument on one of the ICmpInst and FCmpInst
    constructors.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80049 91177308-0d34-0410-b5e6-96231b3b80d8

commit 4e46ac9407307942712236f8c91875ef323c182f
Author: Gabor Greif <ggreif@gmail.com>
Date:   Tue Aug 25 23:02:21 2009 +0000

    revert r78628 and r78803 as these are not needed any more

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80048 91177308-0d34-0410-b5e6-96231b3b80d8

commit 58d95377713fa32cbf129e19f4005f4863f9cdb3
Author: Scott Michel <scottm@aero.org>
Date:   Tue Aug 25 22:37:34 2009 +0000

    Updated i128 sext support for CellSPU backend, contributed by Ken Werner (IBM)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80042 91177308-0d34-0410-b5e6-96231b3b80d8

commit 91bf99a35153b00098633f214207c308c52acdcd
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 22:29:08 2009 +0000

    Use covariant return types for Instruction::clone, and eliminate
    the forms of ExtractElementInst and InsertElementInst that are
    equivalent to clone.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80041 91177308-0d34-0410-b5e6-96231b3b80d8

commit 97be9d37d93c38bc82950e0373cd3a8d1d2aa024
Author: Owen Anderson <resistor@mac.com>
Date:   Tue Aug 25 22:27:22 2009 +0000

    Get rid of this horrible "benign race" by exploiting ManagedStatic to initialize
    the array on its first access.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80040 91177308-0d34-0410-b5e6-96231b3b80d8

commit ba4fe8b91352f65caaf2a30f234b5006afd1cf2b
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 22:24:20 2009 +0000

    This should use isIndenticalToWhenDefined.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80039 91177308-0d34-0410-b5e6-96231b3b80d8

commit fc00c4a2407c1b30a19fef9ec0a1ae00f7f7472d
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 22:11:20 2009 +0000

    Rename Instruction::isIdenticalTo to Instruction::isIdenticalToWhenDefined,
    and introduce a new Instruction::isIdenticalTo which tests for full
    identity, including the SubclassOptionalData flags. Also, fix the
    Instruction::clone implementations to preserve the SubclassOptionalData
    flags. Finally, teach several optimizations how to handle
    SubclassOptionalData correctly, given these changes.

    This fixes the counterintuitive behavior of isIdenticalTo not comparing
    the full value, and clone not returning an identical clone, as well as
    some subtle bugs that could be caused by these.

    Thanks to Nick Lewycky for reporting this, and for an initial patch!

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80038 91177308-0d34-0410-b5e6-96231b3b80d8

commit e73ff31d813cdc36e334404992c42bfef7842c95
Author: Bill Wendling <isanbard@gmail.com>
Date:   Tue Aug 25 21:31:39 2009 +0000

    Revert last patch. We need to put this into TargetLowering. There will be a lot
    of EH stuff going into there, so we can wait to add them all then.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80036 91177308-0d34-0410-b5e6-96231b3b80d8

commit 12d46f5ea460e149882e39dc25c649580a161141
Author: Gabor Greif <ggreif@gmail.com>
Date:   Tue Aug 25 21:25:22 2009 +0000

    re-committing yesterday's r79938.

    This time there is no additional include of llvm/Config/config.h
    at all. Instead I use a hard-coded preprecessor symbol:
    LLVM_COMPACTIFY_SENTINELS

    (should this work on the self-hosting buildbot, then
     cleanups come next)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80035 91177308-0d34-0410-b5e6-96231b3b80d8

commit b81243240cbfc573324c9760a77e6b1463955bab
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Tue Aug 25 21:10:45 2009 +0000

    llvm-mc: Add statistic for number of fragments emitted by the assembler.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80033 91177308-0d34-0410-b5e6-96231b3b80d8

commit 4f61e5051fa25f4abb928573db6ea52585748b93
Author: Bill Wendling <isanbard@gmail.com>
Date:   Tue Aug 25 21:09:50 2009 +0000

    Add the #include here.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80032 91177308-0d34-0410-b5e6-96231b3b80d8

commit 4b90952a9dd2b26ef6dd359cb8e4f7139e40f864
Author: Chris Lattner <sabre@nondot.org>
Date:   Tue Aug 25 21:01:56 2009 +0000

    remove some dead lines.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80031 91177308-0d34-0410-b5e6-96231b3b80d8

commit 538dfe54dd1c732208b2dbb00057b0a58cdeb61e
Author: Bill Wendling <isanbard@gmail.com>
Date:   Tue Aug 25 21:01:42 2009 +0000

    Comment formatting. Removing of unused #include and type forwarding.

    OCD is fun!

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80030 91177308-0d34-0410-b5e6-96231b3b80d8

commit f2db1075b5a1bf1ea8f2d2c618917651150b8a94
Author: Chris Lattner <sabre@nondot.org>
Date:   Tue Aug 25 20:57:38 2009 +0000

    convert to filecheck style

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80029 91177308-0d34-0410-b5e6-96231b3b80d8

commit 864504a5810fdfd23e1774de0b935dcdafb91645
Author: Chris Lattner <sabre@nondot.org>
Date:   Tue Aug 25 20:49:04 2009 +0000

    convert to filecheck

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80025 91177308-0d34-0410-b5e6-96231b3b80d8

commit e371d63e2a817eda5e3563eb574c99fa08df7e6d
Author: Bill Wendling <isanbard@gmail.com>
Date:   Tue Aug 25 20:21:17 2009 +0000

    Add a target asm info hook to specify that particular bits of data in the FDE
    should be forced to 32-bits (.long) even on 64-bit architectures. Darwin wants
    these bits to be 64-bits (.quad). However, other platforms may disagree.

    This is just the info right now and is part of a work-in-progress which needs
    this. We'll add the actual *use* of this soon.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80024 91177308-0d34-0410-b5e6-96231b3b80d8

commit b0b96906a0018edbadd9f4f3b17b48ec3c29838e
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Tue Aug 25 20:21:09 2009 +0000

    EXIT STAGE LEFT: gccas, gccld

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80023 91177308-0d34-0410-b5e6-96231b3b80d8

commit 13808ef92db201ec027004b4fd8eb2db55c5aae4
Author: Sanjiv Gupta <sanjiv.gupta@microchip.com>
Date:   Tue Aug 25 19:39:05 2009 +0000

    Start refactoring PIC16 TargetObjectFile code. Eventually, all the stuff from
    PIC16Section will move to MCSectionPIC16.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80021 91177308-0d34-0410-b5e6-96231b3b80d8

commit b1d423e0cccd3f78122a5e8c9e959c8569b23bb0
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Tue Aug 25 18:45:03 2009 +0000

    Switch abi-isel.ll to FileCheck; it's not much faster, but it now tests a lot
    more and is much nicer to the OS.
     - Dan, please check. If there are parts of the test you think I should strip
       out so it doesn't cause random failures let me know (there are still some PIC
       label numbers in it, for example).

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80019 91177308-0d34-0410-b5e6-96231b3b80d8

commit 1d99646fa9e8847b0ceb086e33a24ed707491684
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 17:56:57 2009 +0000

    Don't assume that two identical instructions that read from memory
    will always return the same value. This isn't currently necessary,
    since this code doesn't currently ever get called under circumstances
    where it would matter, but it may some day.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80017 91177308-0d34-0410-b5e6-96231b3b80d8

commit 82d30b73d3a37de0ec7960a4e099ef9e255d4f11
Author: Bob Wilson <bob.wilson@apple.com>
Date:   Tue Aug 25 17:52:39 2009 +0000

    Remove some unused SDNode definitions.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80015 91177308-0d34-0410-b5e6-96231b3b80d8

commit 5bba145cbd5935b442e6a197eda3477f5d1372a5
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 17:49:57 2009 +0000

    Teach ScalarEvolution about GlobalAliases.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80014 91177308-0d34-0410-b5e6-96231b3b80d8

commit 1c17fd9fbdcfebe29c7ea59c2c7675e420aa49f5
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 17:48:17 2009 +0000

    Delete some unnecessary flushes.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80013 91177308-0d34-0410-b5e6-96231b3b80d8

commit 814c2eaa0121afd0661d8a2b5f715fcb1174f0b5
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 17:47:44 2009 +0000

    Use X86II::MO_NO_FLAG.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80012 91177308-0d34-0410-b5e6-96231b3b80d8

commit 316062a4d193609d98e80e64389fc2094ad8c515
Author: Bob Wilson <bob.wilson@apple.com>
Date:   Tue Aug 25 17:46:06 2009 +0000

    Expose the instruction contraint string as an argument to the NLdSt class.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80011 91177308-0d34-0410-b5e6-96231b3b80d8

commit 208278cfa708aa6e5fcca6d1b92ee780beb72a8c
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 17:42:10 2009 +0000

    Special-case static allocas in IndVarSimplify's loop invariant
    sinking code, since they are special. If the loop preheader happens
    to be the entry block of a function, don't sink static allocas
    out of it. This fixes PR4775.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80010 91177308-0d34-0410-b5e6-96231b3b80d8

commit 36ed6c0368d77188063d1594e54c52df1438ae87
Author: Owen Anderson <resistor@mac.com>
Date:   Tue Aug 25 17:42:07 2009 +0000

    Comment-ify.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80009 91177308-0d34-0410-b5e6-96231b3b80d8

commit 845a722eb435c2a9c0528b13a472e595340b6dd8
Author: Owen Anderson <resistor@mac.com>
Date:   Tue Aug 25 17:35:37 2009 +0000

    Switch to SmallVector.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80007 91177308-0d34-0410-b5e6-96231b3b80d8

commit 2845c6f885c8c7615610ab8494f7535a8f67334c
Author: Owen Anderson <resistor@mac.com>
Date:   Tue Aug 25 17:26:32 2009 +0000

    Pull out this predicate loop into a helper function.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80006 91177308-0d34-0410-b5e6-96231b3b80d8

commit a9c16fe7d4d2b61191b362a5d073bdc95c123c0f
Author: David Goodwin <david_goodwin@apple.com>
Date:   Tue Aug 25 17:03:05 2009 +0000

    Fixup register kills after scheduling.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80002 91177308-0d34-0410-b5e6-96231b3b80d8

commit 9518d88d270c05fb576604fc813405de177e2e34
Author: Anton Korobeynikov <asl@math.spbu.ru>
Date:   Tue Aug 25 17:00:23 2009 +0000

    Provide dynamic_stackalloc lowering for MSP430.
    This fixes PR4769

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80001 91177308-0d34-0410-b5e6-96231b3b80d8

commit b802d676875f2df286887be83419649770dd8580
Author: Edwin Török <edwintorok@gmail.com>
Date:   Tue Aug 25 16:53:15 2009 +0000

    Remove target triple from this test, it fails on x86-64 with
    --enable-targets=host-only otherwise.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80000 91177308-0d34-0410-b5e6-96231b3b80d8

commit e577ff861e934b98cb950a0b0d32d0a9a1dce8b1
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 16:00:35 2009 +0000

    Allocate the basic types inside the LLVMContextImpl instance,
    rather than separately with new. Move the members above the
    TypeMap members to avoid destruction order issues. This fixes
    a leak of these objects, and eliminates an extra level of
    indirection in Type::getInt32Ty and friends.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79997 91177308-0d34-0410-b5e6-96231b3b80d8

commit 87489cff37dde33a9dbb37fbfbad46ce2f70c8af
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 15:54:01 2009 +0000

    Update documentation for the -f change.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79996 91177308-0d34-0410-b5e6-96231b3b80d8

commit a0e89b2e414df522132636eb256ecbcc2d01a4e8
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 15:45:44 2009 +0000

    Fix a few typos from the removal of -f.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79994 91177308-0d34-0410-b5e6-96231b3b80d8

commit 2d65d35d9233277aee7c8a6d3643740e3ed29f0b
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 15:38:29 2009 +0000

    Remove obsolete -f flags.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79992 91177308-0d34-0410-b5e6-96231b3b80d8

commit 176426d2102142aaa0bf19aca55f528ceb873329
Author: Dan Gohman <gohman@apple.com>
Date:   Tue Aug 25 15:34:52 2009 +0000

    Make LLVM command-line tools overwrite their output files without -f.
    This is conventional command-line tool behavior. -f now just means
    "enable binary output on terminals".

    Add a -f option to llvm-extract and llvm-link, for consistency.

    Remove F_Force from raw_fd_ostream and enable overwriting and
    truncating by default. Introduce an F_Excl flag to permit users to
    enable a failure when the file already exists. This flag is
    currently unused.

    Update Makefiles and documentation accordingly.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79990 91177308-0d34-0410-b5e6-96231b3b80d8

commit 8c949d7c548ed4ec883a2c8bd922607be2563f5a
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Tue Aug 25 12:53:27 2009 +0000

    Read profile files as binary as proposed in
    http://lists.cs.uiuc.edu/pipermail/llvmdev/2009-August/025020.html.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79983 91177308-0d34-0410-b5e6-96231b3b80d8

commit 9112f5f6755a85f10036ff20741fc264622dc14a
Author: Xerxes Ranby <xerxes@zafena.se>
Date:   Tue Aug 25 10:12:55 2009 +0000

    Fix PR4772 ARM JIT.GlobalInFuction unittest by explicitly initialize MMI
    to 0 during JITEmitter constructor.

    Modified:
    	lib/ExecutionEngine/JIT/JITEmitter.cpp

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79982 91177308-0d34-0410-b5e6-96231b3b80d8

commit a75796301ee17e60daea754e30a035a53891650d
Author: Bill Wendling <isanbard@gmail.com>
Date:   Tue Aug 25 08:08:33 2009 +0000

    - Rename EmitCommonInformationEntry to EmitCIE.
    - Rename EmitFunctionDescriptionEntry to EmitFDE.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79981 91177308-0d34-0410-b5e6-96231b3b80d8

commit 57b83c78f56324e3a8ff636b311235f6f2350b4e
Author: Devang Patel <dpatel@apple.com>
Date:   Tue Aug 25 05:24:07 2009 +0000

    Update DebugInfo interface to use metadata, instead of special named llvm.dbg.... global variables, to encode debugging information in llvm IR. This is mostly a mechanical change that tests metadata support very well.

    This change speeds up llvm-gcc by more then 6% at "-O0 -g" (measured by compiling InstructionCombining.cpp!)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79977 91177308-0d34-0410-b5e6-96231b3b80d8

commit bcc93309ca3632b3cd2b45f265a534256be7589a
Author: Bill Wendling <isanbard@gmail.com>
Date:   Tue Aug 25 02:32:05 2009 +0000

    - Emit new line after each FDE.
    - Fix comment.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79971 91177308-0d34-0410-b5e6-96231b3b80d8

commit 4767b24840250630c47fee8be2a6aef07f19d30a
Author: Bill Wendling <isanbard@gmail.com>
Date:   Tue Aug 25 02:27:42 2009 +0000

    Rename functions to something more descriptive. At the very least mention the
    CIE and FDE in their names.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79969 91177308-0d34-0410-b5e6-96231b3b80d8

commit 30d4d765dfc6d01bc4c1d6934582050106bcceba
Author: Dale Johannesen <dalej@apple.com>
Date:   Tue Aug 25 01:13:58 2009 +0000

    Allow multiple occurrences of -inline-threshold on
    the command line.  This gives llvm-gcc developers
    a way to control inlining (documented as "not intended
    for end users").

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79966 91177308-0d34-0410-b5e6-96231b3b80d8

commit 06b990c5b3f32505188e52be1b70b38290f81b83
Author: Owen Anderson <resistor@mac.com>
Date:   Tue Aug 25 00:54:39 2009 +0000

    Handle a corner case when extracing code regions where one of the immediate successor
    of an extracted block contains a PHI using a value defined in the extracted region.

    With this patch, the partial inliner now passes MultiSource/Applications.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79963 91177308-0d34-0410-b5e6-96231b3b80d8

commit f1f04ecf6e5af3aa7c4c59077486c9cb29df20ea
Author: Dale Johannesen <dalej@apple.com>
Date:   Tue Aug 25 00:16:14 2009 +0000

    Fix PR 4751, another difficulty with %a modifier on x86.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79961 91177308-0d34-0410-b5e6-96231b3b80d8

commit 09220a24f7845a078fb41c61ee909eed6c94a255
Author: Bill Wendling <isanbard@gmail.com>
Date:   Tue Aug 25 00:05:04 2009 +0000

    --- Reverse-merging r79938 into '.':
    U    include/llvm/BasicBlock.h
    U    include/llvm/ADT/ilist_node.h
    U    include/llvm/ADT/ilist.h
    U    include/llvm/CodeGen/SelectionDAG.h
    U    include/llvm/CodeGen/MachineFunction.h
    U    include/llvm/CodeGen/MachineBasicBlock.h
    U    include/llvm/Function.h

    Revert r79938. It was causing self-hosting build failures.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79960 91177308-0d34-0410-b5e6-96231b3b80d8

commit f2942e63abf0b485e88c21a9fc96bfb13754ed41
Author: Oscar Fuentes <ofv@wanadoo.es>
Date:   Tue Aug 25 00:02:29 2009 +0000

    CMake: updated list of source files.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79959 91177308-0d34-0410-b5e6-96231b3b80d8

commit 399ece6621d316d7378e5fc13bd030e5572f03ce
Author: Scott Michel <scottm@aero.org>
Date:   Mon Aug 24 23:57:35 2009 +0000

    - Remove SelectSEXTi128 from SPUISelDAGToDAG.cpp, evidently, this is redundant
      code, according to Anton (I'm not totally convinced, but we can always
      resurrect patches if we need to do so.)
    - Start moving CellSPU's tests to prefer FileCheck.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79958 91177308-0d34-0410-b5e6-96231b3b80d8

commit 27dad5a41e0b0fa8fd5cba2e6f5dd70b82689e76
Author: Owen Anderson <resistor@mac.com>
Date:   Mon Aug 24 23:32:14 2009 +0000

    When extracting SEME regions of code, the extractor needs to update the dominator tree for split return blocks.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79957 91177308-0d34-0410-b5e6-96231b3b80d8

commit 316e6fb92b997dfa4db655a371d5699cbcac0473
Author: Scott Michel <scottm@aero.org>
Date:   Mon Aug 24 22:49:22 2009 +0000

    Prefer 'FileCheck' over 'grep'.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79953 91177308-0d34-0410-b5e6-96231b3b80d8

commit 36173e27ebfe4da907c17f2b507a9df3415a3aad
Author: Scott Michel <scottm@aero.org>
Date:   Mon Aug 24 22:28:53 2009 +0000

    128-bit sign extension and vector shift cleanups, contributed by Ken Werner
    (IBM).

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79949 91177308-0d34-0410-b5e6-96231b3b80d8

commit 73ab81726b384015ac9bfe7f734fc13b93297c4c
Author: Scott Michel <scottm@aero.org>
Date:   Mon Aug 24 21:53:27 2009 +0000

    Initialize ShufBytes, as gcc 4.4 can't detect that the entire array is
    initialized and a warning about a potentially unintialized variable is
    generated.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79946 91177308-0d34-0410-b5e6-96231b3b80d8

commit af26e32df3f129ac906a45c4527b5ee3641cb22d
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Mon Aug 24 21:41:37 2009 +0000

    Add llvm_start_edge_profiling to exported symbols for libprofile_rt.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79944 91177308-0d34-0410-b5e6-96231b3b80d8

commit 92b39ace140de279245e80d0465528933787c7e4
Author: Andreas Neustifter <astifter@gmx.at>
Date:   Mon Aug 24 21:37:48 2009 +0000

    This patch cleans up the ProfileInfo by
    *) introducing new data type and export function of edge info for whole function (preparation for next patch).
    *) renaming variables to make clear distinction between data and containers that contain this data.
    *) updated comments and whitespaces.
    *) made ProfileInfo::MissingValue a double (as it should be...).

    (Discussed at http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20090817/084955.html.)

