mirror of
				https://github.com/python/cpython.git
				synced 2025-10-27 03:34:32 +00:00 
			
		
		
		
	
		
			
	
	
		
			180 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			180 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2008-2012 Stefan Krah. All rights reserved. | ||
|  |  * | ||
|  |  * Redistribution and use in source and binary forms, with or without | ||
|  |  * modification, are permitted provided that the following conditions | ||
|  |  * are met: | ||
|  |  * | ||
|  |  * 1. Redistributions of source code must retain the above copyright | ||
|  |  *    notice, this list of conditions and the following disclaimer. | ||
|  |  * | ||
|  |  * 2. Redistributions in binary form must reproduce the above copyright | ||
|  |  *    notice, this list of conditions and the following disclaimer in the | ||
|  |  *    documentation and/or other materials provided with the distribution. | ||
|  |  * | ||
|  |  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND | ||
|  |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
|  |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
|  |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
|  |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
|  |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
|  |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
|  |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
|  |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
|  |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
|  |  * SUCH DAMAGE. | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "mpdecimal.h"
 | ||
|  | #include <stdio.h>
 | ||
|  | #include <assert.h>
 | ||
|  | #include "numbertheory.h"
 | ||
|  | #include "umodarith.h"
 | ||
|  | #include "crt.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Bignum: Chinese Remainder Theorem, extends the maximum transform length. */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Multiply P1P2 by v, store result in w. */ | ||
|  | static inline void | ||
|  | _crt_mulP1P2_3(mpd_uint_t w[3], mpd_uint_t v) | ||
|  | { | ||
|  |     mpd_uint_t hi1, hi2, lo; | ||
|  | 
 | ||
|  |     _mpd_mul_words(&hi1, &lo, LH_P1P2, v); | ||
|  |     w[0] = lo; | ||
|  | 
 | ||
|  |     _mpd_mul_words(&hi2, &lo, UH_P1P2, v); | ||
|  |     lo = hi1 + lo; | ||
|  |     if (lo < hi1) hi2++; | ||
|  | 
 | ||
|  |     w[1] = lo; | ||
|  |     w[2] = hi2; | ||
|  | } | ||
|  | 
 | ||
|  | /* Add 3 words from v to w. The result is known to fit in w. */ | ||
|  | static inline void | ||
|  | _crt_add3(mpd_uint_t w[3], mpd_uint_t v[3]) | ||
|  | { | ||
|  |     mpd_uint_t carry; | ||
|  |     mpd_uint_t s; | ||
|  | 
 | ||
|  |     s = w[0] + v[0]; | ||
|  |     carry = (s < w[0]); | ||
|  |     w[0] = s; | ||
|  | 
 | ||
|  |     s = w[1] + (v[1] + carry); | ||
|  |     carry = (s < w[1]); | ||
|  |     w[1] = s; | ||
|  | 
 | ||
|  |     w[2] = w[2] + (v[2] + carry); | ||
|  | } | ||
|  | 
 | ||
|  | /* Divide 3 words in u by v, store result in w, return remainder. */ | ||
|  | static inline mpd_uint_t | ||
|  | _crt_div3(mpd_uint_t *w, const mpd_uint_t *u, mpd_uint_t v) | ||
|  | { | ||
|  |     mpd_uint_t r1 = u[2]; | ||
|  |     mpd_uint_t r2; | ||
