| 
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 |  |  | """Random variable generators.
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     integers | 
					
						
							|  |  |  |     -------- | 
					
						
							|  |  |  |            uniform within range | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     sequences | 
					
						
							|  |  |  |     --------- | 
					
						
							|  |  |  |            pick random element | 
					
						
							| 
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 |  |  |            pick random sample | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |            generate random permutation | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 |  |  |     distributions on the real line: | 
					
						
							|  |  |  |     ------------------------------ | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |            uniform | 
					
						
							| 
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 |  |  |            normal (Gaussian) | 
					
						
							|  |  |  |            lognormal | 
					
						
							|  |  |  |            negative exponential | 
					
						
							|  |  |  |            gamma | 
					
						
							|  |  |  |            beta | 
					
						
							| 
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 |  |  |            pareto | 
					
						
							|  |  |  |            Weibull | 
					
						
							| 
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     distributions on the circle (angles 0 to 2pi) | 
					
						
							|  |  |  |     --------------------------------------------- | 
					
						
							|  |  |  |            circular uniform | 
					
						
							|  |  |  |            von Mises | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 |  |  | General notes on the underlying Mersenne Twister core generator: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | * The period is 2**19937-1. | 
					
						
							|  |  |  | * It is one of the most extensively tested generators in existence | 
					
						
							|  |  |  | * Without a direct way to compute N steps forward, the | 
					
						
							|  |  |  |   semantics of jumpahead(n) are weakened to simply jump | 
					
						
							|  |  |  |   to another distant state and rely on the large period | 
					
						
							|  |  |  |   to avoid overlapping sequences. | 
					
						
							|  |  |  | * The random() method is implemented in C, executes in | 
					
						
							|  |  |  |   a single Python step, and is, therefore, threadsafe. | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 |  |  | """
 | 
					
						
							| 
									
										
										
										
											1998-05-29 17:51:31 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  | from warnings import warn as _warn | 
					
						
							|  |  |  | from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | from math import log as _log, exp as _exp, pi as _pi, e as _e | 
					
						
							|  |  |  | from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin | 
					
						
							| 
									
										
										
										
											2004-08-31 02:19:55 +00:00
										 |  |  | from math import floor as _floor | 
					
						
							| 
									
										
										
										
											2004-09-05 00:00:42 +00:00
										 |  |  | from os import urandom as _urandom | 
					
						
							|  |  |  | from binascii import hexlify as _hexlify | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 |  |  | __all__ = ["Random","seed","random","uniform","randint","choice","sample", | 
					
						
							| 
									
										
										
										
											2001-02-15 22:15:14 +00:00
										 |  |  |            "randrange","shuffle","normalvariate","lognormvariate", | 
					
						
							| 
									
										
										
										
											2003-08-05 12:23:19 +00:00
										 |  |  |            "expovariate","vonmisesvariate","gammavariate", | 
					
						
							|  |  |  |            "gauss","betavariate","paretovariate","weibullvariate", | 
					
						
							| 
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 |  |  |            "getstate","setstate","jumpahead", "WichmannHill", "getrandbits", | 
					
						
							| 
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 |  |  |            "SystemRandom"] | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0) | 
					
						
							|  |  |  | TWOPI = 2.0*_pi | 
					
						
							|  |  |  | LOG4 = _log(4.0) | 
					
						
							|  |  |  | SG_MAGICCONST = 1.0 + _log(4.5) | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  | BPF = 53        # Number of bits in a float | 
					
						
							| 
									
										
										
										
											2004-08-31 02:19:55 +00:00
										 |  |  | RECIP_BPF = 2**-BPF | 
					
						
							| 
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | # Translated by Guido van Rossum from C source provided by | 
					
						
							| 
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 |  |  | # Adrian Baddeley.  Adapted by Raymond Hettinger for use with | 
					
						
							| 
									
										
										
										
											2004-08-31 01:05:15 +00:00
										 |  |  | # the Mersenne Twister  and os.urandom() core generators. | 
					
						
							| 
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-01-07 10:25:55 +00:00
										 |  |  | import _random | 
					
						
							| 
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-01-07 10:25:55 +00:00
										 |  |  | class Random(_random.Random): | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |     """Random number generator base class used by bound module functions.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Used to instantiate instances of Random to get generators that don't | 
					
						
							|  |  |  |     share state.  Especially useful for multi-threaded programs, creating | 
					
						
							|  |  |  |     a different instance of Random for each thread, and using the jumpahead() | 
					
						
							|  |  |  |     method to ensure that the generated sequences seen by each thread don't | 
					
						
							|  |  |  |     overlap. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Class Random can also be subclassed if you want to use a different basic | 
					
						
							|  |  |  |     generator of your own devising: in that case, override the following | 
					
						
							|  |  |  |     methods:  random(), seed(), getstate(), setstate() and jumpahead(). | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |     Optionally, implement a getrandombits() method so that randrange() | 
					
						
							|  |  |  |     can cover arbitrarily large ranges. | 
					
						
							| 
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |     """
 | 
					
						
							| 
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 |  |  |     VERSION = 2     # used by getstate/setstate | 
					
						
							| 
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def __init__(self, x=None): | 
					
						
							|  |  |  |         """Initialize an instance.
 | 
					
						
							| 
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         Optional argument x controls seeding, as for Random.seed(). | 
					
						
							|  |  |  |         """
 | 
					
						
							| 
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         self.seed(x) | 
					
						
							| 
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 |  |  |         self.gauss_next = None | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 |  |  |     def seed(self, a=None): | 
					
						
							|  |  |  |         """Initialize internal state from hashable object.
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 |  |  |         None or no argument seeds from current time or from an operating | 
					
						
							|  |  |  |         system specific randomness source if available. | 
					
						
							| 
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-01 10:06:53 +00:00
										 |  |  |         If a is not None or an int or long, hash(a) is used instead. | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-08-09 18:30:57 +00:00
										 |  |  |         if a is None: | 
					
						
							| 
									
										
										
