cpython/Tools/cases_generator/generate_cases.py

520 lines
19 KiB
Python
Raw Normal View History

"""Generate the main interpreter switch.
Reads the instruction definitions from bytecodes.c.
Writes the cases to generated_cases.c.h, which is #included in ceval.c.
"""
import argparse
import contextlib
import dataclasses
import os
import re
import sys
import typing
import parser
DEFAULT_INPUT = "Python/bytecodes.c"
DEFAULT_OUTPUT = "Python/generated_cases.c.h"
BEGIN_MARKER = "// BEGIN BYTECODES //"
END_MARKER = "// END BYTECODES //"
RE_PREDICTED = r"(?s)(?:PREDICT\(|GO_TO_INSTRUCTION\(|DEOPT_IF\(.*?,\s*)(\w+)\);"
UNUSED = "unused"
BITS_PER_CODE_UNIT = 16
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("-i", "--input", type=str, default=DEFAULT_INPUT)
arg_parser.add_argument("-o", "--output", type=str, default=DEFAULT_OUTPUT)
# This is not a data class
class Instruction(parser.InstDef):
"""An instruction with additional data and code."""
# Computed by constructor
always_exits: bool
cache_offset: int
cache_effects: list[parser.CacheEffect]
input_effects: list[parser.StackEffect]
output_effects: list[parser.StackEffect]
# Set later
family: parser.Family | None = None
predicted: bool = False
def __init__(self, inst: parser.InstDef):
super().__init__(inst.header, inst.block)
self.context = inst.context
self.always_exits = always_exits(self.block)
self.cache_effects = [
effect for effect in self.inputs if isinstance(effect, parser.CacheEffect)
]
self.cache_offset = sum(c.size for c in self.cache_effects)
self.input_effects = [
effect for effect in self.inputs if isinstance(effect, parser.StackEffect)
]
self.output_effects = self.outputs # For consistency/completeness
def write(self, f: typing.TextIO, indent: str, dedent: int = 0) -> None:
"""Write one instruction, sans prologue and epilogue."""
if dedent < 0:
indent += " " * -dedent # DO WE NEED THIS?
# Get cache offset and maybe assert that it is correct
if family := self.family:
if self.name == family.members[0]:
if cache_size := family.size:
f.write(
f"{indent} static_assert({cache_size} == "
f'{self.cache_offset}, "incorrect cache size");\n'
)
# Write cache effect variable declarations
cache_offset = 0
for ceffect in self.cache_effects:
if ceffect.name != UNUSED:
bits = ceffect.size * BITS_PER_CODE_UNIT
if bits == 64:
# NOTE: We assume that 64-bit data in the cache
# is always an object pointer.
# If this becomes false, we need a way to specify
# syntactically what type the cache data is.
f.write(
f"{indent} PyObject *{ceffect.name} = "
f"read_obj(next_instr + {cache_offset});\n"
)
else:
f.write(f"{indent} uint{bits}_t {ceffect.name} = "
f"read_u{bits}(next_instr + {cache_offset});\n")
cache_offset += ceffect.size
assert cache_offset == self.cache_offset
# Write input stack effect variable declarations and initializations
for i, seffect in enumerate(reversed(self.input_effects), 1):
if seffect.name != UNUSED:
f.write(f"{indent} PyObject *{seffect.name} = PEEK({i});\n")
# Write output stack effect variable declarations
input_names = {seffect.name for seffect in self.input_effects}
input_names.add(UNUSED)
for seffect in self.output_effects:
if seffect.name not in input_names:
f.write(f"{indent} PyObject *{seffect.name};\n")
self.write_body(f, indent, dedent)
# Skip the rest if the block always exits
if always_exits(self.block):
return
# Write net stack growth/shrinkage
diff = len(self.output_effects) - len(self.input_effects)
if diff > 0:
f.write(f"{indent} STACK_GROW({diff});\n")
elif diff < 0:
f.write(f"{indent} STACK_SHRINK({-diff});\n")
# Write output stack effect assignments
unmoved_names = {UNUSED}
for ieffect, oeffect in zip(self.input_effects, self.output_effects):
if ieffect.name == oeffect.name:
unmoved_names.add(ieffect.name)
for i, seffect in enumerate(reversed(self.output_effects)):
if seffect.name not in unmoved_names:
f.write(f"{indent} POKE({i+1}, {seffect.name});\n")
# Write cache effect
if self.cache_offset:
f.write(f"{indent} next_instr += {self.cache_offset};\n")
def write_body(self, f: typing.TextIO, ndent: str, dedent: int) -> None:
"""Write the instruction body."""
