| 
									
										
										
										
											2024-02-18 10:27:14 +03:00
										 |  |  | """
 | 
					
						
							|  |  |  | List sort performance test. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | To install `pyperf` you would need to: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     python3 -m pip install pyperf | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | To run: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     python3 Tools/scripts/sortperf | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Options: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     * `benchmark` name to run | 
					
						
							|  |  |  |     * `--rnd-seed` to set random seed | 
					
						
							|  |  |  |     * `--size` to set the sorted list size | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Based on https://github.com/python/cpython/blob/963904335e579bfe39101adf3fd6a0cf705975ff/Lib/test/sortperf.py | 
					
						
							|  |  |  | """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from __future__ import annotations | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import argparse | 
					
						
							|  |  |  | import time | 
					
						
							|  |  |  | import random | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # =============== | 
					
						
							|  |  |  | # Data generation | 
					
						
							|  |  |  | # =============== | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def _random_data(size: int, rand: random.Random) -> list[float]: | 
					
						
							|  |  |  |     result = [rand.random() for _ in range(size)] | 
					
						
							|  |  |  |     # Shuffle it a bit... | 
					
						
							|  |  |  |     for i in range(10): | 
					
						
							|  |  |  |         i = rand.randrange(size) | 
					
						
							|  |  |  |         temp = result[:i] | 
					
						
							|  |  |  |         del result[:i] | 
					
						
							|  |  |  |         temp.reverse() | 
					
						
							|  |  |  |         result.extend(temp) | 
					
						
							|  |  |  |         del temp | 
					
						
							|  |  |  |     assert len(result) == size | 
					
						
							|  |  |  |     return result | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def list_sort(size: int, rand: random.Random) -> list[float]: | 
					
						
							|  |  |  |     return _random_data(size, rand) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def list_sort_descending(size: int, rand: random.Random) -> list[float]: | 
					
						
							|  |  |  |     return list(reversed(list_sort_ascending(size, rand))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def list_sort_ascending(size: int, rand: random.Random) -> list[float]: | 
					
						
							|  |  |  |     return sorted(_random_data(size, rand)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def list_sort_ascending_exchanged(size: int, rand: random.Random) -> list[float]: | 
					
						
							|  |  |  |     result = list_sort_ascending(size, rand) | 
					
						
							|  |  |  |     # Do 3 random exchanges. | 
					
						
							|  |  |  |     for _ in range(3): | 
					
						
							|  |  |  |         i1 = rand.randrange(size) | 
					
						
							|  |  |  |         i2 = rand.randrange(size) | 
					
						
							|  |  |  |         result[i1], result[i2] = result[i2], result[i1] | 
					
						
							|  |  |  |     return result | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def list_sort_ascending_random(size: int, rand: random.Random) -> list[float]: | 
					
						
							|  |  |  |     assert size >= 10, "This benchmark requires size to be >= 10" | 
					
						
							|  |  |  |     result = list_sort_ascending(size, rand) | 
					
						
							|  |  |  |     # Replace the last 10 with random floats. | 
					
						
							|  |  |  |     result[-10:] = [rand.random() for _ in range(10)] | 
					
						
							|  |  |  |     return result | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def list_sort_ascending_one_percent(size: int, rand: random.Random) -> list[float]: | 
					
						
							|  |  |  |     result = list_sort_ascending(size, rand) | 
					
						
							|  |  |  |     # Replace 1% of the elements at random. | 
					
						
							|  |  |  |     for _ in range(size // 100): | 
					
						
							|  |  |  |         result[rand.randrange(size)] = rand.random() | 
					
						
							|  |  |  |     return result | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def list_sort_duplicates(size: int, rand: random.Random) -> list[float]: | 
					
						
							|  |  |  |     assert size >= 4 | 
					
						
							|  |  |  |     result = list_sort_ascending(4, rand) | 
					
						
							|  |  |  |     # Arrange for lots of duplicates. | 
					
						
							|  |  |  |     result = result * (size // 4) | 
					
						
							|  |  |  |     # Force the elements to be distinct objects, else timings can be | 
					
						
							|  |  |  |     # artificially low. | 
					
						
							|  |  |  |     return list(map(abs, result)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def list_sort_equal(size: int, rand: random.Random) -> list[float]: | 
					
						
							|  |  |  |     # All equal.  Again, force the elements to be distinct objects. | 
					
						
							|  |  |  |     return list(map(abs, [-0.519012] * size)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def list_sort_worst_case(size: int, rand: random.Random) -> list[float]: | 
					
						
							|  |  |  |     # This one looks like [3, 2, 1, 0, 0, 1, 2, 3].  It was a bad case | 
					
						
							|  |  |  |     # for an older implementation of quicksort, which used the median | 
					