										
											2004-09-05 00:00:42 +00:00
										 |  |  |             try: | 
					
						
							|  |  |  |                 a = long(_hexlify(_urandom(16)), 16) | 
					
						
							|  |  |  |             except NotImplementedError: | 
					
						
							| 
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 |  |  |                 import time | 
					
						
							|  |  |  |                 a = long(time.time() * 256) # use fractional seconds | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-01-07 10:25:55 +00:00
										 |  |  |         super(Random, self).seed(a) | 
					
						
							| 
									
										
										
										
											2002-05-05 20:40:00 +00:00
										 |  |  |         self.gauss_next = None | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def getstate(self): | 
					
						
							|  |  |  |         """Return internal state; can be passed to setstate() later.""" | 
					
						
							| 
									
										
										
										
											2003-01-07 10:25:55 +00:00
										 |  |  |         return self.VERSION, super(Random, self).getstate(), self.gauss_next | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def setstate(self, state): | 
					
						
							|  |  |  |         """Restore internal state from object returned by getstate().""" | 
					
						
							|  |  |  |         version = state[0] | 
					
						
							| 
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 |  |  |         if version == 2: | 
					
						
							|  |  |  |             version, internalstate, self.gauss_next = state | 
					
						
							| 
									
										
										
										
											2003-01-07 10:25:55 +00:00
										 |  |  |             super(Random, self).setstate(internalstate) | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("state with version %s passed to " | 
					
						
							|  |  |  |                              "Random.setstate() of version %s" % | 
					
						
							|  |  |  |                              (version, self.VERSION)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## ---- Methods below this point do not need to be overridden when | 
					
						
							|  |  |  | ## ---- subclassing for the purpose of using a different core generator. | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- pickle support  ------------------- | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  |     def __getstate__(self): # for pickle | 
					
						
							|  |  |  |         return self.getstate() | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  |     def __setstate__(self, state):  # for pickle | 
					
						
							|  |  |  |         self.setstate(state) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-06-24 20:29:04 +00:00
										 |  |  |     def __reduce__(self): | 
					
						
							|  |  |  |         return self.__class__, (), self.getstate() | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- integer methods  ------------------- | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |     def randrange(self, start, stop=None, step=1, int=int, default=None, | 
					
						
							|  |  |  |                   maxwidth=1L<<BPF): | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         """Choose a random item from range(start, stop[, step]).
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         This fixes the problem with randint() which includes the | 
					
						
							|  |  |  |         endpoint; in Python this is usually not what you want. | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |         Do not supply the 'int', 'default', and 'maxwidth' arguments. | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # This code is a bit messy to make it fast for the | 
					
						
							| 
									
										
										
										
											2002-08-16 03:41:39 +00:00
										 |  |  |         # common case while still doing adequate error checking. | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         istart = int(start) | 
					
						
							|  |  |  |         if istart != start: | 
					
						
							|  |  |  |             raise ValueError, "non-integer arg 1 for randrange()" | 
					
						
							|  |  |  |         if stop is default: | 
					
						
							|  |  |  |             if istart > 0: | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |                 if istart >= maxwidth: | 
					
						
							|  |  |  |                     return self._randbelow(istart) | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |                 return int(self.random() * istart) | 
					
						
							|  |  |  |             raise ValueError, "empty range for randrange()" | 
					
						
							| 
									
										
										
										
											2002-08-16 03:41:39 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # stop argument supplied. | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         istop = int(stop) | 
					
						
							|  |  |  |         if istop != stop: | 
					
						
							|  |  |  |             raise ValueError, "non-integer stop for randrange()" | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |         width = istop - istart | 
					
						
							|  |  |  |         if step == 1 and width > 0: | 
					
						
							| 
									
										
										
										
											2003-06-19 03:46:46 +00:00
										 |  |  |             # Note that | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |             #     int(istart + self.random()*width) | 
					
						
							| 
									
										
										
										
											2003-06-19 03:46:46 +00:00
										 |  |  |             # instead would be incorrect.  For example, consider istart | 
					
						
							|  |  |  |             # = -2 and istop = 0.  Then the guts would be in | 
					
						
							|  |  |  |             # -2.0 to 0.0 exclusive on both ends (ignoring that random() | 
					
						
							|  |  |  |             # might return 0.0), and because int() truncates toward 0, the | 
					
						
							|  |  |  |             # final result would be -1 or 0 (instead of -2 or -1). | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |             #     istart + int(self.random()*width) | 
					
						
							| 
									
										
										
										
											2003-06-19 03:46:46 +00:00
										 |  |  |             # would also be incorrect, for a subtler reason:  the RHS | 
					
						
							|  |  |  |             # can return a long, and then randrange() would also return | 
					
						
							|  |  |  |             # a long, but we're supposed to return an int (for backward | 
					
						
							|  |  |  |             # compatibility). | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |             if width >= maxwidth: | 
					
						
							| 
									
										
										
										
											2004-01-18 20:29:55 +00:00
										 |  |  |                 return int(istart + self._randbelow(width)) | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |             return int(istart + int(self.random()*width)) | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         if step == 1: | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |             raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width) | 
					
						
							| 
									
										
										