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79940 91177308-0d34-0410-b5e6-96231b3b80d8

commit c19dfb9d25347b815512bba5eb64052708e4c183
Author: Gabor Greif <ggreif@gmail.com>
Date:   Mon Aug 24 21:34:17 2009 +0000

    Resubmit an earlier patch of mine:
    reduce the size of relevant "ghostly" sentinels
    by a pointer.

    This attempt now makes the compactification dependent
    on the configure variable LLVM_COMPACT_SENTINELS
    and should not cause any bootstrap failures for
    llvm-gcc any more.

    Please note that this is not yet the final version,
    and (as settled with Chris) I shall take out the
    autofoo/cmake portions in the next days.

    This will also lose the assertability on sentinel
    dereferencing and operator++, but that seems
    an acceptable price to pay for the simplified
    build logic.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79938 91177308-0d34-0410-b5e6-96231b3b80d8

commit b2f99910fba8818270e41e75f4b127d82a2082a6
Author: Bob Wilson <bob.wilson@apple.com>
Date:   Mon Aug 24 21:17:17 2009 +0000

    Fix a typo.  Somehow I thought this had passed before, but I guess not.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79937 91177308-0d34-0410-b5e6-96231b3b80d8

commit f5c686b114bf6ac6b3137f96bc59ffb2e8e20de6
Author: Gabor Greif <ggreif@gmail.com>
Date:   Mon Aug 24 21:00:10 2009 +0000

    prune ignores: AutoGenerated.inc is no more

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79936 91177308-0d34-0410-b5e6-96231b3b80d8

commit cacea03dbaca34b44783243898ef2274bd71e72e
Author: Bob Wilson <bob.wilson@apple.com>
Date:   Mon Aug 24 20:33:47 2009 +0000

    Convert slow test to use FileCheck.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79935 91177308-0d34-0410-b5e6-96231b3b80d8

commit 8551a303173101cf595dc35200eea7da37e769d4
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 24 20:08:27 2009 +0000

    Convert two gratuitous abuses of poor helpless CPU cycles to FileCheck.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79933 91177308-0d34-0410-b5e6-96231b3b80d8

commit b9640223f05f0257603a0138c1ea8cb59c7f5acc
Author: Dale Johannesen <dalej@apple.com>
Date:   Mon Aug 24 17:51:19 2009 +0000

    Split test into 3.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79926 91177308-0d34-0410-b5e6-96231b3b80d8

commit a0151d0e9f948b39e55944b5cad64fb33732af25
Author: Daniel Dunbar <daniel@zuster.org>
Date:   Mon Aug 24 11:56:58 2009 +0000

    llvm-mc/Mach-O: Preliminary support for indirect symbols.
     - The indirect table itself isn't being filled in yet.

     - This isn't factored properly and is rather FIXMEd, but at the moment I'm more
       focused on figuring out what it needs to do.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79910 91177308-0d34-0410-b5e6-96231b3b80d8

commit b69f053e0d5af3463d1bbf2101e5c1431cca6fee
Author: Duncan Sands <baldrick@free.fr>
Date:   Mon Aug 24 10:59:01 2009 +0000

    Fix the build when using gcc-4.4 on linux.  Header needed
    for stderr and fprintf.

    git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79909 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-31 22:38:59 +03:00