						
							|  |  |  |     # of the first, last and middle elements as the pivot. | 
					
						
							|  |  |  |     half = size // 2 | 
					
						
							|  |  |  |     result = list(range(half - 1, -1, -1)) | 
					
						
							|  |  |  |     result.extend(range(half)) | 
					
						
							|  |  |  |     # Force to float, so that the timings are comparable.  This is | 
					
						
							|  |  |  |     # significantly faster if we leave them as ints. | 
					
						
							|  |  |  |     return list(map(float, result)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # ========= | 
					
						
							|  |  |  | # Benchmark | 
					
						
							|  |  |  | # ========= | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Benchmark: | 
					
						
							|  |  |  |     def __init__(self, name: str, size: int, seed: int) -> None: | 
					
						
							|  |  |  |         self._name = name | 
					
						
							|  |  |  |         self._size = size | 
					
						
							|  |  |  |         self._seed = seed | 
					
						
							|  |  |  |         self._random = random.Random(self._seed) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def run(self, loops: int) -> float: | 
					
						
							|  |  |  |         all_data = self._prepare_data(loops) | 
					
						
							|  |  |  |         start = time.perf_counter() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for data in all_data: | 
					
						
							|  |  |  |             data.sort()  # Benching this method! | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return time.perf_counter() - start | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def _prepare_data(self, loops: int) -> list[float]: | 
					
						
							|  |  |  |         bench = BENCHMARKS[self._name] | 
					
						
							| 
									
										
										
										
											2024-03-11 09:38:04 +03:00
										 |  |  |         data = bench(self._size, self._random) | 
					
						
							|  |  |  |         return [data.copy() for _ in range(loops)] | 
					
						
							| 
									
										
										
										
											2024-02-18 10:27:14 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def add_cmdline_args(cmd: list[str], args) -> None: | 
					
						
							|  |  |  |     if args.benchmark: | 
					
						
							|  |  |  |         cmd.append(args.benchmark) | 
					
						
							|  |  |  |     cmd.append(f"--size={args.size}") | 
					
						
							|  |  |  |     cmd.append(f"--rng-seed={args.rng_seed}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def add_parser_args(parser: argparse.ArgumentParser) -> None: | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "benchmark", | 
					
						
							|  |  |  |         choices=BENCHMARKS, | 
					
						
							|  |  |  |         nargs="?", | 
					
						
							|  |  |  |         help="Can be any of: {0}".format(", ".join(BENCHMARKS)), | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--size", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=DEFAULT_SIZE, | 
					
						
							|  |  |  |         help=f"Size of the lists to sort (default: {DEFAULT_SIZE})", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--rng-seed", | 
					
						
							|  |  |  |         type=int, | 
					
						
							|  |  |  |         default=DEFAULT_RANDOM_SEED, | 
					
						
							|  |  |  |         help=f"Random number generator seed (default: {DEFAULT_RANDOM_SEED})", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | DEFAULT_SIZE = 1 << 14 | 
					
						
							|  |  |  | DEFAULT_RANDOM_SEED = 0 | 
					
						
							|  |  |  | BENCHMARKS = { | 
					
						
							|  |  |  |     "list_sort": list_sort, | 
					
						
							|  |  |  |     "list_sort_descending": list_sort_descending, | 
					
						
							|  |  |  |     "list_sort_ascending": list_sort_ascending, | 
					
						
							|  |  |  |     "list_sort_ascending_exchanged": list_sort_ascending_exchanged, | 
					
						
							|  |  |  |     "list_sort_ascending_random": list_sort_ascending_random, | 
					
						
							|  |  |  |     "list_sort_ascending_one_percent": list_sort_ascending_one_percent, | 
					
						
							|  |  |  |     "list_sort_duplicates": list_sort_duplicates, | 
					
						
							|  |  |  |     "list_sort_equal": list_sort_equal, | 
					
						
							|  |  |  |     "list_sort_worst_case": list_sort_worst_case, | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  |     # This needs `pyperf` 3rd party library: | 
					
						
							|  |  |  |     import pyperf | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     runner = pyperf.Runner(add_cmdline_args=add_cmdline_args) | 
					
						
							|  |  |  |     add_parser_args(runner.argparser) | 
					
						
							|  |  |  |     args = runner.parse_args() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     runner.metadata["description"] = "Test `list.sort()` with different data" | 
					
						
							|  |  |  |     runner.metadata["list_sort_size"] = args.size | 
					
						
							|  |  |  |     runner.metadata["list_sort_random_seed"] = args.rng_seed | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if args.benchmark: | 
					
						
							|  |  |  |         benchmarks = (args.benchmark,) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         benchmarks = sorted(BENCHMARKS) | 
					
						
							|  |  |  |     for bench in benchmarks: | 
					
						
							|  |  |  |         benchmark = Benchmark(bench, args.size, args.rng_seed) | 
					
						
							|  |  |  |         runner.bench_time_func(bench, benchmark.run) |