										
											2002-08-16 03:41:39 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # Non-unit step argument supplied. | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         istep = int(step) | 
					
						
							|  |  |  |         if istep != step: | 
					
						
							|  |  |  |             raise ValueError, "non-integer step for randrange()" | 
					
						
							|  |  |  |         if istep > 0: | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |             n = (width + istep - 1) / istep | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         elif istep < 0: | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |             n = (width + istep + 1) / istep | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError, "zero step for randrange()" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if n <= 0: | 
					
						
							|  |  |  |             raise ValueError, "empty range for randrange()" | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         if n >= maxwidth: | 
					
						
							|  |  |  |             return istart + self._randbelow(n) | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         return istart + istep*int(self.random() * n) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def randint(self, a, b): | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  |         """Return random integer in range [a, b], including both end points.
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return self.randrange(a, b+1) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  |     def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF, | 
					
						
							|  |  |  |                    _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType): | 
					
						
							|  |  |  |         """Return a random int in the range [0,n)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         Handles the case where n has more bits than returned | 
					
						
							|  |  |  |         by a single call to the underlying generator. | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         try: | 
					
						
							|  |  |  |             getrandbits = self.getrandbits | 
					
						
							|  |  |  |         except AttributeError: | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             # Only call self.getrandbits if the original random() builtin method | 
					
						
							|  |  |  |             # has not been overridden or if a new getrandbits() was supplied. | 
					
						
							|  |  |  |             # This assures that the two methods correspond. | 
					
						
							|  |  |  |             if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method: | 
					
						
							|  |  |  |                 k = int(1.00001 + _log(n-1, 2.0))   # 2**k > n-1 > 2**(k-2) | 
					
						
							|  |  |  |                 r = getrandbits(k) | 
					
						
							|  |  |  |                 while r >= n: | 
					
						
							|  |  |  |                     r = getrandbits(k) | 
					
						
							|  |  |  |                 return r | 
					
						
							|  |  |  |         if n >= _maxwidth: | 
					
						
							|  |  |  |             _warn("Underlying random() generator does not supply \n" | 
					
						
							|  |  |  |                 "enough bits to choose from a population range this large") | 
					
						
							|  |  |  |         return int(self.random() * n) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- sequence methods  ------------------- | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def choice(self, seq): | 
					
						
							|  |  |  |         """Choose a random element from a non-empty sequence.""" | 
					
						
							| 
									
										
										
										
											2004-06-07 02:07:15 +00:00
										 |  |  |         return seq[int(self.random() * len(seq))]  # raises IndexError if seq is empty | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def shuffle(self, x, random=None, int=int): | 
					
						
							|  |  |  |         """x, random=random.random -> shuffle list x in place; return None.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         Optional arg random is a 0-argument function returning a random | 
					
						
							|  |  |  |         float in [0.0, 1.0); by default, the standard random.random. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         Note that for even rather small len(x), the total number of | 
					
						
							|  |  |  |         permutations of x is larger than the period of most random number | 
					
						
							|  |  |  |         generators; this implies that "most" permutations of a long | 
					
						
							|  |  |  |         sequence can never be generated. | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if random is None: | 
					
						
							|  |  |  |             random = self.random | 
					
						
							| 
									
										
										
										
											2003-11-06 14:06:48 +00:00
										 |  |  |         for i in reversed(xrange(1, len(x))): | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  |             # pick an element in x[:i+1] with which to exchange x[i] | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |             j = int(random() * (i+1)) | 
					
						
							|  |  |  |             x[i], x[j] = x[j], x[i] | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-06-13 07:01:51 +00:00
										 |  |  |     def sample(self, population, k): | 
					
						
							| 
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 |  |  |         """Chooses k unique random elements from a population sequence.
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 |  |  |         Returns a new list containing elements from the population while | 
					
						
							|  |  |  |         leaving the original population unchanged.  The resulting list is | 
					
						
							|  |  |  |         in selection order so that all sub-slices will also be valid random | 
					
						
							|  |  |  |         samples.  This allows raffle winners (the sample) to be partitioned | 
					
						
							|  |  |  |         into grand prize and second place winners (the subslices). | 
					
						
							| 
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 |  |  |         Members of the population need not be hashable or unique.  If the | 
					
						
							|  |  |  |         population contains repeats, then each occurrence is a possible | 
					
						
							|  |  |  |         selection in the sample. | 
					
						
							| 
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 |  |  |         To choose a sample in a range of integers, use xrange as an argument. | 
					
						
							|  |  |  |         This is especially fast and space efficient for sampling from a | 
					
						
							|  |  |  |         large population:   sample(xrange(10000000), 60) | 
					
						
							| 
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 |  |  |         # Sampling without replacement entails tracking either potential | 
					
						
							| 
									
										
										
										
											2003-01-04 05:20:33 +00:00
										 |  |  |         # selections (the pool) in a list or previous selections in a | 
					
						
							|  |  |  |         # dictionary. | 
					
						
							| 
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2004-02-23 17:27:57 +00:00
										 |  |  |         # When the number of selections is small compared to the | 
					
						
							|  |  |  |         # population, then tracking selections is efficient, requiring | 
					
						
							|  |  |  |         # only a small dictionary and an occasional reselection.  For | 
					
						
							|  |  |  |         # a larger number of selections, the pool tracking method is | 
					
						
							|  |  |  |         # preferred since the list takes less space than the | 
					
						
							|  |  |  |         # dictionary and it doesn't suffer from frequent reselections. | 
					
						
							| 
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 |  |  |         n = len(population) | 
					
						
							|  |  |  |         if not 0 <= k <= n: | 
					
						
							|  |  |  |             raise ValueError, "sample larger than population" | 
					
						
							| 
									
										
										
										
											2003-01-04 05:20:33 +00:00
										 |  |  |         random = self.random | 
					
						
							| 
									
										
										
										
											2003-06-13 07:01:51 +00:00
										 |  |  |         _int = int | 
					
						
							| 
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 |  |  |         result = [None] * k | 
					
						
							| 
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 |  |  |         if n < 6 * k:     # if n len list takes less space than a k len dict | 
					
						
							| 
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 |  |  |             pool = list(population) | 
					
						
							|  |  |  |             for i in xrange(k):         # invariant:  non-selected at [0,n-i) | 
					
						
							| 
									
										
										