# Get lines of text with proper dedent
blocklines = self.block.to_text(dedent=dedent).splitlines(True)
# Remove blank lines from both ends
while blocklines and not blocklines[0].strip():
blocklines.pop(0)
while blocklines and not blocklines[-1].strip():
blocklines.pop()
# Remove leading and trailing braces
assert blocklines and blocklines[0].strip() == "{"
assert blocklines and blocklines[-1].strip() == "}"
blocklines.pop()
blocklines.pop(0)
# Remove trailing blank lines
while blocklines and not blocklines[-1].strip():
blocklines.pop()
# Write the body, substituting a goto for ERROR_IF()
for line in blocklines:
if m := re.match(r"(\s*)ERROR_IF\((.+), (\w+)\);\s*$", line):
space, cond, label = m.groups()
# ERROR_IF() must pop the inputs from the stack.
# The code block is responsible for DECREF()ing them.
# NOTE: If the label doesn't exist, just add it to ceval.c.
ninputs = len(self.input_effects)
# Don't pop common input/output effects at the bottom!
# These aren't DECREF'ed so they can stay.
for ieff, oeff in zip(self.input_effects, self.output_effects):
if ieff.name == oeff.name:
ninputs -= 1
else:
break
if ninputs:
f.write(f"{space}if ({cond}) goto pop_{ninputs}_{label};\n")
else:
f.write(f"{space}if ({cond}) goto {label};\n")
else:
f.write(line)
@dataclasses.dataclass
class SuperComponent:
instr: Instruction
input_mapping: dict[str, parser.StackEffect]
output_mapping: dict[str, parser.StackEffect]
class SuperInstruction(parser.Super):
stack: list[str]
initial_sp: int
final_sp: int
parts: list[SuperComponent]
def __init__(self, sup: parser.Super):
super().__init__(sup.kind, sup.name, sup.ops)
self.context = sup.context
def analyze(self, a: "Analyzer") -> None:
components = self.check_components(a)
self.stack, self.initial_sp = self.super_macro_analysis(a, components)
sp = self.initial_sp
self.parts = []
for instr in components:
input_mapping = {}
for ieffect in reversed(instr.input_effects):
sp -= 1
if ieffect.name != UNUSED:
input_mapping[self.stack[sp]] = ieffect
output_mapping = {}
for oeffect in instr.output_effects:
if oeffect.name != UNUSED:
output_mapping[self.stack[sp]] = oeffect
sp += 1
self.parts.append(SuperComponent(instr, input_mapping, output_mapping))
self.final_sp = sp
def check_components(self, a: "Analyzer") -> list[Instruction]:
components: list[Instruction] = []
if not self.ops:
a.error(f"{self.kind.capitalize()}-instruction has no operands", self)
for name in self.ops:
if name not in a.instrs:
a.error(f"Unknown instruction {name!r}", self)
else:
instr = a.instrs[name]
if self.kind == "super" and instr.kind != "inst":
a.error(f"Super-instruction operand {instr.name} must be inst, not op", instr)
components.append(instr)
return components
def super_macro_analysis(
self, a: "Analyzer", components: list[Instruction]
) -> tuple[list[str], int]:
"""Analyze a super-instruction or macro.
Print an error if there's a cache effect (which we don't support yet).
Return the list of variable names and the initial stack pointer.