|  | 
 | ||
|  |     if (r1 < v) { | ||
|  |         w[2] = 0; | ||
|  |     } | ||
|  |     else { | ||
|  |         _mpd_div_word(&w[2], &r1, u[2], v); /* GCOV_NOT_REACHED */ | ||
|  |     } | ||
|  | 
 | ||
|  |     _mpd_div_words(&w[1], &r2, r1, u[1], v); | ||
|  |     _mpd_div_words(&w[0], &r1, r2, u[0], v); | ||
|  | 
 | ||
|  |     return r1; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Chinese Remainder Theorem: | ||
|  |  * Algorithm from Joerg Arndt, "Matters Computational", | ||
|  |  * Chapter 37.4.1 [http://www.jjj.de/fxt/]
 | ||
|  |  * | ||
|  |  * See also Knuth, TAOCP, Volume 2, 4.3.2, exercise 7. | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * CRT with carry: x1, x2, x3 contain numbers modulo p1, p2, p3. For each | ||
|  |  * triple of members of the arrays, find the unique z modulo p1*p2*p3, with | ||
|  |  * zmax = p1*p2*p3 - 1. | ||
|  |  * | ||
|  |  * In each iteration of the loop, split z into result[i] = z % MPD_RADIX | ||
|  |  * and carry = z / MPD_RADIX. Let N be the size of carry[] and cmax the | ||
|  |  * maximum carry. | ||
|  |  * | ||
|  |  * Limits for the 32-bit build: | ||
|  |  * | ||
|  |  *   N    = 2**96 | ||
|  |  *   cmax = 7711435591312380274 | ||
|  |  * | ||
|  |  * Limits for the 64 bit build: | ||
|  |  * | ||
|  |  *   N    = 2**192 | ||
|  |  *   cmax = 627710135393475385904124401220046371710 | ||
|  |  * | ||
|  |  * The following statements hold for both versions: | ||
|  |  * | ||
|  |  *   1) cmax + zmax < N, so the addition does not overflow. | ||
|  |  * | ||
|  |  *   2) (cmax + zmax) / MPD_RADIX == cmax. | ||
|  |  * | ||
|  |  *   3) If c <= cmax, then c_next = (c + zmax) / MPD_RADIX <= cmax. | ||
|  |  */ | ||
|  | void | ||
|  | crt3(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_size_t rsize) | ||
|  | { | ||
|  |     mpd_uint_t p1 = mpd_moduli[P1]; | ||
|  |     mpd_uint_t umod; | ||
|  | #ifdef PPRO
 | ||
|  |     double dmod; | ||
|  |     uint32_t dinvmod[3]; | ||
|  | #endif
 | ||
|  |     mpd_uint_t a1, a2, a3; | ||
|  |     mpd_uint_t s; | ||
|  |     mpd_uint_t z[3], t[3]; | ||
|  |     mpd_uint_t carry[3] = {0,0,0}; | ||
|  |     mpd_uint_t hi, lo; | ||
|  |     mpd_size_t i; | ||
|  | 
 | ||
|  |     for (i = 0; i < rsize; i++) { | ||
|  | 
 | ||
|  |         a1 = x1[i]; | ||
|  |         a2 = x2[i]; | ||
|  |         a3 = x3[i]; | ||
|  | 
 | ||
|  |         SETMODULUS(P2); | ||
|  |         s = ext_submod(a2, a1, umod); | ||
|  |         s = MULMOD(s, INV_P1_MOD_P2); | ||
|  | 
 | ||
|  |         _mpd_mul_words(&hi, &lo, s, p1); | ||
|  |         lo = lo + a1; | ||
|  |         if (lo < a1) hi++; | ||
|  | 
 | ||
|  |         SETMODULUS(P3); | ||
|  |         s = dw_submod(a3, hi, lo, umod); | ||
|  |         s = MULMOD(s, INV_P1P2_MOD_P3); | ||
|  | 
 | ||
|  |         z[0] = lo; | ||
|  |         z[1] = hi; | ||
|  |         z[2] = 0; | ||
|  | 
 | ||
|  |         _crt_mulP1P2_3(t, s); | ||
|  |         _crt_add3(z, t); | ||
|  |         _crt_add3(carry, z); | ||
|  | 
 | ||
|  |         x1[i] = _crt_div3(carry, carry, MPD_RADIX); | ||
|  |     } | ||
|  | 
 | ||
|  |     assert(carry[0] == 0 && carry[1] == 0 && carry[2] == 0); | ||
|  | } | ||
|  | 
 | ||
|  | 
 |