										
											2003-06-13 07:01:51 +00:00
										 |  |  |                 j = _int(random() * (n-i)) | 
					
						
							| 
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 |  |  |                 result[i] = pool[j] | 
					
						
							| 
									
										
										
										
											2003-01-04 05:20:33 +00:00
										 |  |  |                 pool[j] = pool[n-i-1]   # move non-selected item into vacancy | 
					
						
							| 
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 |  |  |         else: | 
					
						
							| 
									
										
										
										
											2003-09-06 04:25:54 +00:00
										 |  |  |             try: | 
					
						
							|  |  |  |                 n > 0 and (population[0], population[n//2], population[n-1]) | 
					
						
							|  |  |  |             except (TypeError, KeyError):   # handle sets and dictionaries | 
					
						
							|  |  |  |                 population = tuple(population) | 
					
						
							| 
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 |  |  |             selected = {} | 
					
						
							| 
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 |  |  |             for i in xrange(k): | 
					
						
							| 
									
										
										
										
											2003-06-13 07:01:51 +00:00
										 |  |  |                 j = _int(random() * n) | 
					
						
							| 
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 |  |  |                 while j in selected: | 
					
						
							| 
									
										
										
										
											2003-06-13 07:01:51 +00:00
										 |  |  |                     j = _int(random() * n) | 
					
						
							| 
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 |  |  |                 result[i] = selected[j] = population[j] | 
					
						
							| 
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 |  |  |         return result | 
					
						
							| 
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- real-valued distributions  ------------------- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ## -------------------- uniform distribution ------------------- | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def uniform(self, a, b): | 
					
						
							|  |  |  |         """Get a random number in the range [a, b).""" | 
					
						
							|  |  |  |         return a + (b-a) * self.random() | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- normal distribution -------------------- | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def normalvariate(self, mu, sigma): | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """Normal distribution.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         mu is the mean, and sigma is the standard deviation. | 
					
						
							| 
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         # mu = mean, sigma = standard deviation | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Uses Kinderman and Monahan method. Reference: Kinderman, | 
					
						
							|  |  |  |         # A.J. and Monahan, J.F., "Computer generation of random | 
					
						
							|  |  |  |         # variables using the ratio of uniform deviates", ACM Trans | 
					
						
							|  |  |  |         # Math Software, 3, (1977), pp257-260. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         random = self.random | 
					
						
							| 
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 |  |  |         while True: | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |             u1 = random() | 
					
						
							| 
									
										
										
										
											2003-01-04 09:26:32 +00:00
										 |  |  |             u2 = 1.0 - random() | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |             z = NV_MAGICCONST*(u1-0.5)/u2 | 
					
						
							|  |  |  |             zz = z*z/4.0 | 
					
						
							|  |  |  |             if zz <= -_log(u2): | 
					
						
							|  |  |  |                 break | 
					
						
							|  |  |  |         return mu + z*sigma | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- lognormal distribution -------------------- | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def lognormvariate(self, mu, sigma): | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """Log normal distribution.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         If you take the natural logarithm of this distribution, you'll get a | 
					
						
							|  |  |  |         normal distribution with mean mu and standard deviation sigma. | 
					
						
							|  |  |  |         mu can have any value, and sigma must be greater than zero. | 
					
						
							| 
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         return _exp(self.normalvariate(mu, sigma)) | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- exponential distribution -------------------- | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def expovariate(self, lambd): | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """Exponential distribution.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         lambd is 1.0 divided by the desired mean.  (The parameter would be | 
					
						
							|  |  |  |         called "lambda", but that is a reserved word in Python.)  Returned | 
					
						
							|  |  |  |         values range from 0 to positive infinity. | 
					
						
							| 
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         # lambd: rate lambd = 1/mean | 
					
						
							|  |  |  |         # ('lambda' is a Python reserved word) | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         random = self.random | 
					
						
							| 
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 |  |  |         u = random() | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         while u <= 1e-7: | 
					
						
							|  |  |  |             u = random() | 
					
						
							|  |  |  |         return -_log(u)/lambd | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- von Mises distribution -------------------- | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def vonmisesvariate(self, mu, kappa): | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """Circular data distribution.
 | 
					
						
							| 
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         mu is the mean angle, expressed in radians between 0 and 2*pi, and | 
					
						
							|  |  |  |         kappa is the concentration parameter, which must be greater than or | 
					
						
							|  |  |  |         equal to zero.  If kappa is equal to zero, this distribution reduces | 
					
						
							|  |  |  |         to a uniform random angle over the range 0 to 2*pi. | 
					
						
							| 
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         # mu:    mean angle (in radians between 0 and 2*pi) | 
					
						
							|  |  |  |         # kappa: concentration parameter kappa (>= 0) | 
					
						
							|  |  |  |         # if kappa = 0 generate uniform random angle | 
					
						
							| 
									
										
										
										
											1998-04-06 14:12:13 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         # Based upon an algorithm published in: Fisher, N.I., | 
					
						
							|  |  |  |         # "Statistical Analysis of Circular Data", Cambridge | 
					
						
							|  |  |  |         # University Press, 1993. | 
					
						
							| 
									
										
										
										
											1998-04-06 14:12:13 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         # Thanks to Magnus Kessler for a correction to the | 
					
						
							|  |  |  |         # implementation of step 4. | 
					
						
							| 
									
										
										