6988 lines
274 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>LLVM Assembly Language Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="author" content="Chris Lattner">
<meta name="description"
content="LLVM Assembly Language Reference Manual.">
<link rel="stylesheet" href="llvm.css" type="text/css">
</head>
<body>
<div class="doc_title"> LLVM Language Reference Manual </div>
<ol>
<li><a href="#abstract">Abstract</a></li>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#identifiers">Identifiers</a></li>
<li><a href="#highlevel">High Level Structure</a>
<ol>
<li><a href="#modulestructure">Module Structure</a></li>
<li><a href="#linkage">Linkage Types</a>
<ol>
<li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
<li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
<li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
<li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
<li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
<li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
<li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
<li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
<li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
<li><a href="#linkage_linkonce">'<tt>linkonce_odr</tt>' Linkage</a></li>
<li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
<li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
<li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
<li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
</ol>
</li>
<li><a href="#callingconv">Calling Conventions</a></li>
<li><a href="#namedtypes">Named Types</a></li>
<li><a href="#globalvars">Global Variables</a></li>
<li><a href="#functionstructure">Functions</a></li>
<li><a href="#aliasstructure">Aliases</a></li>
<li><a href="#paramattrs">Parameter Attributes</a></li>
<li><a href="#fnattrs">Function Attributes</a></li>
<li><a href="#gc">Garbage Collector Names</a></li>
<li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
<li><a href="#datalayout">Data Layout</a></li>
<li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
</ol>
</li>
<li><a href="#typesystem">Type System</a>
<ol>
<li><a href="#t_classifications">Type Classifications</a></li>
<li><a href="#t_primitive">Primitive Types</a>
<ol>
<li><a href="#t_floating">Floating Point Types</a></li>
<li><a href="#t_void">Void Type</a></li>
<li><a href="#t_label">Label Type</a></li>
<li><a href="#t_metadata">Metadata Type</a></li>
</ol>
</li>
<li><a href="#t_derived">Derived Types</a>
<ol>
<li><a href="#t_integer">Integer Type</a></li>
<li><a href="#t_array">Array Type</a></li>
<li><a href="#t_function">Function Type</a></li>
<li><a href="#t_pointer">Pointer Type</a></li>
<li><a href="#t_struct">Structure Type</a></li>
<li><a href="#t_pstruct">Packed Structure Type</a></li>
<li><a href="#t_vector">Vector Type</a></li>
<li><a href="#t_opaque">Opaque Type</a></li>
</ol>
</li>
<li><a href="#t_uprefs">Type Up-references</a></li>
</ol>
</li>
<li><a href="#constants">Constants</a>
<ol>
<li><a href="#simpleconstants">Simple Constants</a></li>
<li><a href="#complexconstants">Complex Constants</a></li>
<li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
<li><a href="#undefvalues">Undefined Values</a></li>
<li><a href="#constantexprs">Constant Expressions</a></li>
<li><a href="#metadata">Embedded Metadata</a></li>
</ol>
</li>
<li><a href="#othervalues">Other Values</a>
<ol>
<li><a href="#inlineasm">Inline Assembler Expressions</a></li>
</ol>
</li>
<li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
<ol>
<li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
<li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
Global Variable</a></li>
<li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
Global Variable</a></li>
<li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
Global Variable</a></li>
</ol>
</li>
<li><a href="#instref">Instruction Reference</a>
<ol>
<li><a href="#terminators">Terminator Instructions</a>
<ol>
<li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
<li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
<li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
<li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
<li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
<li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#binaryops">Binary Operations</a>
<ol>
<li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
<li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
<li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
<li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
<li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
<li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
<li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
<li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
<li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
<li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
<li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
<li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#bitwiseops">Bitwise Binary Operations</a>
<ol>
<li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
<li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
<li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
<li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
<li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
<li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#vectorops">Vector Operations</a>
<ol>
<li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
<li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
<li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#aggregateops">Aggregate Operations</a>
<ol>
<li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
<li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#memoryops">Memory Access and Addressing Operations</a>
<ol>
<li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
<li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
<li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
<li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
<li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
<li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#convertops">Conversion Operations</a>
<ol>
<li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
<li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
<li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
<li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
<li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
<li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
<li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
<li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
<li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
<li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
<li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
<li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
</ol>
</li>
<li><a href="#otherops">Other Operations</a>
<ol>
<li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
<li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
<li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
<li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
<li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
<li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
</ol>
</li>
</ol>
</li>
<li><a href="#intrinsics">Intrinsic Functions</a>
<ol>
<li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
<ol>
<li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
<li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
<li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
</ol>
</li>
<li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
<ol>
<li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
<li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
<li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
</ol>
</li>
<li><a href="#int_codegen">Code Generator Intrinsics</a>
<ol>
<li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
<li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
<li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
<li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
<li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
<li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
<li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
</ol>
</li>
<li><a href="#int_libc">Standard C Library Intrinsics</a>
<ol>
<li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
<li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
<li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
<li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
<li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
<li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
<li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
<li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
</ol>
</li>
<li><a href="#int_manip">Bit Manipulation Intrinsics</a>
<ol>
<li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
<li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
<li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
<li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
</ol>
</li>
<li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
<ol>
<li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
<li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
<li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
<li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
<li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
<li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
</ol>
</li>
<li><a href="#int_debugger">Debugger intrinsics</a></li>
<li><a href="#int_eh">Exception Handling intrinsics</a></li>
<li><a href="#int_trampoline">Trampoline Intrinsic</a>
<ol>
<li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
</ol>
</li>
<li><a href="#int_atomics">Atomic intrinsics</a>
<ol>
<li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
<li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
<li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
<li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
<li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
<li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
<li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
<li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
<li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
<li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
<li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
<li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
<li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
</ol>
</li>
<li><a href="#int_general">General intrinsics</a>
<ol>
<li><a href="#int_var_annotation">
'<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
<li><a href="#int_annotation">
'<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
<li><a href="#int_trap">
'<tt>llvm.trap</tt>' Intrinsic</a></li>
<li><a href="#int_stackprotector">
'<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
</ol>
</li>
</ol>
</li>
</ol>
<div class="doc_author">
<p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="abstract">Abstract </a></div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>This document is a reference manual for the LLVM assembly language. LLVM is
a Static Single Assignment (SSA) based representation that provides type
safety, low-level operations, flexibility, and the capability of representing
'all' high-level languages cleanly. It is the common code representation
used throughout all phases of the LLVM compilation strategy.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="introduction">Introduction</a> </div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>The LLVM code representation is designed to be used in three different forms:
as an in-memory compiler IR, as an on-disk bitcode representation (suitable
for fast loading by a Just-In-Time compiler), and as a human readable
assembly language representation. This allows LLVM to provide a powerful
intermediate representation for efficient compiler transformations and
analysis, while providing a natural means to debug and visualize the
transformations. The three different forms of LLVM are all equivalent. This
document describes the human readable representation and notation.</p>
<p>The LLVM representation aims to be light-weight and low-level while being
expressive, typed, and extensible at the same time. It aims to be a
"universal IR" of sorts, by being at a low enough level that high-level ideas
may be cleanly mapped to it (similar to how microprocessors are "universal
IR's", allowing many source languages to be mapped to them). By providing
type information, LLVM can be used as the target of optimizations: for
example, through pointer analysis, it can be proven that a C automatic
variable is never accessed outside of the current function... allowing it to
be promoted to a simple SSA value instead of a memory location.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
<div class="doc_text">
<p>It is important to note that this document describes 'well formed' LLVM
assembly language. There is a difference between what the parser accepts and
what is considered 'well formed'. For example, the following instruction is
syntactically okay, but not well formed:</p>
<div class="doc_code">
<pre>
%x = <a href="#i_add">add</a> i32 1, %x
</pre>
</div>
<p>...because the definition of <tt>%x</tt> does not dominate all of its
uses. The LLVM infrastructure provides a verification pass that may be used
to verify that an LLVM module is well formed. This pass is automatically run
by the parser after parsing input assembly and by the optimizer before it
outputs bitcode. The violations pointed out by the verifier pass indicate
bugs in transformation passes or input to the parser.</p>
</div>
<!-- Describe the typesetting conventions here. -->
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>LLVM identifiers come in two basic types: global and local. Global
identifiers (functions, global variables) begin with the <tt>'@'</tt>
character. Local identifiers (register names, types) begin with
the <tt>'%'</tt> character. Additionally, there are three different formats
for identifiers, for different purposes:</p>
<ol>
<li>Named values are represented as a string of characters with their prefix.
For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
<tt>%a.really.long.identifier</tt>. The actual regular expression used is
'<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
other characters in their names can be surrounded with quotes. Special
characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
ASCII code for the character in hexadecimal. In this way, any character
can be used in a name value, even quotes themselves.</li>
<li>Unnamed values are represented as an unsigned numeric value with their
prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
<li>Constants, which are described in a <a href="#constants">section about
constants</a>, below.</li>
</ol>
<p>LLVM requires that values start with a prefix for two reasons: Compilers
don't need to worry about name clashes with reserved words, and the set of
reserved words may be expanded in the future without penalty. Additionally,
unnamed identifiers allow a compiler to quickly come up with a temporary
variable without having to avoid symbol table conflicts.</p>
<p>Reserved words in LLVM are very similar to reserved words in other
languages. There are keywords for different opcodes
('<tt><a href="#i_add">add</a></tt>',
'<tt><a href="#i_bitcast">bitcast</a></tt>',
'<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
('<tt><a href="#t_void">void</a></tt>',
'<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
reserved words cannot conflict with variable names, because none of them
start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
<p>Here is an example of LLVM code to multiply the integer variable
'<tt>%X</tt>' by 8:</p>
<p>The easy way:</p>
<div class="doc_code">
<pre>
%result = <a href="#i_mul">mul</a> i32 %X, 8
</pre>
</div>
<p>After strength reduction:</p>
<div class="doc_code">
<pre>
%result = <a href="#i_shl">shl</a> i32 %X, i8 3
</pre>
</div>
<p>And the hard way:</p>
<div class="doc_code">
<pre>
<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
%result = <a href="#i_add">add</a> i32 %1, %1
</pre>
</div>
<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
lexical features of LLVM:</p>
<ol>
<li>Comments are delimited with a '<tt>;</tt>' and go until the end of
line.</li>
<li>Unnamed temporaries are created when the result of a computation is not
assigned to a named value.</li>
<li>Unnamed temporaries are numbered sequentially</li>
</ol>
<p>...and it also shows a convention that we follow in this document. When
demonstrating instructions, we will follow an instruction with a comment that
defines the type and name of value produced. Comments are shown in italic
text.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
<!-- *********************************************************************** -->
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
</div>
<div class="doc_text">
<p>LLVM programs are composed of "Module"s, each of which is a translation unit
of the input programs. Each module consists of functions, global variables,
and symbol table entries. Modules may be combined together with the LLVM
linker, which merges function (and global variable) definitions, resolves
forward declarations, and merges symbol table entries. Here is an example of
the "hello world" module:</p>
<div class="doc_code">
<pre><i>; Declare the string constant as a global constant...</i>
<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
<i>; External declaration of the puts function</i>
<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
<i>; Definition of main function</i>
define i32 @main() { <i>; i32()* </i>
<i>; Convert [13 x i8]* to i8 *...</i>
%cast210 = <a
href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
<i>; Call puts function to write out the string to stdout...</i>
<a
href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
<a
href="#i_ret">ret</a> i32 0<br>}<br>
</pre>
</div>
<p>This example is made up of a <a href="#globalvars">global variable</a> named
"<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and
a <a href="#functionstructure">function definition</a> for
"<tt>main</tt>".</p>
<p>In general, a module is made up of a list of global values, where both
functions and global variables are global values. Global values are
represented by a pointer to a memory location (in this case, a pointer to an
array of char, and a pointer to a function), and have one of the
following <a href="#linkage">linkage types</a>.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="linkage">Linkage Types</a>
</div>
<div class="doc_text">
<p>All Global Variables and Functions have one of the following types of
linkage:</p>
<dl>
<dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
<dd>Global values with private linkage are only directly accessible by objects
in the current module. In particular, linking code into a module with an
private global value may cause the private to be renamed as necessary to
avoid collisions. Because the symbol is private to the module, all
references can be updated. This doesn't show up in any symbol table in the
object file.</dd>
<dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt>: </dt>
<dd>Similar to private, but the symbol is passed through the assembler and
removed by the linker after evaluation. Note that (unlike private
symbols) linker_private symbols are subject to coalescing by the linker:
weak symbols get merged and redefinitions are rejected. However, unlike
normal strong symbols, they are removed by the linker from the final
linked image (executable or dynamic library).</dd>
<dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
<dd>Similar to private, but the value shows as a local symbol
(<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
<dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt>: </dt>
<dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
into the object file corresponding to the LLVM module. They exist to
allow inlining and other optimizations to take place given knowledge of
the definition of the global, which is known to be somewhere outside the
module. Globals with <tt>available_externally</tt> linkage are allowed to
be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
This linkage type is only allowed on definitions, not declarations.</dd>
<dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
<dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
the same name when linkage occurs. This is typically used to implement
inline functions, templates, or other code which must be generated in each
translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
allowed to be discarded.</dd>
<dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
<dd>"<tt>weak</tt>" linkage has the same merging semantics as
<tt>linkonce</tt> linkage, except that unreferenced globals with
<tt>weak</tt> linkage may not be discarded. This is used for globals that
are declared "weak" in C source code.</dd>
<dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
<dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
global scope.
Symbols with "<tt>common</tt>" linkage are merged in the same way as
<tt>weak symbols</tt>, and they may not be deleted if unreferenced.
<tt>common</tt> symbols may not have an explicit section,
must have a zero initializer, and may not be marked '<a
href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
have common linkage.</dd>
<dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
<dd>"<tt>appending</tt>" linkage may only be applied to global variables of
pointer to array type. When two global variables with appending linkage
are linked together, the two global arrays are appended together. This is
the LLVM, typesafe, equivalent of having the system linker append together
"sections" with identical names when .o files are linked.</dd>
<dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
<dd>The semantics of this linkage follow the ELF object file model: the symbol
is weak until linked, if not linked, the symbol becomes null instead of
being an undefined reference.</dd>
<dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
<dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
<dd>Some languages allow differing globals to be merged, such as two functions
with different semantics. Other languages, such as <tt>C++</tt>, ensure
that only equivalent globals are ever merged (the "one definition rule" -
"ODR"). Such languages can use the <tt>linkonce_odr</tt>
and <tt>weak_odr</tt> linkage types to indicate that the global will only
be merged with equivalent globals. These linkage types are otherwise the
same as their non-<tt>odr</tt> versions.</dd>
<dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
<dd>If none of the above identifiers are used, the global is externally
visible, meaning that it participates in linkage and can be used to
resolve external symbol references.</dd>
</dl>
<p>The next two types of linkage are targeted for Microsoft Windows platform
only. They are designed to support importing (exporting) symbols from (to)
DLLs (Dynamic Link Libraries).</p>
<dl>
<dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
<dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
or variable via a global pointer to a pointer that is set up by the DLL
exporting the symbol. On Microsoft Windows targets, the pointer name is
formed by combining <code>__imp_</code> and the function or variable
name.</dd>
<dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
<dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
pointer to a pointer in a DLL, so that it can be referenced with the
<tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
name is formed by combining <code>__imp_</code> and the function or
variable name.</dd>
</dl>
<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
another module defined a "<tt>.LC0</tt>" variable and was linked with this
one, one of the two would be renamed, preventing a collision. Since
"<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
declarations), they are accessible outside of the current module.</p>
<p>It is illegal for a function <i>declaration</i> to have any linkage type
other than "externally visible", <tt>dllimport</tt>
or <tt>extern_weak</tt>.</p>
<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
or <tt>weak_odr</tt> linkages.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="callingconv">Calling Conventions</a>
</div>
<div class="doc_text">
<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
and <a href="#i_invoke">invokes</a> can all have an optional calling
convention specified for the call. The calling convention of any pair of
dynamic caller/callee must match, or the behavior of the program is
undefined. The following calling conventions are supported by LLVM, and more
may be added in the future:</p>
<dl>
<dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
<dd>This calling convention (the default if no other calling convention is
specified) matches the target C calling conventions. This calling
convention supports varargs function calls and tolerates some mismatch in
the declared prototype and implemented declaration of the function (as
does normal C).</dd>
<dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
<dd>This calling convention attempts to make calls as fast as possible
(e.g. by passing things in registers). This calling convention allows the
target to use whatever tricks it wants to produce fast code for the
target, without having to conform to an externally specified ABI
(Application Binary Interface). Implementations of this convention should
allow arbitrary <a href="CodeGenerator.html#tailcallopt">tail call
optimization</a> to be supported. This calling convention does not
support varargs and requires the prototype of all callees to exactly match
the prototype of the function definition.</dd>
<dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
<dd>This calling convention attempts to make code in the caller as efficient
as possible under the assumption that the call is not commonly executed.
As such, these calls often preserve all registers so that the call does
not break any live ranges in the caller side. This calling convention
does not support varargs and requires the prototype of all callees to
exactly match the prototype of the function definition.</dd>
<dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
<dd>Any calling convention may be specified by number, allowing
target-specific calling conventions to be used. Target specific calling
conventions start at 64.</dd>
</dl>
<p>More calling conventions can be added/defined on an as-needed basis, to
support Pascal conventions or any other well-known target-independent
convention.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="visibility">Visibility Styles</a>
</div>
<div class="doc_text">
<p>All Global Variables and Functions have one of the following visibility
styles:</p>
<dl>
<dt><b>"<tt>default</tt>" - Default style</b>:</dt>
<dd>On targets that use the ELF object file format, default visibility means
that the declaration is visible to other modules and, in shared libraries,
means that the declared entity may be overridden. On Darwin, default
visibility means that the declaration is visible to other modules. Default
visibility corresponds to "external linkage" in the language.</dd>
<dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
<dd>Two declarations of an object with hidden visibility refer to the same
object if they are in the same shared object. Usually, hidden visibility
indicates that the symbol will not be placed into the dynamic symbol
table, so no other module (executable or shared library) can reference it
directly.</dd>
<dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
<dd>On ELF, protected visibility indicates that the symbol will be placed in
the dynamic symbol table, but that references within the defining module
will bind to the local symbol. That is, the symbol cannot be overridden by
another module.</dd>
</dl>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="namedtypes">Named Types</a>
</div>
<div class="doc_text">
<p>LLVM IR allows you to specify name aliases for certain types. This can make
it easier to read the IR and make the IR more condensed (particularly when
recursive types are involved). An example of a name specification is:</p>
<div class="doc_code">
<pre>
%mytype = type { %mytype*, i32 }
</pre>
</div>
<p>You may give a name to any <a href="#typesystem">type</a> except
"<a href="t_void">void</a>". Type name aliases may be used anywhere a type
is expected with the syntax "%mytype".</p>
<p>Note that type names are aliases for the structural type that they indicate,
and that you can therefore specify multiple names for the same type. This
often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
uses structural typing, the name is not part of the type. When printing out
LLVM IR, the printer will pick <em>one name</em> to render all types of a
particular shape. This means that if you have code where two different
source types end up having the same LLVM type, that the dumper will sometimes
print the "wrong" or unexpected type. This is an important design point and
isn't going to change.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="globalvars">Global Variables</a>
</div>
<div class="doc_text">
<p>Global variables define regions of memory allocated at compilation time
instead of run-time. Global variables may optionally be initialized, may
have an explicit section to be placed in, and may have an optional explicit
alignment specified. A variable may be defined as "thread_local", which
means that it will not be shared by threads (each thread will have a
separated copy of the variable). A variable may be defined as a global
"constant," which indicates that the contents of the variable
will <b>never</b> be modified (enabling better optimization, allowing the
global data to be placed in the read-only section of an executable, etc).
Note that variables that need runtime initialization cannot be marked
"constant" as there is a store to the variable.</p>
<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
constant, even if the final definition of the global is not. This capability
can be used to enable slightly better optimization of the program, but
requires the language definition to guarantee that optimizations based on the
'constantness' are valid for the translation units that do not include the
definition.</p>
<p>As SSA values, global variables define pointer values that are in scope
(i.e. they dominate) all basic blocks in the program. Global variables
always define a pointer to their "content" type because they describe a
region of memory, and all memory objects in LLVM are accessed through
pointers.</p>
<p>A global variable may be declared to reside in a target-specific numbered
address space. For targets that support them, address spaces may affect how
optimizations are performed and/or what target instructions are used to
access the variable. The default address space is zero. The address space
qualifier must precede any other attributes.</p>
<p>LLVM allows an explicit section to be specified for globals. If the target
supports it, it will emit globals to the section specified.</p>
<p>An explicit alignment may be specified for a global. If not present, or if
the alignment is set to zero, the alignment of the global is set by the
target to whatever it feels convenient. If an explicit alignment is
specified, the global is forced to have at least that much alignment. All
alignments must be a power of 2.</p>
<p>For example, the following defines a global in a numbered address space with
an initializer, section, and alignment:</p>
<div class="doc_code">
<pre>
@G = addrspace(5) constant float 1.0, section "foo", align 4
</pre>
</div>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="functionstructure">Functions</a>
</div>
<div class="doc_text">
<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an
optional <a href="#linkage">linkage type</a>, an optional
<a href="#visibility">visibility style</a>, an optional
