mirror of
				https://github.com/python/cpython.git
				synced 2025-11-02 22:51:25 +00:00 
			
		
		
		
	
		
			
	
	
		
			233 lines
		
	
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			233 lines
		
	
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								#include "Python.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef HAVE_HYPOT
							 | 
						||
| 
								 | 
							
								double hypot(double x, double y)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									double yx;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									x = fabs(x);
							 | 
						||
| 
								 | 
							
									y = fabs(y);
							 | 
						||
| 
								 | 
							
									if (x < y) {
							 | 
						||
| 
								 | 
							
										double temp = x;
							 | 
						||
| 
								 | 
							
										x = y;
							 | 
						||
| 
								 | 
							
										y = temp;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (x == 0.)
							 | 
						||
| 
								 | 
							
										return 0.;
							 | 
						||
| 
								 | 
							
									else {
							 | 
						||
| 
								 | 
							
										yx = y/x;
							 | 
						||
| 
								 | 
							
										return x*sqrt(1.+yx*yx);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif /* HAVE_HYPOT */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef HAVE_COPYSIGN
							 | 
						||
| 
								 | 
							
								static double
							 | 
						||
| 
								 | 
							
								copysign(double x, double y)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									/* use atan2 to distinguish -0. from 0. */
							 | 
						||
| 
								 | 
							
									if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
							 | 
						||
| 
								 | 
							
										return fabs(x);
							 | 
						||
| 
								 | 
							
									} else {
							 | 
						||
| 
								 | 
							
										return -fabs(x);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif /* HAVE_COPYSIGN */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef HAVE_LOG1P
							 | 
						||
| 
								 | 
							
								double
							 | 
						||
| 
								 | 
							
								log1p(double x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									/* For x small, we use the following approach.  Let y be the nearest
							 | 
						||
| 
								 | 
							
									   float to 1+x, then
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									     1+x = y * (1 - (y-1-x)/y)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									   so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny,
							 | 
						||
| 
								 | 
							
									   the second term is well approximated by (y-1-x)/y.  If abs(x) >=
							 | 
						||
| 
								 | 
							
									   DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
							 | 
						||
| 
								 | 
							
									   then y-1-x will be exactly representable, and is computed exactly
							 | 
						||
| 
								 | 
							
									   by (y-1)-x.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									   If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
							 | 
						||
| 
								 | 
							
									   round-to-nearest then this method is slightly dangerous: 1+x could
							 | 
						||
| 
								 | 
							
									   be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
							 | 
						||
| 
								 | 
							
									   case y-1-x will not be exactly representable any more and the
							 | 
						||
| 
								 | 
							
									   result can be off by many ulps.  But this is easily fixed: for a
							 | 
						||
| 
								 | 
							
									   floating-point number |x| < DBL_EPSILON/2., the closest
							 | 
						||
| 
								 | 
							
									   floating-point number to log(1+x) is exactly x.
							 | 
						||
| 
								 | 
							
									*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									double y;
							 | 
						||
| 
								 | 
							
									if (fabs(x) < DBL_EPSILON/2.) {
							 | 
						||
| 
								 | 
							
										return x;
							 | 
						||
| 
								 | 
							
									} else if (-0.5 <= x && x <= 1.) {
							 | 
						||
| 
								 | 
							
										/* WARNING: it's possible than an overeager compiler
							 | 
						||
| 
								 | 
							
										   will incorrectly optimize the following two lines
							 | 
						||
| 
								 | 
							
										   to the equivalent of "return log(1.+x)". If this
							 | 
						||
| 
								 | 
							
										   happens, then results from log1p will be inaccurate
							 | 
						||
| 
								 | 
							
										   for small x. */
							 | 
						||
| 
								 | 
							
										y = 1.+x;
							 | 
						||
| 
								 | 
							
										return log(y)-((y-1.)-x)/y;
							 | 
						||
| 
								 | 
							
									} else {
							 | 
						||
| 
								 | 
							
										/* NaNs and infinities should end up here */
							 | 
						||
| 
								 | 
							
										return log(1.+x);
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif /* HAVE_LOG1P */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * ====================================================
							 | 
						||
| 
								 | 
							
								 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Developed at SunPro, a Sun Microsystems, Inc. business.
							 | 
						||
| 
								 | 
							
								 * Permission to use, copy, modify, and distribute this
							 | 
						||
| 
								 | 
							
								 * software is freely granted, provided that this notice 
							 | 
						||
| 
								 | 
							
								 * is preserved.
							 | 
						||
| 
								 | 
							
								 * ====================================================
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const double ln2 = 6.93147180559945286227E-01;
							 | 
						||
| 
								 | 
							
								static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
							 | 
						||
| 
								 | 
							
								static const double two_pow_p28 = 268435456.0; /* 2**28 */
							 | 
						||
| 
								 | 
							
								static const double zero = 0.0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* asinh(x)
							 | 
						||
| 
								 | 
							
								 * Method :
							 | 
						||
| 
								 | 
							
								 *	Based on 
							 | 
						||
| 
								 | 
							
								 *		asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
							 | 
						||
| 
								 | 
							
								 *	we have
							 | 
						||
| 
								 | 
							
								 *	asinh(x) := x  if  1+x*x=1,
							 | 
						||
| 
								 | 
							
								 *		 := sign(x)*(log(x)+ln2)) for large |x|, else
							 | 
						||
| 
								 | 
							
								 *		 := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
							 | 
						||
| 
								 | 
							