										
											1998-04-06 14:12:13 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         random = self.random | 
					
						
							|  |  |  |         if kappa <= 1e-6: | 
					
						
							|  |  |  |             return TWOPI * random() | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa) | 
					
						
							|  |  |  |         b = (a - _sqrt(2.0 * a))/(2.0 * kappa) | 
					
						
							|  |  |  |         r = (1.0 + b * b)/(2.0 * b) | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 |  |  |         while True: | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |             u1 = random() | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |             z = _cos(_pi * u1) | 
					
						
							|  |  |  |             f = (1.0 + r * z)/(r + z) | 
					
						
							|  |  |  |             c = kappa * (r - f) | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |             u2 = random() | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |             if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)): | 
					
						
							|  |  |  |                 break | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         u3 = random() | 
					
						
							|  |  |  |         if u3 > 0.5: | 
					
						
							|  |  |  |             theta = (mu % TWOPI) + _acos(f) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             theta = (mu % TWOPI) - _acos(f) | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         return theta | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- gamma distribution -------------------- | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def gammavariate(self, alpha, beta): | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """Gamma distribution.  Not the gamma function!
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         Conditions on the parameters are alpha > 0 and beta > 0. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         """
 | 
					
						
							| 
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 |  |  |         # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2 | 
					
						
							| 
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-14 14:08:12 +00:00
										 |  |  |         # Warning: a few older sources define the gamma distribution in terms | 
					
						
							|  |  |  |         # of alpha > -1.0 | 
					
						
							|  |  |  |         if alpha <= 0.0 or beta <= 0.0: | 
					
						
							|  |  |  |             raise ValueError, 'gammavariate: alpha and beta must be > 0.0' | 
					
						
							| 
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         random = self.random | 
					
						
							|  |  |  |         if alpha > 1.0: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Uses R.C.H. Cheng, "The generation of Gamma | 
					
						
							|  |  |  |             # variables with non-integral shape parameters", | 
					
						
							|  |  |  |             # Applied Statistics, (1977), 26, No. 1, p71-74 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-13 23:40:14 +00:00
										 |  |  |             ainv = _sqrt(2.0 * alpha - 1.0) | 
					
						
							|  |  |  |             bbb = alpha - LOG4 | 
					
						
							|  |  |  |             ccc = alpha + ainv | 
					
						
							| 
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 |  |  |             while True: | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |                 u1 = random() | 
					
						
							| 
									
										
										
										
											2003-01-04 09:26:32 +00:00
										 |  |  |                 if not 1e-7 < u1 < .9999999: | 
					
						
							|  |  |  |                     continue | 
					
						
							|  |  |  |                 u2 = 1.0 - random() | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |                 v = _log(u1/(1.0-u1))/ainv | 
					
						
							|  |  |  |                 x = alpha*_exp(v) | 
					
						
							|  |  |  |                 z = u1*u1*u2 | 
					
						
							|  |  |  |                 r = bbb+ccc*v-x | 
					
						
							|  |  |  |                 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z): | 
					
						
							| 
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 |  |  |                     return x * beta | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         elif alpha == 1.0: | 
					
						
							|  |  |  |             # expovariate(1) | 
					
						
							| 
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 |  |  |             u = random() | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |             while u <= 1e-7: | 
					
						
							|  |  |  |                 u = random() | 
					
						
							| 
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 |  |  |             return -_log(u) * beta | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         else:   # alpha is between 0 and 1 (exclusive) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 |  |  |             while True: | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |                 u = random() | 
					
						
							|  |  |  |                 b = (_e + alpha)/_e | 
					
						
							|  |  |  |                 p = b*u | 
					
						
							|  |  |  |                 if p <= 1.0: | 
					
						
							|  |  |  |                     x = pow(p, 1.0/alpha) | 
					
						
							|  |  |  |                 else: | 
					
						
							|  |  |  |                     # p > 1 | 
					
						
							|  |  |  |                     x = -_log((b-p)/alpha) | 
					
						
							|  |  |  |                 u1 = random() | 
					
						
							|  |  |  |                 if not (((p <= 1.0) and (u1 > _exp(-x))) or | 
					
						
							|  |  |  |                           ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))): | 
					
						
							|  |  |  |                     break | 
					
						
							| 
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 |  |  |             return x * beta | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- Gauss (faster alternative) -------------------- | 
					
						
							| 
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def gauss(self, mu, sigma): | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """Gaussian distribution.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         mu is the mean, and sigma is the standard deviation.  This is | 
					
						
							|  |  |  |         slightly faster than the normalvariate() function. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         Not thread-safe without a lock around calls. | 
					
						
							| 
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # When x and y are two variables from [0, 1), uniformly | 
					
						
							|  |  |  |         # distributed, then | 
					
						
							|  |  |  |         # | 
					
						
							|  |  |  |         #    cos(2*pi*x)*sqrt(-2*log(1-y)) | 
					
						
							|  |  |  |         #    sin(2*pi*x)*sqrt(-2*log(1-y)) | 
					
						
							|  |  |  |         # | 
					
						
							|  |  |  |         # are two *independent* variables with normal distribution | 
					
						
							|  |  |  |         # (mu = 0, sigma = 1). | 
					
						
							|  |  |  |         # (Lambert Meertens) | 
					
						
							|  |  |  |         # (corrected version; bug discovered by Mike Miller, fixed by LM) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Multithreading note: When two threads call this function | 
					
						
							|  |  |  |         # simultaneously, it is possible that they will receive the | 
					
						
							|  |  |  |         # same return value.  The window is very small though.  To | 
					
						
							|  |  |  |         # avoid this, you have to use a lock around all calls.  (I | 
					
						
							|  |  |  |         # didn't want to slow this down in the serial case by using a | 
					
						
							|  |  |  |         # lock here.) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         random = self.random | 
					
						
							|  |  |  |         z = self.gauss_next | 
					
						
							|  |  |  |         self.gauss_next = None | 
					
						
							|  |  |  |         if z is None: | 
					
						
							|  |  |  |             x2pi = random() * TWOPI | 
					
						
							|  |  |  |             g2rad = _sqrt(-2.0 * _log(1.0 - random())) | 
					
						
							|  |  |  |             z = _cos(x2pi) * g2rad | 
					
						
							|  |  |  |             self.gauss_next = _sin(x2pi) * g2rad | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return mu + z*sigma | 
					
						
							| 
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- beta -------------------- | 
					
						
							| 
									
										
										