<a href="#callingconv">calling convention</a>, a return type, an optional
<a href="#paramattrs">parameter attribute</a> for the return type, a function
name, a (possibly empty) argument list (each with optional
<a href="#paramattrs">parameter attributes</a>), optional
<a href="#fnattrs">function attributes</a>, an optional section, an optional
alignment, an optional <a href="#gc">garbage collector name</a>, an opening
curly brace, a list of basic blocks, and a closing curly brace.</p>
<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
optional <a href="#linkage">linkage type</a>, an optional
<a href="#visibility">visibility style</a>, an optional
<a href="#callingconv">calling convention</a>, a return type, an optional
<a href="#paramattrs">parameter attribute</a> for the return type, a function
name, a possibly empty list of arguments, an optional alignment, and an
optional <a href="#gc">garbage collector name</a>.</p>
<p>A function definition contains a list of basic blocks, forming the CFG
(Control Flow Graph) for the function. Each basic block may optionally start
with a label (giving the basic block a symbol table entry), contains a list
of instructions, and ends with a <a href="#terminators">terminator</a>
instruction (such as a branch or function return).</p>
<p>The first basic block in a function is special in two ways: it is immediately
executed on entrance to the function, and it is not allowed to have
predecessor basic blocks (i.e. there can not be any branches to the entry
block of a function). Because the block can have no predecessors, it also
cannot have any <a href="#i_phi">PHI nodes</a>.</p>
<p>LLVM allows an explicit section to be specified for functions. If the target
supports it, it will emit functions to the section specified.</p>
<p>An explicit alignment may be specified for a function. If not present, or if
the alignment is set to zero, the alignment of the function is set by the
target to whatever it feels convenient. If an explicit alignment is
specified, the function is forced to have at least that much alignment. All
alignments must be a power of 2.</p>
<h5>Syntax:</h5>
<div class="doc_code">
<pre>
define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
[<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
&lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
[<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
[<a href="#gc">gc</a>] { ... }
</pre>
</div>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="aliasstructure">Aliases</a>
</div>
<div class="doc_text">
<p>Aliases act as "second name" for the aliasee value (which can be either
function, global variable, another alias or bitcast of global value). Aliases
may have an optional <a href="#linkage">linkage type</a>, and an
optional <a href="#visibility">visibility style</a>.</p>
<h5>Syntax:</h5>
<div class="doc_code">
<pre>
@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
</pre>
</div>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
<div class="doc_text">
<p>The return type and each parameter of a function type may have a set of
<i>parameter attributes</i> associated with them. Parameter attributes are
used to communicate additional information about the result or parameters of
a function. Parameter attributes are considered to be part of the function,
not of the function type, so functions with different parameter attributes
can have the same function type.</p>
<p>Parameter attributes are simple keywords that follow the type specified. If
multiple parameter attributes are needed, they are space separated. For
example:</p>
<div class="doc_code">
<pre>
declare i32 @printf(i8* noalias nocapture, ...)
declare i32 @atoi(i8 zeroext)
declare signext i8 @returns_signed_char()
</pre>
</div>
<p>Note that any attributes for the function result (<tt>nounwind</tt>,
<tt>readonly</tt>) come immediately after the argument list.</p>
<p>Currently, only the following parameter attributes are defined:</p>
<dl>
<dt><tt>zeroext</tt></dt>
<dd>This indicates to the code generator that the parameter or return value
should be zero-extended to a 32-bit value by the caller (for a parameter)
or the callee (for a return value).</dd>
<dt><tt>signext</tt></dt>
<dd>This indicates to the code generator that the parameter or return value
should be sign-extended to a 32-bit value by the caller (for a parameter)
or the callee (for a return value).</dd>
<dt><tt>inreg</tt></dt>
<dd>This indicates that this parameter or return value should be treated in a
special target-dependent fashion during while emitting code for a function
call or return (usually, by putting it in a register as opposed to memory,
though some targets use it to distinguish between two different kinds of
registers). Use of this attribute is target-specific.</dd>
<dt><tt><a name="byval">byval</a></tt></dt>
<dd>This indicates that the pointer parameter should really be passed by value
to the function. The attribute implies that a hidden copy of the pointee
is made between the caller and the callee, so the callee is unable to
modify the value in the callee. This attribute is only valid on LLVM
pointer arguments. It is generally used to pass structs and arrays by
value, but is also valid on pointers to scalars. The copy is considered
to belong to the caller not the callee (for example,
<tt><a href="#readonly">readonly</a></tt> functions should not write to
<tt>byval</tt> parameters). This is not a valid attribute for return
values. The byval attribute also supports specifying an alignment with
the align attribute. This has a target-specific effect on the code
generator that usually indicates a desired alignment for the synthesized
stack slot.</dd>
<dt><tt>sret</tt></dt>
<dd>This indicates that the pointer parameter specifies the address of a
structure that is the return value of the function in the source program.
This pointer must be guaranteed by the caller to be valid: loads and
stores to the structure may be assumed by the callee to not to trap. This
may only be applied to the first parameter. This is not a valid attribute
for return values. </dd>
<dt><tt>noalias</tt></dt>
<dd>This indicates that the pointer does not alias any global or any other
parameter. The caller is responsible for ensuring that this is the
case. On a function return value, <tt>noalias</tt> additionally indicates
that the pointer does not alias any other pointers visible to the
caller. For further details, please see the discussion of the NoAlias
response in
<a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
analysis</a>.</dd>
<dt><tt>nocapture</tt></dt>
<dd>This indicates that the callee does not make any copies of the pointer
that outlive the callee itself. This is not a valid attribute for return
values.</dd>
<dt><tt>nest</tt></dt>
<dd>This indicates that the pointer parameter can be excised using the
<a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
attribute for return values.</dd>
</dl>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="gc">Garbage Collector Names</a>
</div>
<div class="doc_text">
<p>Each function may specify a garbage collector name, which is simply a
string:</p>
<div class="doc_code">
<pre>
define void @f() gc "name" { ...
</pre>
</div>
<p>The compiler declares the supported values of <i>name</i>. Specifying a
collector which will cause the compiler to alter its output in order to
support the named garbage collection algorithm.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="fnattrs">Function Attributes</a>
</div>
<div class="doc_text">
<p>Function attributes are set to communicate additional information about a
function. Function attributes are considered to be part of the function, not
of the function type, so functions with different parameter attributes can
have the same function type.</p>
<p>Function attributes are simple keywords that follow the type specified. If
multiple attributes are needed, they are space separated. For example:</p>
<div class="doc_code">
<pre>
define void @f() noinline { ... }
define void @f() alwaysinline { ... }
define void @f() alwaysinline optsize { ... }
define void @f() optsize
</pre>
</div>
<dl>
<dt><tt>alwaysinline</tt></dt>
<dd>This attribute indicates that the inliner should attempt to inline this
function into callers whenever possible, ignoring any active inlining size
threshold for this caller.</dd>
<dt><tt>inlinehint</tt></dt>
<dd>This attribute indicates that the source code contained a hint that inlining
this function is desirable (such as the "inline" keyword in C/C++). It
is just a hint; it imposes no requirements on the inliner.</dd>
<dt><tt>noinline</tt></dt>
<dd>This attribute indicates that the inliner should never inline this
function in any situation. This attribute may not be used together with
the <tt>alwaysinline</tt> attribute.</dd>
<dt><tt>optsize</tt></dt>
<dd>This attribute suggests that optimization passes and code generator passes
make choices that keep the code size of this function low, and otherwise
do optimizations specifically to reduce code size.</dd>
<dt><tt>noreturn</tt></dt>
<dd>This function attribute indicates that the function never returns
normally. This produces undefined behavior at runtime if the function
ever does dynamically return.</dd>
<dt><tt>nounwind</tt></dt>
<dd>This function attribute indicates that the function never returns with an
unwind or exceptional control flow. If the function does unwind, its
runtime behavior is undefined.</dd>
<dt><tt>readnone</tt></dt>
<dd>This attribute indicates that the function computes its result (or decides
to unwind an exception) based strictly on its arguments, without
dereferencing any pointer arguments or otherwise accessing any mutable
state (e.g. memory, control registers, etc) visible to caller functions.
It does not write through any pointer arguments
(including <tt><a href="#byval">byval</a></tt> arguments) and never
changes any state visible to callers. This means that it cannot unwind
exceptions by calling the <tt>C++</tt> exception throwing methods, but
could use the <tt>unwind</tt> instruction.</dd>
<dt><tt><a name="readonly">readonly</a></tt></dt>
<dd>This attribute indicates that the function does not write through any
pointer arguments (including <tt><a href="#byval">byval</a></tt>
arguments) or otherwise modify any state (e.g. memory, control registers,
etc) visible to caller functions. It may dereference pointer arguments
and read state that may be set in the caller. A readonly function always
returns the same value (or unwinds an exception identically) when called
with the same set of arguments and global state. It cannot unwind an
exception by calling the <tt>C++</tt> exception throwing methods, but may
use the <tt>unwind</tt> instruction.</dd>
<dt><tt><a name="ssp">ssp</a></tt></dt>
<dd>This attribute indicates that the function should emit a stack smashing
protector. It is in the form of a "canary"&mdash;a random value placed on
the stack before the local variables that's checked upon return from the
function to see if it has been overwritten. A heuristic is used to
determine if a function needs stack protectors or not.<br>
<br>
If a function that has an <tt>ssp</tt> attribute is inlined into a
function that doesn't have an <tt>ssp</tt> attribute, then the resulting
function will have an <tt>ssp</tt> attribute.</dd>
<dt><tt>sspreq</tt></dt>
<dd>This attribute indicates that the function should <em>always</em> emit a
stack smashing protector. This overrides
the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
<br>
If a function that has an <tt>sspreq</tt> attribute is inlined into a
function that doesn't have an <tt>sspreq</tt> attribute or which has
an <tt>ssp</tt> attribute, then the resulting function will have
an <tt>sspreq</tt> attribute.</dd>
<dt><tt>noredzone</tt></dt>
<dd>This attribute indicates that the code generator should not use a red
zone, even if the target-specific ABI normally permits it.</dd>
<dt><tt>noimplicitfloat</tt></dt>
<dd>This attributes disables implicit floating point instructions.</dd>
<dt><tt>naked</tt></dt>
<dd>This attribute disables prologue / epilogue emission for the function.
This can have very system-specific consequences.</dd>
</dl>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="moduleasm">Module-Level Inline Assembly</a>
</div>
<div class="doc_text">
<p>Modules may contain "module-level inline asm" blocks, which corresponds to
the GCC "file scope inline asm" blocks. These blocks are internally
concatenated by LLVM and treated as a single unit, but may be separated in
the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
<div class="doc_code">
<pre>
module asm "inline asm code goes here"
module asm "more can go here"
</pre>
</div>
<p>The strings can contain any character by escaping non-printable characters.
The escape sequence used is simply "\xx" where "xx" is the two digit hex code
for the number.</p>
<p>The inline asm code is simply printed to the machine code .s file when
assembly code is generated.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="datalayout">Data Layout</a>
</div>
<div class="doc_text">
<p>A module may specify a target specific data layout string that specifies how
data is to be laid out in memory. The syntax for the data layout is
simply:</p>
<div class="doc_code">
<pre>
target datalayout = "<i>layout specification</i>"
</pre>
</div>
<p>The <i>layout specification</i> consists of a list of specifications
separated by the minus sign character ('-'). Each specification starts with
a letter and may include other information after the letter to define some
aspect of the data layout. The specifications accepted are as follows:</p>
<dl>
<dt><tt>E</tt></dt>
<dd>Specifies that the target lays out data in big-endian form. That is, the
bits with the most significance have the lowest address location.</dd>
<dt><tt>e</tt></dt>
<dd>Specifies that the target lays out data in little-endian form. That is,
the bits with the least significance have the lowest address
location.</dd>
<dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
<i>preferred</i> alignments. All sizes are in bits. Specifying
the <i>pref</i> alignment is optional. If omitted, the
preceding <tt>:</tt> should be omitted too.</dd>
<dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for an integer type of a given bit
<i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
<dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for a vector type of a given bit
<i>size</i>.</dd>
<dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for a floating point type of a given bit
<i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
(double).</dd>
<dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for an aggregate type of a given bit
<i>size</i>.</dd>
<dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
<dd>This specifies the alignment for a stack object of a given bit
<i>size</i>.</dd>
</dl>
<p>When constructing the data layout for a given target, LLVM starts with a
default set of specifications which are then (possibly) overriden by the
specifications in the <tt>datalayout</tt> keyword. The default specifications
are given in this list:</p>
<ul>
<li><tt>E</tt> - big endian</li>
<li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
<li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
<li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
<li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
<li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
<li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
alignment of 64-bits</li>
<li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
<li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
<li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
<li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
<li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
<li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
</ul>
<p>When LLVM is determining the alignment for a given type, it uses the
following rules:</p>
<ol>
<li>If the type sought is an exact match for one of the specifications, that
specification is used.</li>
<li>If no match is found, and the type sought is an integer type, then the
smallest integer type that is larger than the bitwidth of the sought type
is used. If none of the specifications are larger than the bitwidth then
the the largest integer type is used. For example, given the default
specifications above, the i7 type will use the alignment of i8 (next
largest) while both i65 and i256 will use the alignment of i64 (largest
specified).</li>
<li>If no match is found, and the type sought is a vector type, then the
largest vector type that is smaller than the sought vector type will be
used as a fall back. This happens because &lt;128 x double&gt; can be
implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
</ol>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="pointeraliasing">Pointer Aliasing Rules</a>
</div>
<div class="doc_text">
<p>Any memory access must be done through a pointer value associated
with an address range of the memory access, otherwise the behavior
is undefined. Pointer values are associated with address ranges
according to the following rules:</p>
<ul>
<li>A pointer value formed from a
<tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
is associated with the addresses associated with the first operand
of the <tt>getelementptr</tt>.</li>
<li>An address of a global variable is associated with the address
range of the variable's storage.</li>
<li>The result value of an allocation instruction is associated with
the address range of the allocated storage.</li>
<li>A null pointer in the default address-space is associated with
no address.</li>
<li>A pointer value formed by an
<tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
address ranges of all pointer values that contribute (directly or
indirectly) to the computation of the pointer's value.</li>
<li>The result value of a
<tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
addresses associated with the operand of the <tt>bitcast</tt>.</li>
<li>An integer constant other than zero or a pointer value returned
from a function not defined within LLVM may be associated with address
ranges allocated through mechanisms other than those provided by
LLVM. Such ranges shall not overlap with any ranges of addresses
allocated by mechanisms provided by LLVM.</li>
</ul>
<p>LLVM IR does not associate types with memory. The result type of a
<tt><a href="#i_load">load</a></tt> merely indicates the size and
alignment of the memory from which to load, as well as the
interpretation of the value. The first operand of a
<tt><a href="#i_store">store</a></tt> similarly only indicates the size
and alignment of the store.</p>
<p>Consequently, type-based alias analysis, aka TBAA, aka
<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
additional information which specialized optimization passes may use
to implement type-based alias analysis.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="typesystem">Type System</a> </div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>The LLVM type system is one of the most important features of the
intermediate representation. Being typed enables a number of optimizations
to be performed on the intermediate representation directly, without having
to do extra analyses on the side before the transformation. A strong type
system makes it easier to read the generated code and enables novel analyses
and transformations that are not feasible to perform on normal three address
code representations.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="t_classifications">Type
Classifications</a> </div>
<div class="doc_text">
<p>The types fall into a few useful classifications:</p>
<table border="1" cellspacing="0" cellpadding="4">
<tbody>
<tr><th>Classification</th><th>Types</th></tr>
<tr>
<td><a href="#t_integer">integer</a></td>
<td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
</tr>
<tr>
<td><a href="#t_floating">floating point</a></td>
<td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
</tr>
<tr>
<td><a name="t_firstclass">first class</a></td>
<td><a href="#t_integer">integer</a>,
<a href="#t_floating">floating point</a>,
<a href="#t_pointer">pointer</a>,
<a href="#t_vector">vector</a>,
<a href="#t_struct">structure</a>,
<a href="#t_array">array</a>,
<a href="#t_label">label</a>,
<a href="#t_metadata">metadata</a>.
</td>
</tr>
<tr>
<td><a href="#t_primitive">primitive</a></td>
<td><a href="#t_label">label</a>,
<a href="#t_void">void</a>,
<a href="#t_floating">floating point</a>,
<a href="#t_metadata">metadata</a>.</td>
</tr>
<tr>
<td><a href="#t_derived">derived</a></td>
<td><a href="#t_integer">integer</a>,
<a href="#t_array">array</a>,
<a href="#t_function">function</a>,
<a href="#t_pointer">pointer</a>,
<a href="#t_struct">structure</a>,
<a href="#t_pstruct">packed structure</a>,
<a href="#t_vector">vector</a>,
<a href="#t_opaque">opaque</a>.
</td>
</tr>
</tbody>
</table>
<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
important. Values of these types are the only ones which can be produced by
instructions, passed as arguments, or used as operands to instructions.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
<div class="doc_text">
<p>The primitive types are the fundamental building blocks of the LLVM
system.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
<div class="doc_text">
<table>
<tbody>
<tr><th>Type</th><th>Description</th></tr>
<tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
<tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
<tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
<tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
<tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
</tbody>
</table>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
<div class="doc_text">
<h5>Overview:</h5>
<p>The void type does not represent any value and has no size.</p>
<h5>Syntax:</h5>
<pre>
void
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
<div class="doc_text">
<h5>Overview:</h5>
<p>The label type represents code labels.</p>
<h5>Syntax:</h5>
<pre>
label
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
<div class="doc_text">
<h5>Overview:</h5>
<p>The metadata type represents embedded metadata. The only derived type that
may contain metadata is <tt>metadata*</tt> or a function type that returns or
takes metadata typed parameters, but not pointer to metadata types.</p>
<h5>Syntax:</h5>
<pre>
metadata
</pre>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
<div class="doc_text">
<p>The real power in LLVM comes from the derived types in the system. This is
what allows a programmer to represent arrays, functions, pointers, and other
useful types. Note that these derived types may be recursive: For example,
it is possible to have a two dimensional array.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
<div class="doc_text">
<h5>Overview:</h5>
<p>The integer type is a very simple derived type that simply specifies an
arbitrary bit width for the integer type desired. Any bit width from 1 bit to
2^23-1 (about 8 million) can be specified.</p>
<h5>Syntax:</h5>
<pre>
iN
</pre>
<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
value.</p>
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
<td class="left"><tt>i1</tt></td>
<td class="left">a single-bit integer.</td>
</tr>
<tr class="layout">
<td class="left"><tt>i32</tt></td>
<td class="left">a 32-bit integer.</td>
</tr>
<tr class="layout">
<td class="left"><tt>i1942652</tt></td>
<td class="left">a really big integer of over 1 million bits.</td>
</tr>
</table>
<p>Note that the code generator does not yet support large integer types to be
used as function return types. The specific limit on how large a return type
the code generator can currently handle is target-dependent; currently it's
often 64 bits for 32-bit targets and 128 bits for 64-bit targets.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
<div class="doc_text">
<h5>Overview:</h5>
<p>The array type is a very simple derived type that arranges elements
sequentially in memory. The array type requires a size (number of elements)
and an underlying data type.</p>
<h5>Syntax:</h5>
<pre>
[&lt;# elements&gt; x &lt;elementtype&gt;]
</pre>
<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
be any type with a size.</p>
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
<td class="left"><tt>[40 x i32]</tt></td>
<td class="left">Array of 40 32-bit integer values.</td>
</tr>
<tr class="layout">
<td class="left"><tt>[41 x i32]</tt></td>
<td class="left">Array of 41 32-bit integer values.</td>
</tr>
<tr class="layout">
<td class="left"><tt>[4 x i8]</tt></td>
<td class="left">Array of 4 8-bit integer values.</td>
</tr>
</table>
<p>Here are some examples of multidimensional arrays:</p>
<table class="layout">
<tr class="layout">
<td class="left"><tt>[3 x [4 x i32]]</tt></td>
<td class="left">3x4 array of 32-bit integer values.</td>
</tr>
<tr class="layout">
<td class="left"><tt>[12 x [10 x float]]</tt></td>
<td class="left">12x10 array of single precision floating point values.</td>
</tr>
<tr class="layout">
<td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
<td class="left">2x3x4 array of 16-bit integer values.</td>
</tr>
</table>
<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
length array. Normally, accesses past the end of an array are undefined in
LLVM (e.g. it is illegal to access the 5th element of a 3 element array). As
a special case, however, zero length arrays are recognized to be variable
length. This allows implementation of 'pascal style arrays' with the LLVM
type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
<p>Note that the code generator does not yet support large aggregate types to be
used as function return types. The specific limit on how large an aggregate
return type the code generator can currently handle is target-dependent, and
also dependent on the aggregate element types.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
<div class="doc_text">
<h5>Overview:</h5>
<p>The function type can be thought of as a function signature. It consists of
a return type and a list of formal parameter types. The return type of a
function type is a scalar type, a void type, or a struct type. If the return
type is a struct type then all struct elements must be of first class types,
and the struct must have at least one element.</p>
<h5>Syntax:</h5>
<pre>
&lt;returntype list&gt; (&lt;parameter list&gt;)
</pre>
<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
which indicates that the function takes a variable number of arguments.
Variable argument functions can access their arguments with
the <a href="#int_varargs">variable argument handling intrinsic</a>
functions. '<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
<a href="#t_firstclass">first class</a> type specifiers.</p>
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
<td class="left"><tt>i32 (i32)</tt></td>
<td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
</td>
</tr><tr class="layout">
<td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
</tt></td>
<td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
an <tt>i16</tt> that should be sign extended and a
<a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
<tt>float</tt>.
</td>
</tr><tr class="layout">
<td class="left"><tt>i32 (i8*, ...)</tt></td>
<td class="left">A vararg function that takes at least one
<a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
which returns an integer. This is the signature for <tt>printf</tt> in
LLVM.
</td>
</tr><tr class="layout">
<td class="left"><tt>{i32, i32} (i32)</tt></td>
<td class="left">A function taking an <tt>i32</tt>, returning two
<tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
</td>
</tr>
</table>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
<div class="doc_text">
<h5>Overview:</h5>
<p>The structure type is used to represent a collection of data members together
in memory. The packing of the field types is defined to match the ABI of the
underlying processor. The elements of a structure may be any type that has a
size.</p>
<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
'<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
<h5>Syntax:</h5>
<pre>
{ &lt;type list&gt; }
</pre>
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
<td class="left"><tt>{ i32, i32, i32 }</tt></td>
<td class="left">A triple of three <tt>i32</tt> values</td>
</tr><tr class="layout">
<td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
<td class="left">A pair, where the first element is a <tt>float</tt> and the
second element is a <a href="#t_pointer">pointer</a> to a
<a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
an <tt>i32</tt>.</td>
</tr>
</table>
<p>Note that the code generator does not yet support large aggregate types to be
used as function return types. The specific limit on how large an aggregate
return type the code generator can currently handle is target-dependent, and
also dependent on the aggregate element types.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
</div>
<div class="doc_text">
<h5>Overview:</h5>
<p>The packed structure type is used to represent a collection of data members
together in memory. There is no padding between fields. Further, the
alignment of a packed structure is 1 byte. The elements of a packed
structure may be any type that has a size.</p>
<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
'<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
<h5>Syntax:</h5>
<pre>
&lt; { &lt;type list&gt; } &gt;
</pre>
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
<td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
<td class="left">A triple of three <tt>i32</tt> values</td>
</tr><tr class="layout">
<td class="left">
<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
<td class="left">A pair, where the first element is a <tt>float</tt> and the
second element is a <a href="#t_pointer">pointer</a> to a
<a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
an <tt>i32</tt>.</td>
</tr>
</table>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
<div class="doc_text">
<h5>Overview:</h5>
<p>As in many languages, the pointer type represents a pointer or reference to
another object, which must live in memory. Pointer types may have an optional
address space attribute defining the target-specific numbered address space
where the pointed-to object resides. The default address space is zero.</p>
<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
<h5>Syntax:</h5>
<pre>
&lt;type&gt; *
</pre>
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
<td class="left"><tt>[4 x i32]*</tt></td>
<td class="left">A <a href="#t_pointer">pointer</a> to <a
href="#t_array">array</a> of four <tt>i32</tt> values.</td>
</tr>
<tr class="layout">
<td class="left"><tt>i32 (i32 *) *</tt></td>
<td class="left"> A <a href="#t_pointer">pointer</a> to a <a
href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
<tt>i32</tt>.</td>
</tr>
<tr class="layout">
<td class="left"><tt>i32 addrspace(5)*</tt></td>
<td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
that resides in address space #5.</td>
</tr>
</table>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
<div class="doc_text">
<h5>Overview:</h5>
<p>A vector type is a simple derived type that represents a vector of elements.
Vector types are used when multiple primitive data are operated in parallel
using a single instruction (SIMD). A vector type requires a size (number of
elements) and an underlying primitive data type. Vectors must have a power
of two length (1, 2, 4, 8, 16 ...). Vector types are considered
<a href="#t_firstclass">first class</a>.</p>
<h5>Syntax:</h5>
<pre>
&lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
</pre>
<p>The number of elements is a constant integer value; elementtype may be any
integer or floating point type.</p>
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
<td class="left"><tt>&lt;4 x i32&gt;</tt></td>
<td class="left">Vector of 4 32-bit integer values.</td>
</tr>
<tr class="layout">
<td class="left"><tt>&lt;8 x float&gt;</tt></td>
<td class="left">Vector of 8 32-bit floating-point values.</td>
</tr>
<tr class="layout">
<td class="left"><tt>&lt;2 x i64&gt;</tt></td>
<td class="left">Vector of 2 64-bit integer values.</td>