"""
lowest = current = highest = 0
for instr in components:
if instr.cache_effects:
a.error(
f"Super-instruction {self.name!r} has cache effects in {instr.name!r}",
instr,
)
current -= len(instr.input_effects)
lowest = min(lowest, current)
current += len(instr.output_effects)
highest = max(highest, current)
# At this point, 'current' is the net stack effect,
# and 'lowest' and 'highest' are the extremes.
# Note that 'lowest' may be negative.
stack = [f"_tmp_{i+1}" for i in range(highest - lowest)]
return stack, -lowest
class Analyzer:
"""Parse input, analyze it, and write to output."""
filename: str
src: str
errors: int = 0
def error(self, msg: str, node: parser.Node) -> None:
lineno = 0
if context := node.context:
# Use line number of first non-comment in the node
for token in context.owner.tokens[context.begin : context.end]:
lineno = token.line
if token.kind != "COMMENT":
break
print(f"{self.filename}:{lineno}: {msg}", file=sys.stderr)
self.errors += 1
def __init__(self, filename: str):
"""Read the input file."""
self.filename = filename
with open(filename) as f:
self.src = f.read()
instrs: dict[str, Instruction] # Includes ops
supers: dict[str, parser.Super] # Includes macros
super_instrs: dict[str, SuperInstruction]
families: dict[str, parser.Family]
def parse(self) -> None:
"""Parse the source text."""
psr = parser.Parser(self.src, filename=self.filename)
# Skip until begin marker
while tkn := psr.next(raw=True):
if tkn.text == BEGIN_MARKER:
break
else:
raise psr.make_syntax_error(
f"Couldn't find {BEGIN_MARKER!r} in {psr.filename}"
)
# Parse until end marker
self.instrs = {}
self.supers = {}
self.families = {}
while (tkn := psr.peek(raw=True)) and tkn.text != END_MARKER:
if inst := psr.inst_def():
self.instrs[inst.name] = instr = Instruction(inst)
elif super := psr.super_def():
self.supers[super.name] = super
elif family := psr.family_def():
self.families[family.name] = family
else:
raise psr.make_syntax_error(f"Unexpected token")
print(
f"Read {len(self.instrs)} instructions, "
f"{len(self.supers)} supers/macros, "
f"and {len(self.families)} families from {self.filename}",
file=sys.stderr,
)
def analyze(self) -> None:
"""Analyze the inputs.
Raises SystemExit if there is an error.
"""
self.find_predictions()
self.map_families()
self.check_families()
self.analyze_supers()
def find_predictions(self) -> None:
"""Find the instructions that need PREDICTED() labels."""
for instr in self.instrs.values():
for target in re.findall(RE_PREDICTED, instr.block.text):
if target_instr := self.instrs.get(target):
target_instr.predicted = True
else:
self.error(
f"Unknown instruction {target!r} predicted in {instr.name!r}",
instr, # TODO: Use better location
)
def map_families(self) -> None:
"""Make instruction names back to their family, if they have one."""
for family in self.families.values():
for member in family.members:
if member_instr := self.instrs.get(member):
member_instr.family = family
else:
self.error(
f"Unknown instruction {member!r} referenced in family {family.name!r}",
family,
)
def check_families(self) -> None:
"""Check each family:
- Must have at least 2 members
- All members must be known instructions
- All members must have the same cache, input and output effects
"""
for family in self.families.values():
if len(family.members) < 2:
self.error(f"Family {family.name!r} has insufficient members", family)
members = [member for member in family.members if member in self.instrs]
if members != family.members:
unknown = set(family.members) - set(members)
self.error(f"Family {family.name!r} has unknown members: {unknown}", family)
if len(members) < 2:
continue
head = self.instrs[members[0]]
cache = head.cache_offset
input = len(head.input_effects)
output = len(head.output_effects)
for member in members[1:]:
instr = self.instrs[member]
c = instr.cache_offset
i = len(instr.input_effects)
o = len(instr.output_effects)
if (c, i, o) != (cache, input, output):
self.error(
f"Family {family.name!r} has inconsistent "
f"(cache, inputs, outputs) effects:\n"
f" {family.members[0]} = {(cache, input, output)}; "
f"{member} = {(c, i, o)}",
family,
)
def analyze_supers(self) -> None:
"""Analyze each super instruction."""