										
											2001-01-26 06:49:56 +00:00
										 |  |  | ## See | 
					
						
							|  |  |  | ## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470 | 
					
						
							|  |  |  | ## for Ivan Frohne's insightful analysis of why the original implementation: | 
					
						
							|  |  |  | ## | 
					
						
							|  |  |  | ##    def betavariate(self, alpha, beta): | 
					
						
							|  |  |  | ##        # Discrete Event Simulation in C, pp 87-88. | 
					
						
							|  |  |  | ## | 
					
						
							|  |  |  | ##        y = self.expovariate(alpha) | 
					
						
							|  |  |  | ##        z = self.expovariate(1.0/beta) | 
					
						
							|  |  |  | ##        return z/(y+z) | 
					
						
							|  |  |  | ## | 
					
						
							|  |  |  | ## was dead wrong, and how it probably got that way. | 
					
						
							| 
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def betavariate(self, alpha, beta): | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """Beta distribution.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         Conditions on the parameters are alpha > -1 and beta} > -1. | 
					
						
							|  |  |  |         Returned values range between 0 and 1. | 
					
						
							| 
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """
 | 
					
						
							| 
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-26 06:49:56 +00:00
										 |  |  |         # This version due to Janne Sinkkonen, and matches all the std | 
					
						
							|  |  |  |         # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution"). | 
					
						
							|  |  |  |         y = self.gammavariate(alpha, 1.) | 
					
						
							|  |  |  |         if y == 0: | 
					
						
							|  |  |  |             return 0.0 | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             return y / (y + self.gammavariate(beta, 1.)) | 
					
						
							| 
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- Pareto -------------------- | 
					
						
							| 
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def paretovariate(self, alpha): | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """Pareto distribution.  alpha is the shape parameter.""" | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         # Jain, pg. 495 | 
					
						
							| 
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-01-04 09:26:32 +00:00
										 |  |  |         u = 1.0 - self.random() | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         return 1.0 / pow(u, 1.0/alpha) | 
					
						
							| 
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- Weibull -------------------- | 
					
						
							| 
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     def weibullvariate(self, alpha, beta): | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """Weibull distribution.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         alpha is the scale parameter and beta is the shape parameter. | 
					
						
							| 
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 |  |  |         """
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         # Jain, pg. 499; bug fix courtesy Bill Arms | 
					
						
							| 
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-01-04 09:26:32 +00:00
										 |  |  |         u = 1.0 - self.random() | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |         return alpha * pow(-_log(u), 1.0/beta) | 
					
						
							| 
									
										
										
										
											1999-08-18 13:53:28 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 |  |  | ## -------------------- Wichmann-Hill ------------------- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class WichmannHill(Random): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     VERSION = 1     # used by getstate/setstate | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def seed(self, a=None): | 
					
						
							|  |  |  |         """Initialize internal state from hashable object.
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 |  |  |         None or no argument seeds from current time or from an operating | 
					
						
							|  |  |  |         system specific randomness source if available. | 
					
						
							| 
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         If a is not None or an int or long, hash(a) is used instead. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         If a is an int or long, a is used directly.  Distinct values between | 
					
						
							|  |  |  |         0 and 27814431486575L inclusive are guaranteed to yield distinct | 
					
						
							|  |  |  |         internal states (this guarantee is specific to the default | 
					
						
							|  |  |  |         Wichmann-Hill generator). | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if a is None: | 
					
						
							| 
									
										
										
										
											2004-09-05 00:00:42 +00:00
										 |  |  |             try: | 
					
						
							|  |  |  |                 a = long(_hexlify(_urandom(16)), 16) | 
					
						
							|  |  |  |             except NotImplementedError: | 
					
						
							| 
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 |  |  |                 import time | 
					
						
							|  |  |  |                 a = long(time.time() * 256) # use fractional seconds | 
					
						
							| 
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |         if not isinstance(a, (int, long)): | 
					
						
							|  |  |  |             a = hash(a) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         a, x = divmod(a, 30268) | 
					
						
							|  |  |  |         a, y = divmod(a, 30306) | 
					
						
							|  |  |  |         a, z = divmod(a, 30322) | 
					
						
							|  |  |  |         self._seed = int(x)+1, int(y)+1, int(z)+1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.gauss_next = None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def random(self): | 
					
						
							|  |  |  |         """Get the next random number in the range [0.0, 1.0).""" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Wichman-Hill random number generator. | 
					
						
							|  |  |  |         # | 
					
						
							|  |  |  |         # Wichmann, B. A. & Hill, I. D. (1982) | 
					
						
							|  |  |  |         # Algorithm AS 183: | 
					
						
							|  |  |  |         # An efficient and portable pseudo-random number generator | 
					
						
							|  |  |  |         # Applied Statistics 31 (1982) 188-190 | 
					
						
							|  |  |  |         # | 
					
						
							|  |  |  |         # see also: | 
					
						
							|  |  |  |         #        Correction to Algorithm AS 183 | 
					
						
							|  |  |  |         #        Applied Statistics 33 (1984) 123 | 
					
						
							|  |  |  |         # | 
					
						
							|  |  |  |         #        McLeod, A. I. (1985) | 
					
						
							|  |  |  |         #        A remark on Algorithm AS 183 | 
					
						
							|  |  |  |         #        Applied Statistics 34 (1985),198-200 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # This part is thread-unsafe: | 
					