</tr>
</table>
<p>Note that the code generator does not yet support large vector types to be
used as function return types. The specific limit on how large a vector
return type codegen can currently handle is target-dependent; currently it's
often a few times longer than a hardware vector register.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
<div class="doc_text">
<h5>Overview:</h5>
<p>Opaque types are used to represent unknown types in the system. This
corresponds (for example) to the C notion of a forward declared structure
type. In LLVM, opaque types can eventually be resolved to any type (not just
a structure type).</p>
<h5>Syntax:</h5>
<pre>
opaque
</pre>
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
<td class="left"><tt>opaque</tt></td>
<td class="left">An opaque type.</td>
</tr>
</table>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="t_uprefs">Type Up-references</a>
</div>
<div class="doc_text">
<h5>Overview:</h5>
<p>An "up reference" allows you to refer to a lexically enclosing type without
requiring it to have a name. For instance, a structure declaration may
contain a pointer to any of the types it is lexically a member of. Example
of up references (with their equivalent as named type declarations)
include:</p>
<pre>
{ \2 * } %x = type { %x* }
{ \2 }* %y = type { %y }*
\1* %z = type %z*
</pre>
<p>An up reference is needed by the asmprinter for printing out cyclic types
when there is no declared name for a type in the cycle. Because the
asmprinter does not want to print out an infinite type string, it needs a
syntax to handle recursive types that have no names (all names are optional
in llvm IR).</p>
<h5>Syntax:</h5>
<pre>
\&lt;level&gt;
</pre>
<p>The level is the count of the lexical type that is being referred to.</p>
<h5>Examples:</h5>
<table class="layout">
<tr class="layout">
<td class="left"><tt>\1*</tt></td>
<td class="left">Self-referential pointer.</td>
</tr>
<tr class="layout">
<td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
<td class="left">Recursive structure where the upref refers to the out-most
structure.</td>
</tr>
</table>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="constants">Constants</a> </div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>LLVM has several different basic types of constants. This section describes
them all and their syntax.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
<div class="doc_text">
<dl>
<dt><b>Boolean constants</b></dt>
<dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
constants of the <tt><a href="#t_primitive">i1</a></tt> type.</dd>
<dt><b>Integer constants</b></dt>
<dd>Standard integers (such as '4') are constants of
the <a href="#t_integer">integer</a> type. Negative numbers may be used
with integer types.</dd>
<dt><b>Floating point constants</b></dt>
<dd>Floating point constants use standard decimal notation (e.g. 123.421),
exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
notation (see below). The assembler requires the exact decimal value of a
floating-point constant. For example, the assembler accepts 1.25 but
rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
constants must have a <a href="#t_floating">floating point</a> type. </dd>
<dt><b>Null pointer constants</b></dt>
<dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
and must be of <a href="#t_pointer">pointer type</a>.</dd>
</dl>
<p>The one non-intuitive notation for constants is the hexadecimal form of
floating point constants. For example, the form '<tt>double
0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
'<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
constants are required (and the only time that they are generated by the
disassembler) is when a floating point constant must be emitted but it cannot
be represented as a decimal floating point number in a reasonable number of
digits. For example, NaN's, infinities, and other special values are
represented in their IEEE hexadecimal format so that assembly and disassembly
do not cause any bits to change in the constants.</p>
<p>When using the hexadecimal form, constants of types float and double are
represented using the 16-digit form shown above (which matches the IEEE754
representation for double); float values must, however, be exactly
representable as IEE754 single precision. Hexadecimal format is always used
for long double, and there are three forms of long double. The 80-bit format
used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
The 128-bit format used by PowerPC (two adjacent doubles) is represented
by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
currently supported target uses this format. Long doubles will only work if
they match the long double format on your target. All hexadecimal formats
are big-endian (sign bit at the left).</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="aggregateconstants"></a> <!-- old anchor -->
<a name="complexconstants">Complex Constants</a>
</div>
<div class="doc_text">
<p>Complex constants are a (potentially recursive) combination of simple
constants and smaller complex constants.</p>
<dl>
<dt><b>Structure constants</b></dt>
<dd>Structure constants are represented with notation similar to structure
type definitions (a comma separated list of elements, surrounded by braces
(<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
Structure constants must have <a href="#t_struct">structure type</a>, and
the number and types of elements must match those specified by the
type.</dd>
<dt><b>Array constants</b></dt>
<dd>Array constants are represented with notation similar to array type
definitions (a comma separated list of elements, surrounded by square
brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
]</tt>". Array constants must have <a href="#t_array">array type</a>, and
the number and types of elements must match those specified by the
type.</dd>
<dt><b>Vector constants</b></dt>
<dd>Vector constants are represented with notation similar to vector type
definitions (a comma separated list of elements, surrounded by
less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
have <a href="#t_vector">vector type</a>, and the number and types of
elements must match those specified by the type.</dd>
<dt><b>Zero initialization</b></dt>
<dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
value to zero of <em>any</em> type, including scalar and aggregate types.
This is often used to avoid having to print large zero initializers
(e.g. for large arrays) and is always exactly equivalent to using explicit
zero initializers.</dd>
<dt><b>Metadata node</b></dt>
<dd>A metadata node is a structure-like constant with
<a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
be interpreted as part of the instruction stream, metadata is a place to
attach additional information such as debug info.</dd>
</dl>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="globalconstants">Global Variable and Function Addresses</a>
</div>
<div class="doc_text">
<p>The addresses of <a href="#globalvars">global variables</a>
and <a href="#functionstructure">functions</a> are always implicitly valid
(link-time) constants. These constants are explicitly referenced when
the <a href="#identifiers">identifier for the global</a> is used and always
have <a href="#t_pointer">pointer</a> type. For example, the following is a
legal LLVM file:</p>
<div class="doc_code">
<pre>
@X = global i32 17
@Y = global i32 42
@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
</pre>
</div>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
<div class="doc_text">
<p>The string '<tt>undef</tt>' is recognized as a type-less constant that has no
specific value. Undefined values may be of any type and be used anywhere a
constant is permitted.</p>
<p>Undefined values indicate to the compiler that the program is well defined no
matter what value is used, giving the compiler more freedom to optimize.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
</div>
<div class="doc_text">
<p>Constant expressions are used to allow expressions involving other constants
to be used as constants. Constant expressions may be of
any <a href="#t_firstclass">first class</a> type and may involve any LLVM
operation that does not have side effects (e.g. load and call are not
supported). The following is the syntax for constant expressions:</p>
<dl>
<dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
<dd>Truncate a constant to another type. The bit size of CST must be larger
than the bit size of TYPE. Both types must be integers.</dd>
<dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
<dd>Zero extend a constant to another type. The bit size of CST must be
smaller or equal to the bit size of TYPE. Both types must be
integers.</dd>
<dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
<dd>Sign extend a constant to another type. The bit size of CST must be
smaller or equal to the bit size of TYPE. Both types must be
integers.</dd>
<dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
<dd>Truncate a floating point constant to another floating point type. The
size of CST must be larger than the size of TYPE. Both types must be
floating point.</dd>
<dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
<dd>Floating point extend a constant to another type. The size of CST must be
smaller or equal to the size of TYPE. Both types must be floating
point.</dd>
<dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
<dd>Convert a floating point constant to the corresponding unsigned integer
constant. TYPE must be a scalar or vector integer type. CST must be of
scalar or vector floating point type. Both CST and TYPE must be scalars,
or vectors of the same number of elements. If the value won't fit in the
integer type, the results are undefined.</dd>
<dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
<dd>Convert a floating point constant to the corresponding signed integer
constant. TYPE must be a scalar or vector integer type. CST must be of
scalar or vector floating point type. Both CST and TYPE must be scalars,
or vectors of the same number of elements. If the value won't fit in the
integer type, the results are undefined.</dd>
<dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
<dd>Convert an unsigned integer constant to the corresponding floating point
constant. TYPE must be a scalar or vector floating point type. CST must be
of scalar or vector integer type. Both CST and TYPE must be scalars, or
vectors of the same number of elements. If the value won't fit in the
floating point type, the results are undefined.</dd>
<dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
<dd>Convert a signed integer constant to the corresponding floating point
constant. TYPE must be a scalar or vector floating point type. CST must be
of scalar or vector integer type. Both CST and TYPE must be scalars, or
vectors of the same number of elements. If the value won't fit in the
floating point type, the results are undefined.</dd>
<dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
<dd>Convert a pointer typed constant to the corresponding integer constant
<tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
make it fit in <tt>TYPE</tt>.</dd>
<dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
<dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
type. CST must be of integer type. The CST value is zero extended,
truncated, or unchanged to make it fit in a pointer size. This one is
<i>really</i> dangerous!</dd>
<dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
<dd>Convert a constant, CST, to another TYPE. The constraints of the operands
are the same as those for the <a href="#i_bitcast">bitcast
instruction</a>.</dd>
<dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
<dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
<dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
constants. As with the <a href="#i_getelementptr">getelementptr</a>
instruction, the index list may have zero or more indexes, which are
required to make sense for the type of "CSTPTR".</dd>
<dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
<dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
<dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
<dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
<dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
<dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
<dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
<dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
constants.</dd>
<dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
<dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
constants.</dd>
<dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
<dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
constants.</dd>
<dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
<dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
be any of the <a href="#binaryops">binary</a>
or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
on operands are the same as those for the corresponding instruction
(e.g. no bitwise operations on floating point values are allowed).</dd>
</dl>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
</div>
<div class="doc_text">
<p>Embedded metadata provides a way to attach arbitrary data to the instruction
stream without affecting the behaviour of the program. There are two
metadata primitives, strings and nodes. All metadata has the
<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
point ('<tt>!</tt>').</p>
<p>A metadata string is a string surrounded by double quotes. It can contain
any character by escaping non-printable characters with "\xx" where "xx" is
the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
<p>Metadata nodes are represented with notation similar to structure constants
(a comma separated list of elements, surrounded by braces and preceeded by an
exclamation point). For example: "<tt>!{ metadata !"test\00", i32
10}</tt>".</p>
<p>A metadata node will attempt to track changes to the values it holds. In the
event that a value is deleted, it will be replaced with a typeless
"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
<p>Optimizations may rely on metadata to provide additional information about
the program that isn't available in the instructions, or that isn't easily
computable. Similarly, the code generator may expect a certain metadata
format to be used to express debugging information.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
<!-- *********************************************************************** -->
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="inlineasm">Inline Assembler Expressions</a>
</div>
<div class="doc_text">
<p>LLVM supports inline assembler expressions (as opposed
to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
a special value. This value represents the inline assembler as a string
(containing the instructions to emit), a list of operand constraints (stored
as a string), and a flag that indicates whether or not the inline asm
expression has side effects. An example inline assembler expression is:</p>
<div class="doc_code">
<pre>
i32 (i32) asm "bswap $0", "=r,r"
</pre>
</div>
<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
have:</p>
<div class="doc_code">
<pre>
%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
</pre>
</div>
<p>Inline asms with side effects not visible in the constraint list must be
marked as having side effects. This is done through the use of the
'<tt>sideeffect</tt>' keyword, like so:</p>
<div class="doc_code">
<pre>
call void asm sideeffect "eieio", ""()
</pre>
</div>
<p>TODO: The format of the asm and constraints string still need to be
documented here. Constraints on what can be done (e.g. duplication, moving,
etc need to be documented). This is probably best done by reference to
another document that covers inline asm from a holistic perspective.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section">
<a name="intrinsic_globals">Intrinsic Global Variables</a>
</div>
<!-- *********************************************************************** -->
<p>LLVM has a number of "magic" global variables that contain data that affect
code generation or other IR semantics. These are documented here. All globals
of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
section and all globals that start with "<tt>llvm.</tt>" are reserved for use
by LLVM.</p>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
</div>
<div class="doc_text">
<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
href="#linkage_appending">appending linkage</a>. This array contains a list of
pointers to global variables and functions which may optionally have a pointer
cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
<pre>
@X = global i8 4
@Y = global i32 123
@llvm.used = appending global [2 x i8*] [
i8* @X,
i8* bitcast (i32* @Y to i8*)
], section "llvm.metadata"
</pre>
<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
compiler, assembler, and linker are required to treat the symbol as if there is
a reference to the global that it cannot see. For example, if a variable has
internal linkage and no references other than that from the <tt>@llvm.used</tt>
list, it cannot be deleted. This is commonly used to represent references from
inline asms and other things the compiler cannot "see", and corresponds to
"attribute((used))" in GNU C.</p>
<p>On some targets, the code generator must emit a directive to the assembler or
object file to prevent the assembler and linker from molesting the symbol.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
</div>
<div class="doc_text">
<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
touching the symbol. On targets that support it, this allows an intelligent
linker to optimize references to the symbol without being impeded as it would be
by <tt>@llvm.used</tt>.</p>
<p>This is a rare construct that should only be used in rare circumstances, and
should not be exposed to source languages.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
</div>
<div class="doc_text">
<p>TODO: Describe this.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
</div>
<div class="doc_text">
<p>TODO: Describe this.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>The LLVM instruction set consists of several different classifications of
instructions: <a href="#terminators">terminator
instructions</a>, <a href="#binaryops">binary instructions</a>,
<a href="#bitwiseops">bitwise binary instructions</a>,
<a href="#memoryops">memory instructions</a>, and
<a href="#otherops">other instructions</a>.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="terminators">Terminator
Instructions</a> </div>
<div class="doc_text">
<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
in a program ends with a "Terminator" instruction, which indicates which
block should be executed after the current block is finished. These
terminator instructions typically yield a '<tt>void</tt>' value: they produce
control flow, not values (the one exception being the
'<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
<p>There are six different terminator instructions: the
'<a href="#i_ret"><tt>ret</tt></a>' instruction, the
'<a href="#i_br"><tt>br</tt></a>' instruction, the
'<a href="#i_switch"><tt>switch</tt></a>' instruction, the
'<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
'<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
'<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
ret void <i>; Return from void function</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
a value) from a function back to the caller.</p>
<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
value and then causes control flow, and one that just causes control flow to
occur.</p>
<h5>Arguments:</h5>
<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
return value. The type of the return value must be a
'<a href="#t_firstclass">first class</a>' type.</p>
<p>A function is not <a href="#wellformed">well formed</a> if it it has a
non-void return type and contains a '<tt>ret</tt>' instruction with no return
value or a return value with a type that does not match its type, or if it
has a void return type and contains a '<tt>ret</tt>' instruction with a
return value.</p>
<h5>Semantics:</h5>
<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
the calling function's context. If the caller is a
"<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
instruction after the call. If the caller was an
"<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
the beginning of the "normal" destination block. If the instruction returns
a value, that value shall set the call or invoke instruction's return
value.</p>
<h5>Example:</h5>
<pre>
ret i32 5 <i>; Return an integer value of 5</i>
ret void <i>; Return from a void function</i>
ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
</pre>
<p>Note that the code generator does not yet fully support large
return values. The specific sizes that are currently supported are
dependent on the target. For integers, on 32-bit targets the limit
is often 64 bits, and on 64-bit targets the limit is often 128 bits.
For aggregate types, the current limits are dependent on the element
types; for example targets are often limited to 2 total integer
elements and 2 total floating-point elements.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
different basic block in the current function. There are two forms of this
instruction, corresponding to a conditional branch and an unconditional
branch.</p>
<h5>Arguments:</h5>
<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
'<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
target.</p>
<h5>Semantics:</h5>
<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
argument is evaluated. If the value is <tt>true</tt>, control flows to the
'<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
<h5>Example:</h5>
<pre>
Test:
%cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
br i1 %cond, label %IfEqual, label %IfUnequal
IfEqual:
<a href="#i_ret">ret</a> i32 1
IfUnequal:
<a href="#i_ret">ret</a> i32 0
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_switch">'<tt>switch</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
</pre>
<h5>Overview:</h5>
<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
several different places. It is a generalization of the '<tt>br</tt>'
instruction, allowing a branch to occur to one of many possible
destinations.</p>
<h5>Arguments:</h5>
<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
and an array of pairs of comparison value constants and '<tt>label</tt>'s.
The table is not allowed to contain duplicate constant entries.</p>
<h5>Semantics:</h5>
<p>The <tt>switch</tt> instruction specifies a table of values and
destinations. When the '<tt>switch</tt>' instruction is executed, this table
is searched for the given value. If the value is found, control flow is
transfered to the corresponding destination; otherwise, control flow is
transfered to the default destination.</p>
<h5>Implementation:</h5>
<p>Depending on properties of the target machine and the particular
<tt>switch</tt> instruction, this instruction may be code generated in
different ways. For example, it could be generated as a series of chained
conditional branches or with a lookup table.</p>
<h5>Example:</h5>
<pre>
<i>; Emulate a conditional br instruction</i>
%Val = <a href="#i_zext">zext</a> i1 %value to i32
switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
<i>; Emulate an unconditional br instruction</i>
switch i32 0, label %dest [ ]
<i>; Implement a jump table:</i>
switch i32 %val, label %otherwise [ i32 0, label %onzero
i32 1, label %onone
i32 2, label %ontwo ]
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
to label &lt;normal label&gt; unwind label &lt;exception label&gt;
</pre>
<h5>Overview:</h5>
<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
function, with the possibility of control flow transfer to either the
'<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
control flow will return to the "normal" label. If the callee (or any
indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
instruction, control is interrupted and continued at the dynamically nearest
"exception" label.</p>
<h5>Arguments:</h5>
<p>This instruction requires several arguments:</p>
<ol>
<li>The optional "cconv" marker indicates which <a href="#callingconv">calling
convention</a> the call should use. If none is specified, the call
defaults to using C calling conventions.</li>
<li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
'<tt>inreg</tt>' attributes are valid here.</li>
<li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
function value being invoked. In most cases, this is a direct function
invocation, but indirect <tt>invoke</tt>s are just as possible, branching
off an arbitrary pointer to function value.</li>
<li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
function to be invoked. </li>
<li>'<tt>function args</tt>': argument list whose types match the function
signature argument types. If the function signature indicates the
function accepts a variable number of arguments, the extra arguments can
be specified.</li>
<li>'<tt>normal label</tt>': the label reached when the called function
executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
<li>'<tt>exception label</tt>': the label reached when a callee returns with
the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
<li>The optional <a href="#fnattrs">function attributes</a> list. Only
'<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
'<tt>readnone</tt>' attributes are valid here.</li>
</ol>
<h5>Semantics:</h5>
<p>This instruction is designed to operate as a standard
'<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
primary difference is that it establishes an association with a label, which
is used by the runtime library to unwind the stack.</p>
<p>This instruction is used in languages with destructors to ensure that proper
cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
exception. Additionally, this is important for implementation of
'<tt>catch</tt>' clauses in high-level languages that support them.</p>
<p>For the purposes of the SSA form, the definition of the value returned by the
'<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
block to the "normal" label. If the callee unwinds then no return value is
available.</p>
<h5>Example:</h5>
<pre>
%retval = invoke i32 @Test(i32 15) to label %Continue
unwind label %TestCleanup <i>; {i32}:retval set</i>
%retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
unwind label %TestCleanup <i>; {i32}:retval set</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
unwind
</pre>
<h5>Overview:</h5>
<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
at the first callee in the dynamic call stack which used
an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
This is primarily used to implement exception handling.</p>
<h5>Semantics:</h5>
<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
immediately halt. The dynamic call stack is then searched for the
first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
Once found, execution continues at the "exceptional" destination block
specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
instruction in the dynamic call chain, undefined behavior results.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
unreachable
</pre>
<h5>Overview:</h5>
<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
instruction is used to inform the optimizer that a particular portion of the
code is not reachable. This can be used to indicate that the code after a
no-return function cannot be reached, and other facts.</p>
<h5>Semantics:</h5>
<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
<div class="doc_text">
<p>Binary operators are used to do most of the computation in a program. They
require two operands of the same type, execute an operation on them, and
produce a single value. The operands might represent multiple data, as is
the case with the <a href="#t_vector">vector</a> data type. The result value
has the same type as its operands.</p>
<p>There are several different binary operators:</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_add">'<tt>add</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
&lt;result&gt; = nuw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
&lt;result&gt; = nsw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
&lt;result&gt; = nuw nsw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>add</tt>' instruction must
be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
integer values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The value produced is the integer sum of the two operands.</p>
<p>If the sum has unsigned overflow, the result returned is the mathematical
result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
<p>Because LLVM integers use a two's complement representation, this instruction
is appropriate for both signed and unsigned integers.</p>
<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
<tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>fadd</tt>' instruction must be
<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
floating point values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The value produced is the floating point sum of the two operands.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_sub">'<tt>sub</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
&lt;result&gt; = nuw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
&lt;result&gt; = nsw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
&lt;result&gt; = nuw nsw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>sub</tt>' instruction returns the difference of its two
operands.</p>
<p>Note that the '<tt>sub</tt>' instruction is used to represent the
'<tt>neg</tt>' instruction present in most other intermediate
representations.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>sub</tt>' instruction must
be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
integer values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The value produced is the integer difference of the two operands.</p>
<p>If the difference has unsigned overflow, the result returned is the
mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
result.</p>
<p>Because LLVM integers use a two's complement representation, this instruction
is appropriate for both signed and unsigned integers.</p>
<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
<tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
&lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>fsub</tt>' instruction returns the difference of its two
operands.</p>
<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
'<tt>fneg</tt>' instruction present in most other intermediate
representations.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>fsub</tt>' instruction must be
<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
floating point values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The value produced is the floating point difference of the two operands.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
&lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_mul">'<tt>mul</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
&lt;result&gt; = nuw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
&lt;result&gt; = nsw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
&lt;result&gt; = nuw nsw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>mul</tt>' instruction must
be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
integer values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The value produced is the integer product of the two operands.</p>
<p>If the result of the multiplication has unsigned overflow, the result
returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
width of the result.</p>
<p>Because LLVM integers use a two's complement representation, and the result
is the same width as the operands, this instruction returns the correct
result for both signed and unsigned integers. If a full product
(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
be sign-extended or zero-extended as appropriate to the width of the full
product.</p>
<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
<tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>fmul</tt>' instruction must be
<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
floating point values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The value produced is the floating point product of the two operands.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
</a></div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>udiv</tt>' instruction must be
<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The value produced is the unsigned integer quotient of the two operands.</p>
<p>Note that unsigned integer division and signed integer division are distinct
operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
<p>Division by zero leads to undefined behavior.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
&lt;result&gt; = exact sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The value produced is the signed integer quotient of the two operands rounded
towards zero.</p>
<p>Note that signed integer division and unsigned integer division are distinct
operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
<p>Division by zero leads to undefined behavior. Overflow also leads to
undefined behavior; this is a rare case, but can occur, for example, by doing
a 32-bit division of -2147483648 by -1.</p>
<p>If the <tt>exact</tt> keyword is present, the result value of the
<tt>sdiv</tt> is undefined if the result would be rounded or if overflow
would occur.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
floating point values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The value produced is the floating point quotient of the two operands.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
division of its two arguments.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>urem</tt>' instruction must be
<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
This instruction always performs an unsigned division to get the
remainder.</p>
<p>Note that unsigned integer remainder and signed integer remainder are
distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_srem">'<tt>srem</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
division of its two operands. This instruction can also take
<a href="#t_vector">vector</a> versions of the values in which case the
elements must be integers.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>srem</tt>' instruction must be
<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>This instruction returns the <i>remainder</i> of a division (where the result
has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
a value. For more information about the difference,
see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Math Forum</a>. For a table of how this is implemented in various languages,
please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Wikipedia: modulo operation</a>.</p>
<p>Note that signed integer remainder and unsigned integer remainder are
distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
<p>Taking the remainder of a division by zero leads to undefined behavior.
Overflow also leads to undefined behavior; this is a rare case, but can
occur, for example, by taking the remainder of a 32-bit division of
-2147483648 by -1. (The remainder doesn't actually overflow, but this rule
lets srem be implemented using instructions that return both the result of
the division and the remainder.)</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
its two operands.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>frem</tt>' instruction must be
<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
floating point values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>This instruction returns the <i>remainder</i> of a division. The remainder
has the same sign as the dividend.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
</pre>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
Operations</a> </div>
<div class="doc_text">
<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
program. They are generally very efficient instructions and can commonly be
strength reduced from other instructions. They require two operands of the
same type, execute an operation on them, and produce a single value. The
resulting value is the same type as its operands.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
a specified number of bits.</p>
<h5>Arguments:</h5>
<p>Both arguments to the '<tt>shl</tt>' instruction must be the
same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
<h5>Semantics:</h5>
<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
is (statically or dynamically) negative or equal to or larger than the number
of bits in <tt>op1</tt>, the result is undefined. If the arguments are
vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
shift amount in <tt>op2</tt>.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
&lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
&lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
&lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
&lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
operand shifted to the right a specified number of bits with zero fill.</p>
<h5>Arguments:</h5>
<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
type. '<tt>op2</tt>' is treated as an unsigned value.</p>
<h5>Semantics:</h5>
<p>This instruction always performs a logical shift right operation. The most
significant bits of the result will be filled with zero bits after the shift.
If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
shift amount in <tt>op2</tt>.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
&lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
&lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
&lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
&lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
&lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
operand shifted to the right a specified number of bits with sign
extension.</p>
<h5>Arguments:</h5>
<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
type. '<tt>op2</tt>' is treated as an unsigned value.</p>
<h5>Semantics:</h5>
<p>This instruction always performs an arithmetic shift right operation, The
most significant bits of the result will be filled with the sign bit
of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
larger than the number of bits in <tt>op1</tt>, the result is undefined. If
the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
the corresponding shift amount in <tt>op2</tt>.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
&lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
&lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
&lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
&lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
&lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
operands.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>and</tt>' instruction must be
<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
<table border="1" cellspacing="0" cellpadding="4">
<tbody>
<tr>
<td>In0</td>
<td>In1</td>
<td>Out</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
<h5>Example:</h5>
<pre>
&lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
&lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
&lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
two operands.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>or</tt>' instruction must be
<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
<table border="1" cellspacing="0" cellpadding="4">
<tbody>
<tr>
<td>In0</td>
<td>In1</td>
<td>Out</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
<h5>Example:</h5>
<pre>
&lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
&lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
&lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
its two operands. The <tt>xor</tt> is used to implement the "one's
complement" operation, which is the "~" operator in C.</p>
<h5>Arguments:</h5>
<p>The two arguments to the '<tt>xor</tt>' instruction must be
<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
values. Both arguments must have identical types.</p>
<h5>Semantics:</h5>
<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
<table border="1" cellspacing="0" cellpadding="4">
<tbody>
<tr>
<td>In0</td>
<td>In1</td>
<td>Out</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
<h5>Example:</h5>
<pre>
&lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
&lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
&lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
&lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
</pre>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="vectorops">Vector Operations</a>
</div>
<div class="doc_text">
<p>LLVM supports several instructions to represent vector operations in a
target-independent manner. These instructions cover the element-access and
vector-specific operations needed to process vectors effectively. While LLVM
does directly support these vector operations, many sophisticated algorithms
will want to use target-specific intrinsics to take full advantage of a
specific target.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
from a vector at a specified index.</p>
<h5>Arguments:</h5>
<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
of <a href="#t_vector">vector</a> type. The second operand is an index
indicating the position from which to extract the element. The index may be
a variable.</p>
<h5>Semantics:</h5>
<p>The result is a scalar of the same type as the element type of
<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
results are undefined.</p>
<h5>Example:</h5>
<pre>
%result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
vector at a specified index.</p>
<h5>Arguments:</h5>
<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
of <a href="#t_vector">vector</a> type. The second operand is a scalar value
whose type must equal the element type of the first operand. The third
operand is an index indicating the position at which to insert the value.
The index may be a variable.</p>
<h5>Semantics:</h5>
<p>The result is a vector of the same type as <tt>val</tt>. Its element values
are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
results are undefined.</p>
<h5>Example:</h5>
<pre>
%result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
from two input vectors, returning a vector with the same element type as the
input and length that is the same as the shuffle mask.</p>
<h5>Arguments:</h5>
<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
with types that match each other. The third argument is a shuffle mask whose
element type is always 'i32'. The result of the instruction is a vector
whose length is the same as the shuffle mask and whose element type is the
same as the element type of the first two operands.</p>
<p>The shuffle mask operand is required to be a constant vector with either
constant integer or undef values.</p>
<h5>Semantics:</h5>
<p>The elements of the two input vectors are numbered from left to right across
both of the vectors. The shuffle mask operand specifies, for each element of
the result vector, which element of the two input vectors the result element
gets. The element selector may be undef (meaning "don't care") and the
second operand may be undef if performing a shuffle from only one vector.</p>
<h5>Example:</h5>
<pre>
%result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
&lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
%result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
&lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
%result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
&lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
%result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
&lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
</pre>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="aggregateops">Aggregate Operations</a>
</div>
<div class="doc_text">
<p>LLVM supports several instructions for working with aggregate values.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
</pre>
<h5>Overview:</h5>
<p>The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
or array element from an aggregate value.</p>
<h5>Arguments:</h5>
<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
operands are constant indices to specify which value to extract in a similar
manner as indices in a
'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
<h5>Semantics:</h5>
<p>The result is the value at the position in the aggregate specified by the
index operands.</p>
<h5>Example:</h5>
<pre>
%result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>insertvalue</tt>' instruction inserts a value into a struct field or
array element in an aggregate.</p>
<h5>Arguments:</h5>
<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
second operand is a first-class value to insert. The following operands are
constant indices indicating the position at which to insert the value in a
similar manner as indices in a
'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
value to insert must have the same type as the value identified by the
indices.</p>
<h5>Semantics:</h5>
<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
that of <tt>val</tt> except that the value at the position specified by the
indices is that of <tt>elt</tt>.</p>
<h5>Example:</h5>
<pre>
%result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
</pre>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="memoryops">Memory Access and Addressing Operations</a>
</div>
<div class="doc_text">
<p>A key design point of an SSA-based representation is how it represents
memory. In LLVM, no memory locations are in SSA form, which makes things
very simple. This section describes how to read, write, allocate, and free
memory in LLVM.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>malloc</tt>' instruction allocates memory from the system heap and
returns a pointer to it. The object is always allocated in the generic
address space (address space zero).</p>
<h5>Arguments:</h5>
<p>The '<tt>malloc</tt>' instruction allocates
<tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory from the operating
system and returns a pointer of the appropriate type to the program. If
"NumElements" is specified, it is the number of elements allocated, otherwise
"NumElements" is defaulted to be one. If a constant alignment is specified,
the value result of the allocation is guaranteed to be aligned to at least
that boundary. If not specified, or if zero, the target can choose to align
the allocation on any convenient boundary compatible with the type.</p>
<p>'<tt>type</tt>' must be a sized type.</p>
<h5>Semantics:</h5>
<p>Memory is allocated using the system "<tt>malloc</tt>" function, and a
pointer is returned. The result of a zero byte allocation is undefined. The
result is null if there is insufficient memory available.</p>
<h5>Example:</h5>
<pre>
%array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
%size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
%array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
%array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
%array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
%array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
</pre>
<p>Note that the code generator does not yet respect the alignment value.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_free">'<tt>free</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>free</tt>' instruction returns memory back to the unused memory heap
to be reallocated in the future.</p>
<h5>Arguments:</h5>
<p>'<tt>value</tt>' shall be a pointer value that points to a value that was
allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.</p>
<h5>Semantics:</h5>
<p>Access to the memory pointed to by the pointer is no longer defined after
this instruction executes. If the pointer is null, the operation is a
noop.</p>
<h5>Example:</h5>
<pre>
%array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
free [4 x i8]* %array
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
currently executing function, to be automatically released when this function
returns to its caller. The object is always allocated in the generic address
space (address space zero).</p>
<h5>Arguments:</h5>
<p>The '<tt>alloca</tt>' instruction
allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
runtime stack, returning a pointer of the appropriate type to the program.
If "NumElements" is specified, it is the number of elements allocated,
otherwise "NumElements" is defaulted to be one. If a constant alignment is
specified, the value result of the allocation is guaranteed to be aligned to
at least that boundary. If not specified, or if zero, the target can choose
to align the allocation on any convenient boundary compatible with the
type.</p>
<p>'<tt>type</tt>' may be any sized type.</p>
<h5>Semantics:</h5>
<p>Memory is allocated; a pointer is returned. The operation is undefined if
there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
memory is automatically released when the function returns. The
'<tt>alloca</tt>' instruction is commonly used to represent automatic
variables that must have an address available. When the function returns
(either with the <tt><a href="#i_ret">ret</a></tt>
or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
<h5>Example:</h5>
<pre>
%ptr = alloca i32 <i>; yields {i32*}:ptr</i>
%ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
%ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
%ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
&lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
</pre>
<h5>Overview:</h5>
<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
<h5>Arguments:</h5>
<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
from which to load. The pointer must point to
a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
number or order of execution of this <tt>load</tt> with other
volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
instructions. </p>
<p>The optional constant "align" argument specifies the alignment of the
operation (that is, the alignment of the memory address). A value of 0 or an
omitted "align" argument means that the operation has the preferential
alignment for the target. It is the responsibility of the code emitter to
ensure that the alignment information is correct. Overestimating the
alignment results in an undefined behavior. Underestimating the alignment may
produce less efficient code. An alignment of 1 is always safe.</p>
<h5>Semantics:</h5>
<p>The location of memory pointed to is loaded. If the value being loaded is of
scalar type then the number of bytes read does not exceed the minimum number
of bytes needed to hold all bits of the type. For example, loading an
<tt>i24</tt> reads at most three bytes. When loading a value of a type like
<tt>i20</tt> with a size that is not an integral number of bytes, the result
is undefined if the value was not originally written using a store of the
same type.</p>
<h5>Examples:</h5>
<pre>
%ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
<a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
%val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
Instruction</a> </div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
<h5>Arguments:</h5>
<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
and an address at which to store it. The type of the
'<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
the <a href="#t_firstclass">first class</a> type of the
'<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
or order of execution of this <tt>store</tt> with other
volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
instructions.</p>
<p>The optional constant "align" argument specifies the alignment of the
operation (that is, the alignment of the memory address). A value of 0 or an
omitted "align" argument means that the operation has the preferential
alignment for the target. It is the responsibility of the code emitter to
ensure that the alignment information is correct. Overestimating the
alignment results in an undefined behavior. Underestimating the alignment may
produce less efficient code. An alignment of 1 is always safe.</p>
<h5>Semantics:</h5>
<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
'<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
does not exceed the minimum number of bytes needed to hold all bits of the
type. For example, storing an <tt>i24</tt> writes at most three bytes. When
writing a value of a type like <tt>i20</tt> with a size that is not an
integral number of bytes, it is unspecified what happens to the extra bits
that do not belong to the type, but they will typically be overwritten.</p>
<h5>Example:</h5>
<pre>
%ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
store i32 3, i32* %ptr <i>; yields {void}</i>
%val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
&lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
</pre>
<h5>Overview:</h5>
<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
subelement of an aggregate data structure. It performs address calculation
only and does not access memory.</p>
<h5>Arguments:</h5>
<p>The first argument is always a pointer, and forms the basis of the
calculation. The remaining arguments are indices that indicate which of the
elements of the aggregate object are indexed. The interpretation of each
index is dependent on the type being indexed into. The first index always
indexes the pointer value given as the first argument, the second index
indexes a value of the type pointed to (not necessarily the value directly
pointed to, since the first index can be non-zero), etc. The first type
indexed into must be a pointer value, subsequent types can be arrays, vectors
and structs. Note that subsequent types being indexed into can never be
pointers, since that would require loading the pointer before continuing
calculation.</p>
<p>The type of each index argument depends on the type it is indexing into.
When indexing into a (optionally packed) structure, only <tt>i32</tt> integer
<b>constants</b> are allowed. When indexing into an array, pointer or
vector, integers of any width are allowed, and they are not required to be
constant.</p>
<p>For example, let's consider a C code fragment and how it gets compiled to
LLVM:</p>
<div class="doc_code">
<pre>
struct RT {
char A;
int B[10][20];
char C;
};
struct ST {
int X;
double Y;
struct RT Z;
};
int *foo(struct ST *s) {
return &amp;s[1].Z.B[5][13];
}
</pre>
</div>
<p>The LLVM code generated by the GCC frontend is:</p>
<div class="doc_code">
<pre>
%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
define i32* @foo(%ST* %s) {
entry:
%reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
ret i32* %reg
}
</pre>
</div>
<h5>Semantics:</h5>
<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
}</tt>' type, a structure. The second index indexes into the third element
of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
i8 }</tt>' type, another structure. The third index indexes into the second
element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
array. The two dimensions of the array are subscripted into, yielding an
'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
<p>Note that it is perfectly legal to index partially through a structure,
returning a pointer to an inner element. Because of this, the LLVM code for
the given testcase is equivalent to:</p>
<pre>
define i32* @foo(%ST* %s) {
%t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
%t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
%t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
%t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
%t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
ret i32* %t5
}
</pre>
<p>If the <tt>inbounds</tt> keyword is present, the result value of the
<tt>getelementptr</tt> is undefined if the base pointer is not an
<i>in bounds</i> address of an allocated object, or if any of the addresses
that would be formed by successive addition of the offsets implied by the
indices to the base address with infinitely precise arithmetic are not an
<i>in bounds</i> address of that allocated object.
The <i>in bounds</i> addresses for an allocated object are all the addresses
that point into the object, plus the address one byte past the end.</p>
<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
the base address with silently-wrapping two's complement arithmetic, and
the result value of the <tt>getelementptr</tt> may be outside the object
pointed to by the base pointer. The result value may not necessarily be
used to access memory though, even if it happens to point into allocated
storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
section for more information.</p>
<p>The getelementptr instruction is often confusing. For some more insight into
how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
<h5>Example:</h5>
<pre>
<i>; yields [12 x i8]*:aptr</i>
%aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
<i>; yields i8*:vptr</i>
%vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
<i>; yields i8*:eptr</i>
%eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
<i>; yields i32*:iptr</i>
%iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
</pre>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
</div>
<div class="doc_text">
<p>The instructions in this category are the conversion instructions (casting)
which all take a single operand and a type. They perform various bit
conversions on the operand.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>trunc</tt>' instruction truncates its operand to the
type <tt>ty2</tt>.</p>
<h5>Arguments:</h5>
<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
be an <a href="#t_integer">integer</a> type, and a type that specifies the
size and type of the result, which must be
an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
allowed.</p>
<h5>Semantics:</h5>
<p>The '<tt>trunc</tt>' instruction truncates the high order bits
in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
source size must be larger than the destination size, <tt>trunc</tt> cannot
be a <i>no-op cast</i>. It will always truncate bits.</p>
<h5>Example:</h5>
<pre>
%X = trunc i32 257 to i8 <i>; yields i8:1</i>
%Y = trunc i32 123 to i1 <i>; yields i1:true</i>
%Y = trunc i32 122 to i1 <i>; yields i1:false</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>zext</tt>' instruction zero extends its operand to type
<tt>ty2</tt>.</p>
<h5>Arguments:</h5>
<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
<a href="#t_integer">integer</a> type, and a type to cast it to, which must
also be of <a href="#t_integer">integer</a> type. The bit size of the
<tt>value</tt> must be smaller than the bit size of the destination type,
<tt>ty2</tt>.</p>
<h5>Semantics:</h5>
<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
<p>When zero extending from i1, the result will always be either 0 or 1.</p>
<h5>Example:</h5>
<pre>
%X = zext i32 257 to i64 <i>; yields i64:257</i>
%Y = zext i1 true to i32 <i>; yields i32:1</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
<h5>Arguments:</h5>
<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
<a href="#t_integer">integer</a> type, and a type to cast it to, which must
also be of <a href="#t_integer">integer</a> type. The bit size of the
<tt>value</tt> must be smaller than the bit size of the destination type,
<tt>ty2</tt>.</p>
<h5>Semantics:</h5>
<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
of the type <tt>ty2</tt>.</p>
<p>When sign extending from i1, the extension always results in -1 or 0.</p>
<h5>Example:</h5>
<pre>
%X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
%Y = sext i1 true to i32 <i>; yields i32:-1</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
<tt>ty2</tt>.</p>
<h5>Arguments:</h5>
<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
point</a> value to cast and a <a href="#t_floating">floating point</a> type
to cast it to. The size of <tt>value</tt> must be larger than the size of
<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
<i>no-op cast</i>.</p>
<h5>Semantics:</h5>
<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
<a href="#t_floating">floating point</a> type to a smaller
<a href="#t_floating">floating point</a> type. If the value cannot fit
within the destination type, <tt>ty2</tt>, then the results are
undefined.</p>
<h5>Example:</h5>
<pre>
%X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
%Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
floating point value.</p>
<h5>Arguments:</h5>
<p>The '<tt>fpext</tt>' instruction takes a
<a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
a <a href="#t_floating">floating point</a> type to cast it to. The source
type must be smaller than the destination type.</p>
<h5>Semantics:</h5>
<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
<a href="#t_floating">floating point</a> type to a larger
<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
used to make a <i>no-op cast</i> because it always changes bits. Use
<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
<h5>Example:</h5>
<pre>
%X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
%Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
unsigned integer equivalent of type <tt>ty2</tt>.</p>
<h5>Arguments:</h5>
<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
scalar or vector <a href="#t_floating">floating point</a> value, and a type
to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
vector integer type with the same number of elements as <tt>ty</tt></p>
<h5>Semantics:</h5>
<p>The '<tt>fptoui</tt>' instruction converts its
<a href="#t_floating">floating point</a> operand into the nearest (rounding
towards zero) unsigned integer value. If the value cannot fit
in <tt>ty2</tt>, the results are undefined.</p>
<h5>Example:</h5>
<pre>
%X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
%Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
%X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>fptosi</tt>' instruction converts
<a href="#t_floating">floating point</a> <tt>value</tt> to
type <tt>ty2</tt>.</p>
<h5>Arguments:</h5>
<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
scalar or vector <a href="#t_floating">floating point</a> value, and a type
to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
vector integer type with the same number of elements as <tt>ty</tt></p>
<h5>Semantics:</h5>
<p>The '<tt>fptosi</tt>' instruction converts its
<a href="#t_floating">floating point</a> operand into the nearest (rounding
towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
the results are undefined.</p>
<h5>Example:</h5>
<pre>
%X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
%Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
%X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
integer and converts that value to the <tt>ty2</tt> type.</p>
<h5>Arguments:</h5>
<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
floating point type with the same number of elements as <tt>ty</tt></p>
<h5>Semantics:</h5>
<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
integer quantity and converts it to the corresponding floating point
value. If the value cannot fit in the floating point value, the results are
undefined.</p>
<h5>Example:</h5>
<pre>
%X = uitofp i32 257 to float <i>; yields float:257.0</i>
%Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
and converts that value to the <tt>ty2</tt> type.</p>
<h5>Arguments:</h5>
<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
floating point type with the same number of elements as <tt>ty</tt></p>
<h5>Semantics:</h5>
<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
quantity and converts it to the corresponding floating point value. If the
value cannot fit in the floating point value, the results are undefined.</p>
<h5>Example:</h5>
<pre>
%X = sitofp i32 257 to float <i>; yields float:257.0</i>
%Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
the integer type <tt>ty2</tt>.</p>
<h5>Arguments:</h5>
<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
<h5>Semantics:</h5>
<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
<tt>ty2</tt> by interpreting the pointer value as an integer and either
truncating or zero extending that value to the size of the integer type. If