self.super_instrs = {}
for name, sup in self.supers.items():
dup = SuperInstruction(sup)
dup.analyze(self)
self.super_instrs[name] = dup
def write_instructions(self, filename: str) -> None:
"""Write instructions to output file."""
indent = " " * 8
with open(filename, "w") as f:
# Write provenance header
f.write(f"// This file is generated by {os.path.relpath(__file__)}\n")
f.write(f"// from {os.path.relpath(self.filename)}\n")
f.write(f"// Do not edit!\n")
# Write regular instructions
n_instrs = 0
for name, instr in self.instrs.items():
if instr.kind != "inst":
continue # ops are not real instructions
n_instrs += 1
f.write(f"\n{indent}TARGET({name}) {{\n")
if instr.predicted:
f.write(f"{indent} PREDICTED({name});\n")
instr.write(f, indent)
if not always_exits(instr.block):
f.write(f"{indent} DISPATCH();\n")
f.write(f"{indent}}}\n")
# Write super-instructions and macros
n_supers = 0
n_macros = 0
for sup in self.super_instrs.values():
if sup.kind == "super":
n_supers += 1
elif sup.kind == "macro":
n_macros += 1
self.write_super_macro(f, sup, indent)
print(
f"Wrote {n_instrs} instructions, {n_supers} supers, "
f"and {n_macros} macros to {filename}",
file=sys.stderr,
)
def write_super_macro(
self, f: typing.TextIO, sup: SuperInstruction, indent: str = ""
) -> None:
# TODO: Make write() and block() methods of some Formatter class
def write(arg: str) -> None:
if arg:
f.write(f"{indent}{arg}\n")
else:
f.write("\n")
@contextlib.contextmanager
def block(head: str):
if head:
write(head + " {")
else:
write("{")
nonlocal indent
indent += " "
yield
indent = indent[:-4]
write("}")
write("")
with block(f"TARGET({sup.name})"):
for i, var in enumerate(sup.stack):
if i < sup.initial_sp:
write(f"PyObject *{var} = PEEK({sup.initial_sp - i});")
else:
write(f"PyObject *{var};")
for i, comp in enumerate(sup.parts):
if i > 0 and sup.kind == "super":
write("NEXTOPARG();")
write("next_instr++;")
with block(""):
for var, ieffect in comp.input_mapping.items():
write(f"PyObject *{ieffect.name} = {var};")
for oeffect in comp.output_mapping.values():
write(f"PyObject *{oeffect.name};")
comp.instr.write_body(f, indent, dedent=-4)
for var, oeffect in comp.output_mapping.items():
write(f"{var} = {oeffect.name};")
if sup.final_sp > sup.initial_sp:
write(f"STACK_GROW({sup.final_sp - sup.initial_sp});")
elif sup.final_sp < sup.initial_sp:
write(f"STACK_SHRINK({sup.initial_sp - sup.final_sp});")
for i, var in enumerate(reversed(sup.stack[:sup.final_sp]), 1):
write(f"POKE({i}, {var});")
write("DISPATCH();")
def always_exits(block: parser.Block) -> bool:
"""Determine whether a block always ends in a return/goto/etc."""
text = block.text
lines = text.splitlines()
while lines and not lines[-1].strip():
lines.pop()
if not lines or lines[-1].strip() != "}":
return False
lines.pop()
if not lines:
return False
line = lines.pop().rstrip()
# Indent must match exactly (TODO: Do something better)
if line[:12] != " " * 12:
return False
line = line[12:]
return line.startswith(
("goto ", "return ", "DISPATCH", "GO_TO_", "Py_UNREACHABLE()")
)
def main():
"""Parse command line, parse input, analyze, write output."""
args = arg_parser.parse_args() # Prints message and sys.exit(2) on error
a = Analyzer(args.input) # Raises OSError if file not found
a.parse() # Raises SyntaxError on failure
a.analyze() # Prints messages and raises SystemExit on failure
if a.errors:
sys.exit(f"Found {a.errors} errors")
a.write_instructions(args.output) # Raises OSError if file can't be written
if __name__ == "__main__":
main()