						
							|  |  |  |         # BEGIN CRITICAL SECTION | 
					
						
							|  |  |  |         x, y, z = self._seed | 
					
						
							|  |  |  |         x = (171 * x) % 30269 | 
					
						
							|  |  |  |         y = (172 * y) % 30307 | 
					
						
							|  |  |  |         z = (170 * z) % 30323 | 
					
						
							|  |  |  |         self._seed = x, y, z | 
					
						
							|  |  |  |         # END CRITICAL SECTION | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Note:  on a platform using IEEE-754 double arithmetic, this can | 
					
						
							|  |  |  |         # never return 0.0 (asserted by Tim; proof too long for a comment). | 
					
						
							|  |  |  |         return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def getstate(self): | 
					
						
							|  |  |  |         """Return internal state; can be passed to setstate() later.""" | 
					
						
							|  |  |  |         return self.VERSION, self._seed, self.gauss_next | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def setstate(self, state): | 
					
						
							|  |  |  |         """Restore internal state from object returned by getstate().""" | 
					
						
							|  |  |  |         version = state[0] | 
					
						
							|  |  |  |         if version == 1: | 
					
						
							|  |  |  |             version, self._seed, self.gauss_next = state | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             raise ValueError("state with version %s passed to " | 
					
						
							|  |  |  |                              "Random.setstate() of version %s" % | 
					
						
							|  |  |  |                              (version, self.VERSION)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def jumpahead(self, n): | 
					
						
							|  |  |  |         """Act as if n calls to random() were made, but quickly.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         n is an int, greater than or equal to 0. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         Example use:  If you have 2 threads and know that each will | 
					
						
							|  |  |  |         consume no more than a million random numbers, create two Random | 
					
						
							|  |  |  |         objects r1 and r2, then do | 
					
						
							|  |  |  |             r2.setstate(r1.getstate()) | 
					
						
							|  |  |  |             r2.jumpahead(1000000) | 
					
						
							|  |  |  |         Then r1 and r2 will use guaranteed-disjoint segments of the full | 
					
						
							|  |  |  |         period. | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if not n >= 0: | 
					
						
							|  |  |  |             raise ValueError("n must be >= 0") | 
					
						
							|  |  |  |         x, y, z = self._seed | 
					
						
							|  |  |  |         x = int(x * pow(171, n, 30269)) % 30269 | 
					
						
							|  |  |  |         y = int(y * pow(172, n, 30307)) % 30307 | 
					
						
							|  |  |  |         z = int(z * pow(170, n, 30323)) % 30323 | 
					
						
							|  |  |  |         self._seed = x, y, z | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __whseed(self, x=0, y=0, z=0): | 
					
						
							|  |  |  |         """Set the Wichmann-Hill seed from (x, y, z).
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         These must be integers in the range [0, 256). | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if not type(x) == type(y) == type(z) == int: | 
					
						
							|  |  |  |             raise TypeError('seeds must be integers') | 
					
						
							|  |  |  |         if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256): | 
					
						
							|  |  |  |             raise ValueError('seeds must be in range(0, 256)') | 
					
						
							|  |  |  |         if 0 == x == y == z: | 
					
						
							|  |  |  |             # Initialize from current time | 
					
						
							|  |  |  |             import time | 
					
						
							|  |  |  |             t = long(time.time() * 256) | 
					
						
							|  |  |  |             t = int((t&0xffffff) ^ (t>>24)) | 
					
						
							|  |  |  |             t, x = divmod(t, 256) | 
					
						
							|  |  |  |             t, y = divmod(t, 256) | 
					
						
							|  |  |  |             t, z = divmod(t, 256) | 
					
						
							|  |  |  |         # Zero is a poor seed, so substitute 1 | 
					
						
							|  |  |  |         self._seed = (x or 1, y or 1, z or 1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.gauss_next = None | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def whseed(self, a=None): | 
					
						
							|  |  |  |         """Seed from hashable object's hash code.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         None or no argument seeds from current time.  It is not guaranteed | 
					
						
							|  |  |  |         that objects with distinct hash codes lead to distinct internal | 
					
						
							|  |  |  |         states. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         This is obsolete, provided for compatibility with the seed routine | 
					
						
							|  |  |  |         used prior to Python 2.1.  Use the .seed() method instead. | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if a is None: | 
					
						
							|  |  |  |             self.__whseed() | 
					
						
							|  |  |  |             return | 
					
						
							|  |  |  |         a = hash(a) | 
					
						
							|  |  |  |         a, x = divmod(a, 256) | 
					
						
							|  |  |  |         a, y = divmod(a, 256) | 
					
						
							|  |  |  |         a, z = divmod(a, 256) | 
					
						
							|  |  |  |         x = (x + a) % 256 or 1 | 
					
						
							|  |  |  |         y = (y + a) % 256 or 1 | 
					
						
							|  |  |  |         z = (z + a) % 256 or 1 | 
					
						
							|  |  |  |         self.__whseed(x, y, z) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 |  |  | ## --------------- Operating System Random Source  ------------------ | 
					
						
							| 
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 |  |  | class SystemRandom(Random): | 
					
						
							|  |  |  |     """Alternate random number generator using sources provided
 | 
					
						
							|  |  |  |     by the operating system (such as /dev/urandom on Unix or | 
					
						
							|  |  |  |     CryptGenRandom on Windows). | 
					
						
							| 
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |      Not available on all systems (see os.urandom() for details). | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def random(self): | 
					
						
							|  |  |  |         """Get the next random number in the range [0.0, 1.0).""" | 
					
						
							| 
									
										
										