								 *		 := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))  
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef HAVE_ASINH
							 | 
						||
| 
								 | 
							
								double
							 | 
						||
| 
								 | 
							
								asinh(double x)
							 | 
						||
| 
								 | 
							
								{	
							 | 
						||
| 
								 | 
							
									double w;
							 | 
						||
| 
								 | 
							
									double absx = fabs(x);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
							 | 
						||
| 
								 | 
							
										return x+x;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (absx < two_pow_m28) {	/* |x| < 2**-28 */
							 | 
						||
| 
								 | 
							
										return x;	/* return x inexact except 0 */
							 | 
						||
| 
								 | 
							
									} 
							 | 
						||
| 
								 | 
							
									if (absx > two_pow_p28) {	/* |x| > 2**28 */
							 | 
						||
| 
								 | 
							
										w = log(absx)+ln2;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									else if (absx > 2.0) {		/* 2 < |x| < 2**28 */
							 | 
						||
| 
								 | 
							
										w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									else {				/* 2**-28 <= |x| < 2= */
							 | 
						||
| 
								 | 
							
										double t = x*x;
							 | 
						||
| 
								 | 
							
										w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return copysign(w, x);
							 | 
						||
| 
								 | 
							
									
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif /* HAVE_ASINH */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* acosh(x)
							 | 
						||
| 
								 | 
							
								 * Method :
							 | 
						||
| 
								 | 
							
								 *      Based on
							 | 
						||
| 
								 | 
							
								 *	      acosh(x) = log [ x + sqrt(x*x-1) ]
							 | 
						||
| 
								 | 
							
								 *      we have
							 | 
						||
| 
								 | 
							
								 *	      acosh(x) := log(x)+ln2, if x is large; else
							 | 
						||
| 
								 | 
							
								 *	      acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
							 | 
						||
| 
								 | 
							
								 *	      acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Special cases:
							 | 
						||
| 
								 | 
							
								 *      acosh(x) is NaN with signal if x<1.
							 | 
						||
| 
								 | 
							
								 *      acosh(NaN) is NaN without signal.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef HAVE_ACOSH
							 | 
						||
| 
								 | 
							
								double
							 | 
						||
| 
								 | 
							
								acosh(double x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									if (Py_IS_NAN(x)) {
							 | 
						||
| 
								 | 
							
										return x+x;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (x < 1.) {			/* x < 1;  return a signaling NaN */
							 | 
						||
| 
								 | 
							
										errno = EDOM;
							 | 
						||
| 
								 | 
							
								#ifdef Py_NAN
							 | 
						||
| 
								 | 
							
										return Py_NAN;
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
										return (x-x)/(x-x);
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									else if (x >= two_pow_p28) {	/* x > 2**28 */
							 | 
						||
| 
								 | 
							
										if (Py_IS_INFINITY(x)) {
							 | 
						||
| 
								 | 
							
											return x+x;
							 | 
						||
| 
								 | 
							
										} else {
							 | 
						||
| 
								 | 
							
											return log(x)+ln2;	/* acosh(huge)=log(2x) */
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									else if (x == 1.) {
							 | 
						||
| 
								 | 
							
										return 0.0;			/* acosh(1) = 0 */
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									else if (x > 2.) {			/* 2 < x < 2**28 */
							 | 
						||
| 
								 | 
							
										double t = x*x;
							 | 
						||
| 
								 | 
							
										return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									else {				/* 1 < x <= 2 */
							 | 
						||
| 
								 | 
							
										double t = x - 1.0;
							 | 
						||
| 
								 | 
							
										return log1p(t + sqrt(2.0*t + t*t));
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif /* HAVE_ACOSH */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* atanh(x)
							 | 
						||
| 
								 | 
							
								 * Method :
							 | 
						||
| 
								 | 
							
								 *    1.Reduced x to positive by atanh(-x) = -atanh(x)
							 | 
						||
| 
								 | 
							
								 *    2.For x>=0.5
							 | 
						||
| 
								 | 
							
								 *		  1	      2x			  x
							 | 
						||
| 
								 | 
							
								 *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
							 | 
						||
| 
								 | 
							
								 *		  2	     1 - x		      1 - x
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *      For x<0.5
							 | 
						||
| 
								 | 
							
								 *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Special cases:
							 | 
						||
| 
								 | 
							
								 *      atanh(x) is NaN if |x| >= 1 with signal;
							 | 
						||
| 
								 | 
							
								 *      atanh(NaN) is that NaN with no signal;
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef HAVE_ATANH
							 | 
						||
| 
								 | 
							
								double
							 | 
						||
| 
								 | 
							
								atanh(double x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
									double absx;
							 | 
						||
| 
								 | 
							
									double t;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									if (Py_IS_NAN(x)) {
							 | 
						||
| 
								 | 
							
										return x+x;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									absx = fabs(x);
							 | 
						||
| 
								 | 
							
									if (absx >= 1.) {		/* |x| >= 1 */
							 | 
						||
| 
								 | 
							
										errno = EDOM;
							 | 
						||
| 
								 | 
							
								#ifdef Py_NAN
							 | 
						||
| 
								 | 
							
										return Py_NAN;
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
										return x/zero;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (absx < two_pow_m28) {	/* |x| < 2**-28 */
							 | 
						||
| 
								 | 
							
										return x;
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if (absx < 0.5) {		/* |x| < 0.5 */
							 | 
						||
| 
								 | 
							
										t = absx+absx;
							 | 
						||
| 
								 | 
							
										t = 0.5 * log1p(t + t*absx / (1.0 - absx));
							 | 
						||
| 
								 | 
							
									} 
							 | 
						||
| 
								 | 
							
									else {				/* 0.5 <= |x| <= 1.0 */
							 | 
						||
| 
								 | 
							
										t = 0.5 * log1p((absx + absx) / (1.0 - absx));
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return copysign(t, x);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif /* HAVE_ATANH */
							 |