<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
are the same size, then nothing is done (<i>no-op cast</i>) other than a type
change.</p>
<h5>Example:</h5>
<pre>
%X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
%Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
pointer type, <tt>ty2</tt>.</p>
<h5>Arguments:</h5>
<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
value to cast, and a type to cast it to, which must be a
<a href="#t_pointer">pointer</a> type.</p>
<h5>Semantics:</h5>
<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
<tt>ty2</tt> by applying either a zero extension or a truncation depending on
the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
size of a pointer then a truncation is done. If <tt>value</tt> is smaller
than the size of a pointer then a zero extension is done. If they are the
same size, nothing is done (<i>no-op cast</i>).</p>
<h5>Example:</h5>
<pre>
%X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
%X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
%Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
<tt>ty2</tt> without changing any bits.</p>
<h5>Arguments:</h5>
<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
non-aggregate first class value, and a type to cast it to, which must also be
a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
identical. If the source type is a pointer, the destination type must also be
a pointer. This instruction supports bitwise conversion of vectors to
integers and to vectors of other types (as long as they have the same
size).</p>
<h5>Semantics:</h5>
<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
this conversion. The conversion is done as if the <tt>value</tt> had been
stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
be converted to other pointer types with this instruction. To convert
pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
<h5>Example:</h5>
<pre>
%X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
%Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
%Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
</pre>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
<div class="doc_text">
<p>The instructions in this category are the "miscellaneous" instructions, which
defy better classification.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
boolean values based on comparison of its two integer, integer vector, or
pointer operands.</p>
<h5>Arguments:</h5>
<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
the condition code indicating the kind of comparison to perform. It is not a
value, just a keyword. The possible condition code are:</p>
<ol>
<li><tt>eq</tt>: equal</li>
<li><tt>ne</tt>: not equal </li>
<li><tt>ugt</tt>: unsigned greater than</li>
<li><tt>uge</tt>: unsigned greater or equal</li>
<li><tt>ult</tt>: unsigned less than</li>
<li><tt>ule</tt>: unsigned less or equal</li>
<li><tt>sgt</tt>: signed greater than</li>
<li><tt>sge</tt>: signed greater or equal</li>
<li><tt>slt</tt>: signed less than</li>
<li><tt>sle</tt>: signed less or equal</li>
</ol>
<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
<a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
typed. They must also be identical types.</p>
<h5>Semantics:</h5>
<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
condition code given as <tt>cond</tt>. The comparison performed always yields
either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt>
result, as follows:</p>
<ol>
<li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
<tt>false</tt> otherwise. No sign interpretation is necessary or
performed.</li>
<li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
<tt>false</tt> otherwise. No sign interpretation is necessary or
performed.</li>
<li><tt>ugt</tt>: interprets the operands as unsigned values and yields
<tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
<li><tt>uge</tt>: interprets the operands as unsigned values and yields
<tt>true</tt> if <tt>op1</tt> is greater than or equal
to <tt>op2</tt>.</li>
<li><tt>ult</tt>: interprets the operands as unsigned values and yields
<tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
<li><tt>ule</tt>: interprets the operands as unsigned values and yields
<tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
<li><tt>sgt</tt>: interprets the operands as signed values and yields
<tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
<li><tt>sge</tt>: interprets the operands as signed values and yields
<tt>true</tt> if <tt>op1</tt> is greater than or equal
to <tt>op2</tt>.</li>
<li><tt>slt</tt>: interprets the operands as signed values and yields
<tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
<li><tt>sle</tt>: interprets the operands as signed values and yields
<tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
</ol>
<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
values are compared as if they were integers.</p>
<p>If the operands are integer vectors, then they are compared element by
element. The result is an <tt>i1</tt> vector with the same number of elements
as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
<h5>Example:</h5>
<pre>
&lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
&lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
&lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
&lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
&lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
&lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
</pre>
<p>Note that the code generator does not yet support vector types with
the <tt>icmp</tt> instruction.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
</pre>
<h5>Overview:</h5>
<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
values based on comparison of its operands.</p>
<p>If the operands are floating point scalars, then the result type is a boolean
(<a href="#t_primitive"><tt>i1</tt></a>).</p>
<p>If the operands are floating point vectors, then the result type is a vector
of boolean with the same number of elements as the operands being
compared.</p>
<h5>Arguments:</h5>
<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
the condition code indicating the kind of comparison to perform. It is not a
value, just a keyword. The possible condition code are:</p>
<ol>
<li><tt>false</tt>: no comparison, always returns false</li>
<li><tt>oeq</tt>: ordered and equal</li>
<li><tt>ogt</tt>: ordered and greater than </li>
<li><tt>oge</tt>: ordered and greater than or equal</li>
<li><tt>olt</tt>: ordered and less than </li>
<li><tt>ole</tt>: ordered and less than or equal</li>
<li><tt>one</tt>: ordered and not equal</li>
<li><tt>ord</tt>: ordered (no nans)</li>
<li><tt>ueq</tt>: unordered or equal</li>
<li><tt>ugt</tt>: unordered or greater than </li>
<li><tt>uge</tt>: unordered or greater than or equal</li>
<li><tt>ult</tt>: unordered or less than </li>
<li><tt>ule</tt>: unordered or less than or equal</li>
<li><tt>une</tt>: unordered or not equal</li>
<li><tt>uno</tt>: unordered (either nans)</li>
<li><tt>true</tt>: no comparison, always returns true</li>
</ol>
<p><i>Ordered</i> means that neither operand is a QNAN while
<i>unordered</i> means that either operand may be a QNAN.</p>
<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
a <a href="#t_floating">floating point</a> type or
a <a href="#t_vector">vector</a> of floating point type. They must have
identical types.</p>
<h5>Semantics:</h5>
<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
according to the condition code given as <tt>cond</tt>. If the operands are
vectors, then the vectors are compared element by element. Each comparison
performed always yields an <a href="#t_primitive">i1</a> result, as
follows:</p>
<ol>
<li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
<li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
<tt>op1</tt> is equal to <tt>op2</tt>.</li>
<li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
<tt>op1</tt> is greather than <tt>op2</tt>.</li>
<li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
<tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
<li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
<tt>op1</tt> is less than <tt>op2</tt>.</li>
<li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
<tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
<li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
<tt>op1</tt> is not equal to <tt>op2</tt>.</li>
<li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
<li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
<tt>op1</tt> is equal to <tt>op2</tt>.</li>
<li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
<tt>op1</tt> is greater than <tt>op2</tt>.</li>
<li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
<tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
<li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
<tt>op1</tt> is less than <tt>op2</tt>.</li>
<li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
<tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
<li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
<tt>op1</tt> is not equal to <tt>op2</tt>.</li>
<li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
<li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
</ol>
<h5>Example:</h5>
<pre>
&lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
&lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
&lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
&lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
</pre>
<p>Note that the code generator does not yet support vector types with
the <tt>fcmp</tt> instruction.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_phi">'<tt>phi</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
</pre>
<h5>Overview:</h5>
<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
SSA graph representing the function.</p>
<h5>Arguments:</h5>
<p>The type of the incoming values is specified with the first type field. After
this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
one pair for each predecessor basic block of the current block. Only values
of <a href="#t_firstclass">first class</a> type may be used as the value
arguments to the PHI node. Only labels may be used as the label
arguments.</p>
<p>There must be no non-phi instructions between the start of a basic block and
the PHI instructions: i.e. PHI instructions must be first in a basic
block.</p>
<p>For the purposes of the SSA form, the use of each incoming value is deemed to
occur on the edge from the corresponding predecessor block to the current
block (but after any definition of an '<tt>invoke</tt>' instruction's return
value on the same edge).</p>
<h5>Semantics:</h5>
<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
specified by the pair corresponding to the predecessor basic block that
executed just prior to the current block.</p>
<h5>Example:</h5>
<pre>
Loop: ; Infinite loop that counts from 0 on up...
%indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
%nextindvar = add i32 %indvar, 1
br label %Loop
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_select">'<tt>select</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
<i>selty</i> is either i1 or {&lt;N x i1&gt;}
</pre>
<h5>Overview:</h5>
<p>The '<tt>select</tt>' instruction is used to choose one value based on a
condition, without branching.</p>
<h5>Arguments:</h5>
<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
values indicating the condition, and two values of the
same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
vectors and the condition is a scalar, then entire vectors are selected, not
individual elements.</p>
<h5>Semantics:</h5>
<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
first value argument; otherwise, it returns the second value argument.</p>
<p>If the condition is a vector of i1, then the value arguments must be vectors
of the same size, and the selection is done element by element.</p>
<h5>Example:</h5>
<pre>
%X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
</pre>
<p>Note that the code generator does not yet support conditions
with vector type.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_call">'<tt>call</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
</pre>
<h5>Overview:</h5>
<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
<h5>Arguments:</h5>
<p>This instruction requires several arguments:</p>
<ol>
<li>The optional "tail" marker indicates whether the callee function accesses
any allocas or varargs in the caller. If the "tail" marker is present,
the function call is eligible for tail call optimization. Note that calls
may be marked "tail" even if they do not occur before
a <a href="#i_ret"><tt>ret</tt></a> instruction.</li>
<li>The optional "cconv" marker indicates which <a href="#callingconv">calling
convention</a> the call should use. If none is specified, the call
defaults to using C calling conventions.</li>
<li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
'<tt>inreg</tt>' attributes are valid here.</li>
<li>'<tt>ty</tt>': the type of the call instruction itself which is also the
type of the return value. Functions that return no value are marked
<tt><a href="#t_void">void</a></tt>.</li>
<li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
being invoked. The argument types must match the types implied by this
signature. This type can be omitted if the function is not varargs and if
the function type does not return a pointer to a function.</li>
<li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
be invoked. In most cases, this is a direct function invocation, but
indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
to function value.</li>
<li>'<tt>function args</tt>': argument list whose types match the function
signature argument types. All arguments must be of
<a href="#t_firstclass">first class</a> type. If the function signature
indicates the function accepts a variable number of arguments, the extra
arguments can be specified.</li>
<li>The optional <a href="#fnattrs">function attributes</a> list. Only
'<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
'<tt>readnone</tt>' attributes are valid here.</li>
</ol>
<h5>Semantics:</h5>
<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
a specified function, with its incoming arguments bound to the specified
values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
function, control flow continues with the instruction after the function
call, and the return value of the function is bound to the result
argument.</p>
<h5>Example:</h5>
<pre>
%retval = call i32 @test(i32 %argc)
call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
%X = tail call i32 @foo() <i>; yields i32</i>
%Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
call void %foo(i8 97 signext)
%struct.A = type { i32, i8 }
%r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
%gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
%gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
%Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
%ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
&lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
</pre>
<h5>Overview:</h5>
<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
the "variable argument" area of a function call. It is used to implement the
<tt>va_arg</tt> macro in C.</p>
<h5>Arguments:</h5>
<p>This instruction takes a <tt>va_list*</tt> value and the type of the
argument. It returns a value of the specified argument type and increments
the <tt>va_list</tt> to point to the next argument. The actual type
of <tt>va_list</tt> is target specific.</p>
<h5>Semantics:</h5>
<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
to the next argument. For more information, see the variable argument
handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
<p>It is legal for this instruction to be called in a function which does not
take a variable number of arguments, for example, the <tt>vfprintf</tt>
function.</p>
<p><tt>va_arg</tt> is an LLVM instruction instead of
an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
argument.</p>
<h5>Example:</h5>
<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
<p>Note that the code generator does not yet fully support va_arg on many
targets. Also, it does not currently support va_arg with aggregate types on
any target.</p>
</div>
<!-- *********************************************************************** -->
<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
<!-- *********************************************************************** -->
<div class="doc_text">
<p>LLVM supports the notion of an "intrinsic function". These functions have
well known names and semantics and are required to follow certain
restrictions. Overall, these intrinsics represent an extension mechanism for
the LLVM language that does not require changing all of the transformations
in LLVM when adding to the language (or the bitcode reader/writer, the
parser, etc...).</p>
<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
prefix is reserved in LLVM for intrinsic names; thus, function names may not
begin with this prefix. Intrinsic functions must always be external
functions: you cannot define the body of intrinsic functions. Intrinsic
functions may only be used in call or invoke instructions: it is illegal to
take the address of an intrinsic function. Additionally, because intrinsic
functions are part of the LLVM language, it is required if any are added that
they be documented here.</p>
<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
family of functions that perform the same operation but on different data
types. Because LLVM can represent over 8 million different integer types,
overloading is used commonly to allow an intrinsic function to operate on any
integer type. One or more of the argument types or the result type can be
overloaded to accept any integer type. Argument types may also be defined as
exactly matching a previous argument's type or the result type. This allows
an intrinsic function which accepts multiple arguments, but needs all of them
to be of the same type, to only be overloaded with respect to a single
argument or the result.</p>
<p>Overloaded intrinsics will have the names of its overloaded argument types
encoded into its function name, each preceded by a period. Only those types
which are overloaded result in a name suffix. Arguments whose type is matched
against another type do not. For example, the <tt>llvm.ctpop</tt> function
can take an integer of any width and returns an integer of exactly the same
integer width. This leads to a family of functions such as
<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
%val)</tt>. Only one type, the return type, is overloaded, and only one type
suffix is required. Because the argument's type is matched against the return
type, it does not require its own name suffix.</p>
<p>To learn how to add an intrinsic function, please see the
<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_varargs">Variable Argument Handling Intrinsics</a>
</div>
<div class="doc_text">
<p>Variable argument support is defined in LLVM with
the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
intrinsic functions. These functions are related to the similarly named
macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
<p>All of these functions operate on arguments that use a target-specific value
type "<tt>va_list</tt>". The LLVM assembly language reference manual does
not define what this type is, so all transformations should be prepared to
handle these functions regardless of the type used.</p>
<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
instruction and the variable argument handling intrinsic functions are
used.</p>
<div class="doc_code">
<pre>
define i32 @test(i32 %X, ...) {
; Initialize variable argument processing
%ap = alloca i8*
%ap2 = bitcast i8** %ap to i8*
call void @llvm.va_start(i8* %ap2)
; Read a single integer argument
%tmp = va_arg i8** %ap, i32
; Demonstrate usage of llvm.va_copy and llvm.va_end
%aq = alloca i8*
%aq2 = bitcast i8** %aq to i8*
call void @llvm.va_copy(i8* %aq2, i8* %ap2)
call void @llvm.va_end(i8* %aq2)
; Stop processing of arguments.
call void @llvm.va_end(i8* %ap2)
ret i32 %tmp
}
declare void @llvm.va_start(i8*)
declare void @llvm.va_copy(i8*, i8*)
declare void @llvm.va_end(i8*)
</pre>
</div>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void %llvm.va_start(i8* &lt;arglist&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
<h5>Arguments:</h5>
<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
macro available in C. In a target-dependent way, it initializes
the <tt>va_list</tt> element to which the argument points, so that the next
call to <tt>va_arg</tt> will produce the first variable argument passed to
the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
need to know the last argument of the function as the compiler can figure
that out.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void @llvm.va_end(i8* &lt;arglist&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
which has been initialized previously
with <tt><a href="#int_va_start">llvm.va_start</a></tt>
or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
<h5>Arguments:</h5>
<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
macro available in C. In a target-dependent way, it destroys
the <tt>va_list</tt> element to which the argument points. Calls
to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
with calls to <tt>llvm.va_end</tt>.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
from the source argument list to the destination argument list.</p>
<h5>Arguments:</h5>
<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
The second argument is a pointer to a <tt>va_list</tt> element to copy
from.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
macro available in C. In a target-dependent way, it copies the
source <tt>va_list</tt> element into the destination <tt>va_list</tt>
element. This intrinsic is necessary because
the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
arbitrarily complex and require, for example, memory allocation.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_gc">Accurate Garbage Collection Intrinsics</a>
</div>
<div class="doc_text">
<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Collection</a> (GC) requires the implementation and generation of these
intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
roots on the stack</a>, as well as garbage collector implementations that
require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
barriers. Front-ends for type-safe garbage collected languages should generate
these intrinsics to make use of the LLVM garbage collectors. For more details,
see <a href="GarbageCollection.html">Accurate Garbage Collection with
LLVM</a>.</p>
<p>The garbage collection intrinsics only operate on objects in the generic
address space (address space zero).</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
the code generator, and allows some metadata to be associated with it.</p>
<h5>Arguments:</h5>
<p>The first argument specifies the address of a stack object that contains the
root pointer. The second pointer (which must be either a constant or a
global value address) contains the meta-data to be associated with the
root.</p>
<h5>Semantics:</h5>
<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
location. At compile-time, the code generator generates information to allow
the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
intrinsic may only be used in a function which <a href="#gc">specifies a GC
algorithm</a>.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
locations, allowing garbage collector implementations that require read
barriers.</p>
<h5>Arguments:</h5>
<p>The second argument is the address to read from, which should be an address
allocated from the garbage collector. The first object is a pointer to the
start of the referenced object, if needed by the language runtime (otherwise
null).</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
instruction, but may be replaced with substantially more complex code by the
garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
may only be used in a function which <a href="#gc">specifies a GC
algorithm</a>.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
locations, allowing garbage collector implementations that require write
barriers (such as generational or reference counting collectors).</p>
<h5>Arguments:</h5>
<p>The first argument is the reference to store, the second is the start of the
object to store it to, and the third is the address of the field of Obj to
store to. If the runtime does not require a pointer to the object, Obj may
be null.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
instruction, but may be replaced with substantially more complex code by the
garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
may only be used in a function which <a href="#gc">specifies a GC
algorithm</a>.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_codegen">Code Generator Intrinsics</a>
</div>
<div class="doc_text">
<p>These intrinsics are provided by LLVM to expose special features that may
only be implemented with code generator support.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
target-specific value indicating the return address of the current function
or one of its callers.</p>
<h5>Arguments:</h5>
<p>The argument to this intrinsic indicates which function to return the address
for. Zero indicates the calling function, one indicates its caller, etc.
The argument is <b>required</b> to be a constant integer value.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
indicating the return address of the specified call frame, or zero if it
cannot be identified. The value returned by this intrinsic is likely to be
incorrect or 0 for arguments other than zero, so it should only be used for
debugging purposes.</p>
<p>Note that calling this intrinsic does not prevent function inlining or other
aggressive transformations, so the value returned may not be that of the
obvious source-language caller.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
target-specific frame pointer value for the specified stack frame.</p>
<h5>Arguments:</h5>
<p>The argument to this intrinsic indicates which function to return the frame
pointer for. Zero indicates the calling function, one indicates its caller,
etc. The argument is <b>required</b> to be a constant integer value.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
indicating the frame address of the specified call frame, or zero if it
cannot be identified. The value returned by this intrinsic is likely to be
incorrect or 0 for arguments other than zero, so it should only be used for
debugging purposes.</p>
<p>Note that calling this intrinsic does not prevent function inlining or other
aggressive transformations, so the value returned may not be that of the
obvious source-language caller.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare i8 *@llvm.stacksave()
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
of the function stack, for use
with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
useful for implementing language features like scoped automatic variable
sized arrays in C99.</p>
<h5>Semantics:</h5>
<p>This intrinsic returns a opaque pointer value that can be passed
to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void @llvm.stackrestore(i8 * %ptr)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
the function stack to the state it was in when the
corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
executed. This is useful for implementing language features like scoped
automatic variable sized arrays in C99.</p>
<h5>Semantics:</h5>
<p>See the description
for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
insert a prefetch instruction if supported; otherwise, it is a noop.
Prefetches have no effect on the behavior of the program but can change its
performance characteristics.</p>
<h5>Arguments:</h5>
<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
specifier determining if the fetch should be for a read (0) or write (1),
and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
and <tt>locality</tt> arguments must be constant integers.</p>
<h5>Semantics:</h5>
<p>This intrinsic does not modify the behavior of the program. In particular,
prefetches cannot trap and do not produce a value. On targets that support
this intrinsic, the prefetch can provide hints to the processor cache for
better performance.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void @llvm.pcmarker(i32 &lt;id&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
Counter (PC) in a region of code to simulators and other tools. The method
is target specific, but it is expected that the marker will use exported
symbols to transmit the PC of the marker. The marker makes no guarantees
that it will remain with any specific instruction after optimizations. It is
possible that the presence of a marker will inhibit optimizations. The
intended use is to be inserted after optimizations to allow correlations of
simulation runs.</p>
<h5>Arguments:</h5>
<p><tt>id</tt> is a numerical id identifying the marker.</p>
<h5>Semantics:</h5>
<p>This intrinsic does not modify the behavior of the program. Backends that do
not support this intrinisic may ignore it.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare i64 @llvm.readcyclecounter( )
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
counter register (or similar low latency, high accuracy clocks) on those
targets that support it. On X86, it should map to RDTSC. On Alpha, it
should map to RPCC. As the backing counters overflow quickly (on the order
of 9 seconds on alpha), this should only be used for small timings.</p>
<h5>Semantics:</h5>
<p>When directly supported, reading the cycle counter should not modify any
memory. Implementations are allowed to either return a application specific
value or a system wide value. On backends without support, this is lowered
to a constant 0.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_libc">Standard C Library Intrinsics</a>
</div>
<div class="doc_text">
<p>LLVM provides intrinsics for a few important standard C library functions.
These intrinsics allow source-language front-ends to pass information about
the alignment of the pointer arguments to the code generator, providing
opportunity for more efficient code generation.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
integer bit width. Not all targets support all bit widths however.</p>
<pre>
declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
i8 &lt;len&gt;, i32 &lt;align&gt;)
declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
i16 &lt;len&gt;, i32 &lt;align&gt;)
declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
i32 &lt;len&gt;, i32 &lt;align&gt;)
declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
i64 &lt;len&gt;, i32 &lt;align&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
source location to the destination location.</p>
<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
intrinsics do not return a value, and takes an extra alignment argument.</p>
<h5>Arguments:</h5>
<p>The first argument is a pointer to the destination, the second is a pointer
to the source. The third argument is an integer argument specifying the
number of bytes to copy, and the fourth argument is the alignment of the
source and destination locations.</p>
<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
then the caller guarantees that both the source and destination pointers are
aligned to that boundary.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
source location to the destination location, which are not allowed to
overlap. It copies "len" bytes of memory over. If the argument is known to
be aligned to some boundary, this can be specified as the fourth argument,
otherwise it should be set to 0 or 1.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
width. Not all targets support all bit widths however.</p>
<pre>
declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
i8 &lt;len&gt;, i32 &lt;align&gt;)
declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
i16 &lt;len&gt;, i32 &lt;align&gt;)
declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
i32 &lt;len&gt;, i32 &lt;align&gt;)
declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
i64 &lt;len&gt;, i32 &lt;align&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
source location to the destination location. It is similar to the
'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
overlap.</p>
<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
intrinsics do not return a value, and takes an extra alignment argument.</p>
<h5>Arguments:</h5>
<p>The first argument is a pointer to the destination, the second is a pointer
to the source. The third argument is an integer argument specifying the
number of bytes to copy, and the fourth argument is the alignment of the
source and destination locations.</p>
<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
then the caller guarantees that the source and destination pointers are
aligned to that boundary.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
source location to the destination location, which may overlap. It copies
"len" bytes of memory over. If the argument is known to be aligned to some
boundary, this can be specified as the fourth argument, otherwise it should
be set to 0 or 1.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
width. Not all targets support all bit widths however.</p>
<pre>
declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
i8 &lt;len&gt;, i32 &lt;align&gt;)
declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
i16 &lt;len&gt;, i32 &lt;align&gt;)
declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
i32 &lt;len&gt;, i32 &lt;align&gt;)
declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
i64 &lt;len&gt;, i32 &lt;align&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
particular byte value.</p>
<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
intrinsic does not return a value, and takes an extra alignment argument.</p>
<h5>Arguments:</h5>
<p>The first argument is a pointer to the destination to fill, the second is the
byte value to fill it with, the third argument is an integer argument
specifying the number of bytes to fill, and the fourth argument is the known
alignment of destination location.</p>
<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
then the caller guarantees that the destination pointer is aligned to that
boundary.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
at the destination location. If the argument is known to be aligned to some
boundary, this can be specified as the fourth argument, otherwise it should
be set to 0 or 1.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
floating point or vector of floating point type. Not all targets support all
types however.</p>
<pre>
declare float @llvm.sqrt.f32(float %Val)
declare double @llvm.sqrt.f64(double %Val)
declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
declare fp128 @llvm.sqrt.f128(fp128 %Val)
declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
returning the same value as the libm '<tt>sqrt</tt>' functions would.
Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
behavior for negative numbers other than -0.0 (which allows for better
optimization, because there is no need to worry about errno being
set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
<h5>Arguments:</h5>
<p>The argument and return value are floating point numbers of the same
type.</p>
<h5>Semantics:</h5>
<p>This function returns the sqrt of the specified operand if it is a
nonnegative floating point number.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
floating point or vector of floating point type. Not all targets support all
types however.</p>
<pre>
declare float @llvm.powi.f32(float %Val, i32 %power)
declare double @llvm.powi.f64(double %Val, i32 %power)
declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
specified (positive or negative) power. The order of evaluation of
multiplications is not defined. When a vector of floating point type is
used, the second argument remains a scalar integer value.</p>
<h5>Arguments:</h5>
<p>The second argument is an integer power, and the first is a value to raise to
that power.</p>
<h5>Semantics:</h5>
<p>This function returns the first value raised to the second power with an
unspecified sequence of rounding operations.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
floating point or vector of floating point type. Not all targets support all
types however.</p>
<pre>
declare float @llvm.sin.f32(float %Val)
declare double @llvm.sin.f64(double %Val)
declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
declare fp128 @llvm.sin.f128(fp128 %Val)
declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
<h5>Arguments:</h5>
<p>The argument and return value are floating point numbers of the same
type.</p>
<h5>Semantics:</h5>
<p>This function returns the sine of the specified operand, returning the same
values as the libm <tt>sin</tt> functions would, and handles error conditions
in the same way.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
floating point or vector of floating point type. Not all targets support all
types however.</p>
<pre>
declare float @llvm.cos.f32(float %Val)
declare double @llvm.cos.f64(double %Val)
declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
declare fp128 @llvm.cos.f128(fp128 %Val)
declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
<h5>Arguments:</h5>
<p>The argument and return value are floating point numbers of the same
type.</p>
<h5>Semantics:</h5>
<p>This function returns the cosine of the specified operand, returning the same
values as the libm <tt>cos</tt> functions would, and handles error conditions
in the same way.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
floating point or vector of floating point type. Not all targets support all
types however.</p>
<pre>
declare float @llvm.pow.f32(float %Val, float %Power)
declare double @llvm.pow.f64(double %Val, double %Power)
declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
specified (positive or negative) power.</p>
<h5>Arguments:</h5>
<p>The second argument is a floating point power, and the first is a value to
raise to that power.</p>
<h5>Semantics:</h5>
<p>This function returns the first value raised to the second power, returning
the same values as the libm <tt>pow</tt> functions would, and handles error
conditions in the same way.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_manip">Bit Manipulation Intrinsics</a>
</div>
<div class="doc_text">
<p>LLVM provides intrinsics for a few important bit manipulation operations.
These allow efficient code generation for some algorithms.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic function. You can use bswap on any integer
type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
<pre>
declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
values with an even number of bytes (positive multiple of 16 bits). These
are useful for performing operations on data that is not in the target's
native byte order.</p>
<h5>Semantics:</h5>
<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
and low byte of the input i16 swapped. Similarly,
the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
more, respectively).</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
width. Not all targets support all bit widths however.</p>
<pre>
declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
in a value.</p>
<h5>Arguments:</h5>
<p>The only argument is the value to be counted. The argument may be of any
integer type. The return type must match the argument type.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
integer bit width. Not all targets support all bit widths however.</p>
<pre>
declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
leading zeros in a variable.</p>
<h5>Arguments:</h5>
<p>The only argument is the value to be counted. The argument may be of any
integer type. The return type must match the argument type.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
zeros in a variable. If the src == 0 then the result is the size in bits of
the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
integer bit width. Not all targets support all bit widths however.</p>
<pre>
declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
trailing zeros.</p>
<h5>Arguments:</h5>
<p>The only argument is the value to be counted. The argument may be of any
integer type. The return type must match the argument type.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
zeros in a variable. If the src == 0 then the result is the size in bits of
the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
</div>
<div class="doc_text">
<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
on any integer bit width.</p>
<pre>
declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
a signed addition of the two arguments, and indicate whether an overflow
occurred during the signed summation.</p>
<h5>Arguments:</h5>
<p>The arguments (%a and %b) and the first element of the result structure may
be of integer types of any bit width, but they must have the same bit
width. The second element of the result structure must be of
type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
undergo signed addition.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
a signed addition of the two variables. They return a structure &mdash; the
first element of which is the signed summation, and the second element of
which is a bit specifying if the signed summation resulted in an
overflow.</p>
<h5>Examples:</h5>
<pre>
%res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
on any integer bit width.</p>
<pre>
declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
an unsigned addition of the two arguments, and indicate whether a carry
occurred during the unsigned summation.</p>
<h5>Arguments:</h5>
<p>The arguments (%a and %b) and the first element of the result structure may
be of integer types of any bit width, but they must have the same bit
width. The second element of the result structure must be of
type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
undergo unsigned addition.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
an unsigned addition of the two arguments. They return a structure &mdash;
the first element of which is the sum, and the second element of which is a
bit specifying if the unsigned summation resulted in a carry.</p>
<h5>Examples:</h5>
<pre>
%res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %carry, label %normal
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
on any integer bit width.</p>
<pre>
declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
a signed subtraction of the two arguments, and indicate whether an overflow
occurred during the signed subtraction.</p>
<h5>Arguments:</h5>
<p>The arguments (%a and %b) and the first element of the result structure may
be of integer types of any bit width, but they must have the same bit
width. The second element of the result structure must be of
type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
undergo signed subtraction.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
a signed subtraction of the two arguments. They return a structure &mdash;
the first element of which is the subtraction, and the second element of
which is a bit specifying if the signed subtraction resulted in an
overflow.</p>
<h5>Examples:</h5>
<pre>
%res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
on any integer bit width.</p>
<pre>
declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
an unsigned subtraction of the two arguments, and indicate whether an
overflow occurred during the unsigned subtraction.</p>
<h5>Arguments:</h5>
<p>The arguments (%a and %b) and the first element of the result structure may
be of integer types of any bit width, but they must have the same bit
width. The second element of the result structure must be of
type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
undergo unsigned subtraction.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
an unsigned subtraction of the two arguments. They return a structure &mdash;
the first element of which is the subtraction, and the second element of
which is a bit specifying if the unsigned subtraction resulted in an
overflow.</p>
<h5>Examples:</h5>
<pre>
%res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
on any integer bit width.</p>
<pre>
declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
a signed multiplication of the two arguments, and indicate whether an
overflow occurred during the signed multiplication.</p>
<h5>Arguments:</h5>
<p>The arguments (%a and %b) and the first element of the result structure may
be of integer types of any bit width, but they must have the same bit
width. The second element of the result structure must be of
type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
undergo signed multiplication.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
a signed multiplication of the two arguments. They return a structure &mdash;
the first element of which is the multiplication, and the second element of
which is a bit specifying if the signed multiplication resulted in an
overflow.</p>
<h5>Examples:</h5>
<pre>
%res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
on any integer bit width.</p>
<pre>
declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
a unsigned multiplication of the two arguments, and indicate whether an
overflow occurred during the unsigned multiplication.</p>
<h5>Arguments:</h5>
<p>The arguments (%a and %b) and the first element of the result structure may
be of integer types of any bit width, but they must have the same bit
width. The second element of the result structure must be of
type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
undergo unsigned multiplication.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
an unsigned multiplication of the two arguments. They return a structure
&mdash; the first element of which is the multiplication, and the second
element of which is a bit specifying if the unsigned multiplication resulted
in an overflow.</p>
<h5>Examples:</h5>
<pre>
%res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
%sum = extractvalue {i32, i1} %res, 0
%obit = extractvalue {i32, i1} %res, 1
br i1 %obit, label %overflow, label %normal
</pre>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_debugger">Debugger Intrinsics</a>
</div>
<div class="doc_text">
<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
prefix), are described in
the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
Level Debugging</a> document.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_eh">Exception Handling Intrinsics</a>
</div>
<div class="doc_text">
<p>The LLVM exception handling intrinsics (which all start with
<tt>llvm.eh.</tt> prefix), are described in
the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
Handling</a> document.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_trampoline">Trampoline Intrinsic</a>
</div>
<div class="doc_text">
<p>This intrinsic makes it possible to excise one parameter, marked with
the <tt>nest</tt> attribute, from a function. The result is a callable
function pointer lacking the nest parameter - the caller does not need to
provide a value for it. Instead, the value to use is stored in advance in a
"trampoline", a block of memory usually allocated on the stack, which also
contains code to splice the nest value into the argument list. This is used
to implement the GCC nested function address extension.</p>
<p>For example, if the function is
<tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
follows:</p>
<div class="doc_code">
<pre>
%tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
%tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
%p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
%fp = bitcast i8* %p to i32 (i32, i32)*
</pre>
</div>
<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
</pre>
<h5>Overview:</h5>
<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
function pointer suitable for executing it.</p>
<h5>Arguments:</h5>
<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
sufficiently aligned block of memory; this memory is written to by the
intrinsic. Note that the size and the alignment are target-specific - LLVM
currently provides no portable way of determining them, so a front-end that
generates this intrinsic needs to have some target-specific knowledge.
The <tt>func</tt> argument must hold a function bitcast to
an <tt>i8*</tt>.</p>
<h5>Semantics:</h5>
<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
dependent code, turning it into a function. A pointer to this function is
returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
function pointer type</a> before being called. The new function's signature
is the same as that of <tt>func</tt> with any arguments marked with
the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
is allowed, and it must be of pointer type. Calling the new function is
equivalent to calling <tt>func</tt> with the same argument list, but
with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
calling <tt>llvm.init.trampoline</tt>, the memory pointed to
by <tt>tramp</tt> is modified, then the effect of any later call to the
returned function pointer is undefined.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
</div>
<div class="doc_text">
<p>These intrinsic functions expand the "universal IR" of LLVM to represent
hardware constructs for atomic operations and memory synchronization. This
provides an interface to the hardware, not an interface to the programmer. It
is aimed at a low enough level to allow any programming models or APIs
(Application Programming Interfaces) which need atomic behaviors to map
cleanly onto it. It is also modeled primarily on hardware behavior. Just as
hardware provides a "universal IR" for source languages, it also provides a
starting point for developing a "universal" atomic operation and
synchronization IR.</p>
<p>These do <em>not</em> form an API such as high-level threading libraries,
software transaction memory systems, atomic primitives, and intrinsic
functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
application libraries. The hardware interface provided by LLVM should allow
a clean implementation of all of these APIs and parallel programming models.
No one model or paradigm should be selected above others unless the hardware
itself ubiquitously does so.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
</pre>
<h5>Overview:</h5>
<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
specific pairs of memory access types.</p>
<h5>Arguments:</h5>
<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
The first four arguments enables a specific barrier as listed below. The
fith argument specifies that the barrier applies to io or device or uncached
memory.</p>
<ul>
<li><tt>ll</tt>: load-load barrier</li>
<li><tt>ls</tt>: load-store barrier</li>
<li><tt>sl</tt>: store-load barrier</li>
<li><tt>ss</tt>: store-store barrier</li>
<li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
</ul>
<h5>Semantics:</h5>
<p>This intrinsic causes the system to enforce some ordering constraints upon
the loads and stores of the program. This barrier does not
indicate <em>when</em> any events will occur, it only enforces
an <em>order</em> in which they occur. For any of the specified pairs of load
and store operations (f.ex. load-load, or store-load), all of the first
operations preceding the barrier will complete before any of the second
operations succeeding the barrier begin. Specifically the semantics for each
pairing is as follows:</p>
<ul>
<li><tt>ll</tt>: All loads before the barrier must complete before any load
after the barrier begins.</li>
<li><tt>ls</tt>: All loads before the barrier must complete before any
store after the barrier begins.</li>
<li><tt>ss</tt>: All stores before the barrier must complete before any
store after the barrier begins.</li>
<li><tt>sl</tt>: All stores before the barrier must complete before any
load after the barrier begins.</li>
</ul>
<p>These semantics are applied with a logical "and" behavior when more than one
is enabled in a single memory barrier intrinsic.</p>
<p>Backends may implement stronger barriers than those requested when they do
not support as fine grained a barrier as requested. Some architectures do
not need all types of barriers and on such architectures, these become
noops.</p>
<h5>Example:</h5>
<pre>
%ptr = malloc i32
store i32 4, %ptr
%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
<i>; guarantee the above finishes</i>
store i32 8, %ptr <i>; before this begins</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
any integer bit width and for different address spaces. Not all targets
support all bit widths however.</p>
<pre>
declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
</pre>
<h5>Overview:</h5>
<p>This loads a value in memory and compares it to a given value. If they are
equal, it stores a new value into the memory.</p>
<h5>Arguments:</h5>
<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
this integer type. While any bit width integer may be used, targets may only
lower representations they support in hardware.</p>
<h5>Semantics:</h5>
<p>This entire intrinsic must be executed atomically. It first loads the value
in memory pointed to by <tt>ptr</tt> and compares it with the
value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
memory. The loaded value is yielded in all cases. This provides the
equivalent of an atomic compare-and-swap operation within the SSA
framework.</p>
<h5>Examples:</h5>
<pre>
%ptr = malloc i32
store i32 4, %ptr
%val1 = add i32 4, 4
%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
<i>; yields {i32}:result1 = 4</i>
%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
%val2 = add i32 1, 1
%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
<i>; yields {i32}:result2 = 8</i>
%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
integer bit width. Not all targets support all bit widths however.</p>
<pre>
declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
</pre>
<h5>Overview:</h5>
<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
the value from memory. It then stores the value in <tt>val</tt> in the memory
at <tt>ptr</tt>.</p>
<h5>Arguments:</h5>
<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
the <tt>val</tt> argument and the result must be integers of the same bit
width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
integer type. The targets may only lower integer representations they
support.</p>
<h5>Semantics:</h5>
<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
equivalent of an atomic swap operation within the SSA framework.</p>
<h5>Examples:</h5>
<pre>
%ptr = malloc i32
store i32 4, %ptr
%val1 = add i32 4, 4
%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
<i>; yields {i32}:result1 = 4</i>
%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
%val2 = add i32 1, 1
%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
<i>; yields {i32}:result2 = 8</i>
%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
any integer bit width. Not all targets support all bit widths however.</p>
<pre>
declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
</pre>
<h5>Overview:</h5>
<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
<h5>Arguments:</h5>
<p>The intrinsic takes two arguments, the first a pointer to an integer value
and the second an integer value. The result is also an integer value. These
integer types can have any bit width, but they must all have the same bit
width. The targets may only lower integer representations they support.</p>
<h5>Semantics:</h5>
<p>This intrinsic does a series of operations atomically. It first loads the
value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
<h5>Examples:</h5>
<pre>
%ptr = malloc i32
store i32 4, %ptr
%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
<i>; yields {i32}:result1 = 4</i>
%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
<i>; yields {i32}:result2 = 8</i>
%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
<i>; yields {i32}:result3 = 10</i>
%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
any integer bit width and for different address spaces. Not all targets
support all bit widths however.</p>
<pre>
declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
</pre>
<h5>Overview:</h5>
<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
<tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
<h5>Arguments:</h5>
<p>The intrinsic takes two arguments, the first a pointer to an integer value
and the second an integer value. The result is also an integer value. These
integer types can have any bit width, but they must all have the same bit
width. The targets may only lower integer representations they support.</p>
<h5>Semantics:</h5>
<p>This intrinsic does a series of operations atomically. It first loads the
value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
result to <tt>ptr</tt>. It yields the original value stored
at <tt>ptr</tt>.</p>
<h5>Examples:</h5>
<pre>
%ptr = malloc i32
store i32 8, %ptr
%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
<i>; yields {i32}:result1 = 8</i>
%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
<i>; yields {i32}:result2 = 4</i>
%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
<i>; yields {i32}:result3 = 2</i>
%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
<a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
<a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
<a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>These are overloaded intrinsics. You can
use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
<tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
bit width and for different address spaces. Not all targets support all bit
widths however.</p>
<pre>
declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
</pre>
<pre>
declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
</pre>
<pre>
declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
</pre>
<pre>
declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
</pre>
<h5>Overview:</h5>
<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
the value stored in memory at <tt>ptr</tt>. It yields the original value
at <tt>ptr</tt>.</p>
<h5>Arguments:</h5>
<p>These intrinsics take two arguments, the first a pointer to an integer value
and the second an integer value. The result is also an integer value. These
integer types can have any bit width, but they must all have the same bit
width. The targets may only lower integer representations they support.</p>
<h5>Semantics:</h5>
<p>These intrinsics does a series of operations atomically. They first load the
value stored at <tt>ptr</tt>. They then do the bitwise
operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
original value stored at <tt>ptr</tt>.</p>
<h5>Examples:</h5>
<pre>
%ptr = malloc i32
store i32 0x0F0F, %ptr
%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
<i>; yields {i32}:result0 = 0x0F0F</i>
%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
<i>; yields {i32}:result1 = 0xFFFFFFF0</i>
%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
<i>; yields {i32}:result2 = 0xF0</i>
%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
<i>; yields {i32}:result3 = FF</i>
%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
<a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
<a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
<a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
<tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
<tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
address spaces. Not all targets support all bit widths however.</p>
<pre>
declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
</pre>
<pre>
declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
</pre>
<pre>
declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
</pre>
<pre>
declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
</pre>
<h5>Overview:</h5>
<p>These intrinsics takes the signed or unsigned minimum or maximum of
<tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
original value at <tt>ptr</tt>.</p>
<h5>Arguments:</h5>
<p>These intrinsics take two arguments, the first a pointer to an integer value
and the second an integer value. The result is also an integer value. These
integer types can have any bit width, but they must all have the same bit
width. The targets may only lower integer representations they support.</p>
<h5>Semantics:</h5>
<p>These intrinsics does a series of operations atomically. They first load the
value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
yield the original value stored at <tt>ptr</tt>.</p>
<h5>Examples:</h5>
<pre>
%ptr = malloc i32
store i32 7, %ptr
%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
<i>; yields {i32}:result0 = 7</i>
%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
<i>; yields {i32}:result1 = -2</i>
%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
<i>; yields {i32}:result2 = 8</i>
%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
<i>; yields {i32}:result3 = 8</i>
%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
</pre>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_general">General Intrinsics</a>
</div>
<div class="doc_text">
<p>This class of intrinsics is designed to be generic and has no specific
purpose.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
<h5>Arguments:</h5>
<p>The first argument is a pointer to a value, the second is a pointer to a
global string, the third is a pointer to a global string which is the source
file name, and the last argument is the line number.</p>
<h5>Semantics:</h5>
<p>This intrinsic allows annotation of local variables with arbitrary strings.
This can be useful for special purpose optimizations that want to look for
these annotations. These have no other defined use, they are ignored by code
generation and optimization.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
any integer bit width.</p>
<pre>
declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
<h5>Arguments:</h5>
<p>The first argument is an integer value (result of some expression), the
second is a pointer to a global string, the third is a pointer to a global
string which is the source file name, and the last argument is the line
number. It returns the value of the first argument.</p>
<h5>Semantics:</h5>
<p>This intrinsic allows annotations to be put on arbitrary expressions with
arbitrary strings. This can be useful for special purpose optimizations that
want to look for these annotations. These have no other defined use, they
are ignored by code generation and optimization.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void @llvm.trap()
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
<h5>Arguments:</h5>
<p>None.</p>
<h5>Semantics:</h5>
<p>This intrinsics is lowered to the target dependent trap instruction. If the
target does not have a trap instruction, this intrinsic will be lowered to
the call of the <tt>abort()</tt> function.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
</pre>
<h5>Overview:</h5>
<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
ensure that it is placed on the stack before local variables.</p>
<h5>Arguments:</h5>
<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
arguments. The first argument is the value loaded from the stack
guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
that has enough space to hold the value of the guard.</p>
<h5>Semantics:</h5>
<p>This intrinsic causes the prologue/epilogue inserter to force the position of
the <tt>AllocaInst</tt> stack slot to be before local variables on the
stack. This is to ensure that if a local variable on the stack is
overwritten, it will destroy the value of the guard. When the function exits,
the guard on the stack is checked against the original guard. If they're
different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
function.</p>
</div>
<!-- *********************************************************************** -->
<hr>
<address>
<a href="http://jigsaw.w3.org/css-validator/check/referer"><img
src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
<a href="http://validator.w3.org/check/referer"><img
src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
<a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Last modified: $Date$
</address>
</body>
</html>