										
											2004-08-31 02:19:55 +00:00
										 |  |  |         return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF | 
					
						
							| 
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def getrandbits(self, k): | 
					
						
							|  |  |  |         """getrandbits(k) -> x.  Generates a long int with k random bits.""" | 
					
						
							|  |  |  |         if k <= 0: | 
					
						
							|  |  |  |             raise ValueError('number of bits must be greater than zero') | 
					
						
							|  |  |  |         if k != int(k): | 
					
						
							|  |  |  |             raise TypeError('number of bits should be an integer') | 
					
						
							|  |  |  |         bytes = (k + 7) // 8                    # bits / 8 and rounded up | 
					
						
							|  |  |  |         x = long(_hexlify(_urandom(bytes)), 16) | 
					
						
							|  |  |  |         return x >> (bytes * 8 - k)             # trim excess bits | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def _stub(self, *args, **kwds): | 
					
						
							| 
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 |  |  |         "Stub method.  Not used for a system random number generator." | 
					
						
							| 
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 |  |  |         return None | 
					
						
							|  |  |  |     seed = jumpahead = _stub | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def _notimplemented(self, *args, **kwds): | 
					
						
							| 
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 |  |  |         "Method should not be called for a system random number generator." | 
					
						
							|  |  |  |         raise NotImplementedError('System entropy source does not have state.') | 
					
						
							| 
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 |  |  |     getstate = setstate = _notimplemented | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | ## -------------------- test program -------------------- | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2003-08-30 01:24:19 +00:00
										 |  |  | def _test_generator(n, func, args): | 
					
						
							| 
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 |  |  |     import time | 
					
						
							| 
									
										
										
										
											2003-08-30 01:24:19 +00:00
										 |  |  |     print n, 'times', func.__name__ | 
					
						
							| 
									
										
										
										
											2003-05-24 17:26:02 +00:00
										 |  |  |     total = 0.0 | 
					
						
							| 
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 |  |  |     sqsum = 0.0 | 
					
						
							|  |  |  |     smallest = 1e10 | 
					
						
							|  |  |  |     largest = -1e10 | 
					
						
							|  |  |  |     t0 = time.time() | 
					
						
							|  |  |  |     for i in range(n): | 
					
						
							| 
									
										
										
										
											2003-08-30 01:24:19 +00:00
										 |  |  |         x = func(*args) | 
					
						
							| 
									
										
										
										
											2003-05-24 17:26:02 +00:00
										 |  |  |         total += x | 
					
						
							| 
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 |  |  |         sqsum = sqsum + x*x | 
					
						
							|  |  |  |         smallest = min(x, smallest) | 
					
						
							|  |  |  |         largest = max(x, largest) | 
					
						
							|  |  |  |     t1 = time.time() | 
					
						
							|  |  |  |     print round(t1-t0, 3), 'sec,', | 
					
						
							| 
									
										
										
										
											2003-05-24 17:26:02 +00:00
										 |  |  |     avg = total/n | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     stddev = _sqrt(sqsum/n - avg*avg) | 
					
						
							| 
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 |  |  |     print 'avg %g, stddev %g, min %g, max %g' % \ | 
					
						
							|  |  |  |               (avg, stddev, smallest, largest) | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | def _test(N=2000): | 
					
						
							| 
									
										
										
										
											2003-08-30 01:24:19 +00:00
										 |  |  |     _test_generator(N, random, ()) | 
					
						
							|  |  |  |     _test_generator(N, normalvariate, (0.0, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, lognormvariate, (0.0, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, vonmisesvariate, (0.0, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, gammavariate, (0.01, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, gammavariate, (0.1, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, gammavariate, (0.1, 2.0)) | 
					
						
							|  |  |  |     _test_generator(N, gammavariate, (0.5, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, gammavariate, (0.9, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, gammavariate, (1.0, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, gammavariate, (2.0, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, gammavariate, (20.0, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, gammavariate, (200.0, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, gauss, (0.0, 1.0)) | 
					
						
							|  |  |  |     _test_generator(N, betavariate, (3.0, 3.0)) | 
					
						
							| 
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-26 22:56:56 +00:00
										 |  |  | # Create one instance, seeded from current time, and export its methods | 
					
						
							| 
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 |  |  | # as module-level functions.  The functions share state across all uses | 
					
						
							|  |  |  | #(both in the user's code and in the Python libraries), but that's fine | 
					
						
							|  |  |  | # for most programs and is easier for the casual user than making them | 
					
						
							|  |  |  | # instantiate their own Random() instance. | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | _inst = Random() | 
					
						
							|  |  |  | seed = _inst.seed | 
					
						
							|  |  |  | random = _inst.random | 
					
						
							|  |  |  | uniform = _inst.uniform | 
					
						
							|  |  |  | randint = _inst.randint | 
					
						
							|  |  |  | choice = _inst.choice | 
					
						
							|  |  |  | randrange = _inst.randrange | 
					
						
							| 
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 |  |  | sample = _inst.sample | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | shuffle = _inst.shuffle | 
					
						
							|  |  |  | normalvariate = _inst.normalvariate | 
					
						
							|  |  |  | lognormvariate = _inst.lognormvariate | 
					
						
							|  |  |  | expovariate = _inst.expovariate | 
					
						
							|  |  |  | vonmisesvariate = _inst.vonmisesvariate | 
					
						
							|  |  |  | gammavariate = _inst.gammavariate | 
					
						
							|  |  |  | gauss = _inst.gauss | 
					
						
							|  |  |  | betavariate = _inst.betavariate | 
					
						
							|  |  |  | paretovariate = _inst.paretovariate | 
					
						
							|  |  |  | weibullvariate = _inst.weibullvariate | 
					
						
							|  |  |  | getstate = _inst.getstate | 
					
						
							|  |  |  | setstate = _inst.setstate | 
					
						
							| 
									
										
										
										
											2001-01-25 06:23:18 +00:00
										 |  |  | jumpahead = _inst.jumpahead | 
					
						
							| 
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 |  |  | getrandbits = _inst.getrandbits | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 |  |  | if __name__ == '__main__': | 
					
						
							| 
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 |  |  |     _test() |