2002-08-02 16:44:32 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								"""Heap queue algorithm (a.k.a. priority queue).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								all k, counting elements from 0.  For the sake of comparison,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								non-existing elements are considered to be infinite.  The interesting
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								property of a heap is that a[0] is always its smallest element.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Usage:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								heap = []            # creates an empty heap
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								heappush(heap, item) # pushes a new item on the heap
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								item = heappop(heap) # pops the smallest item from the heap
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								item = heap[0]       # smallest item on the heap without popping it
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Our API differs from textbook heap algorithms as follows:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								- We use 0-based indexing.  This makes the relationship between the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								  index for a node and the indexes for its children slightly less
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								  obvious, but is more suitable since Python uses 0-based indexing.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								- Our heappop() method returns the smallest item, not the largest.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								These two make it possible to view the heap as a regular Python list
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								without surprises: heap[0] is the smallest item, and heap.sort()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								maintains the heap invariant!
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								"""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-08-02 16:50:58 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# Code by Kevin O'Connor
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-08-02 16:44:32 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								__about__ = """Heap queues
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								[explanation by Fran<EFBFBD>ois Pinard]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								all k, counting elements from 0.  For the sake of comparison,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								non-existing elements are considered to be infinite.  The interesting
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								property of a heap is that a[0] is always its smallest element.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								The strange invariant above is meant to be an efficient memory
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								representation for a tournament.  The numbers below are `k', not a[k]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                                   0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                  1                                 2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								          3               4                5               6
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								      7       8       9       10      11      12      13      14
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'.  In
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								an usual binary tournament we see in sports, each cell is the winner
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								over the two cells it tops, and we can trace the winner down the tree
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								to see all opponents s/he had.  However, in many computer applications
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								of such tournaments, we do not need to trace the history of a winner.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								To be more memory efficient, when a winner is promoted, we try to
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								replace it by something else at a lower level, and the rule becomes
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								that a cell and the two cells it tops contain three different items,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								but the top cell "wins" over the two topped cells.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								If this heap invariant is protected at all time, index 0 is clearly
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								the overall winner.  The simplest algorithmic way to remove it and
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								find the "next" winner is to move some loser (let's say cell 30 in the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								diagram above) into the 0 position, and then percolate this new 0 down
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								the tree, exchanging values, until the invariant is re-established.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								This is clearly logarithmic on the total number of items in the tree.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								By iterating over all items, you get an O(n ln n) sort.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								A nice feature of this sort is that you can efficiently insert new
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								items while the sort is going on, provided that the inserted items are
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								not "better" than the last 0'th element you extracted.  This is
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								especially useful in simulation contexts, where the tree holds all
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								incoming events, and the "win" condition means the smallest scheduled
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								time.  When an event schedule other events for execution, they are
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								scheduled into the future, so they can easily go into the heap.  So, a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								heap is a good structure for implementing schedulers (this is what I
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								used for my MIDI sequencer :-).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Various structures for implementing schedulers have been extensively
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								studied, and heaps are good for this, as they are reasonably speedy,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								the speed is almost constant, and the worst case is not much different
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								than the average case.  However, there are other representations which
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								are more efficient overall, yet the worst cases might be terrible.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Heaps are also very useful in big disk sorts.  You most probably all
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								know that a big sort implies producing "runs" (which are pre-sorted
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								sequences, which size is usually related to the amount of CPU memory),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								followed by a merging passes for these runs, which merging is often
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								very cleverly organised[1].  It is very important that the initial
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								sort produces the longest runs possible.  Tournaments are a good way
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								to that.  If, using all the memory available to hold a tournament, you
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								replace and percolate items that happen to fit the current run, you'll
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								produce runs which are twice the size of the memory for random input,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								and much better for input fuzzily ordered.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Moreover, if you output the 0'th item on disk and get an input which
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								may not fit in the current tournament (because the value "wins" over
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								the last output value), it cannot fit in the heap, so the size of the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								heap decreases.  The freed memory could be cleverly reused immediately
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								for progressively building a second heap, which grows at exactly the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								same rate the first heap is melting.  When the first heap completely
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								vanishes, you switch heaps and start a new run.  Clever and quite
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								effective!
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								In a word, heaps are useful memory structures to know.  I use them in
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								a few applications, and I think it is good to keep a `heap' module
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								around. :-)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								--------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								[1] The disk balancing algorithms which are current, nowadays, are
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								more annoying than clever, and this is a consequence of the seeking
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								capabilities of the disks.  On devices which cannot seek, like big
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								tape drives, the story was quite different, and one had to be very
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								clever to ensure (far in advance) that each tape movement will be the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								most effective possible (that is, will best participate at
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								"progressing" the merge).  Some tapes were even able to read
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								backwards, and this was also used to avoid the rewinding time.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Believe me, real good tape sorts were quite spectacular to watch!
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								From all times, sorting has always been a Great Art! :-)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								"""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def heappush(heap, item):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Push item onto heap, maintaining the heap invariant."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    pos = len(heap)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    heap.append(None)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    while pos:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        parentpos = (pos - 1) / 2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        parent = heap[parentpos]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if item >= parent:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        heap[pos] = parent
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        pos = parentpos
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    heap[pos] = item
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def heappop(heap):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Pop the smallest item off the heap, maintaining the heap invariant."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    endpos = len(heap) - 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if endpos <= 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return heap.pop()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    returnitem = heap[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    item = heap.pop()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    pos = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    while 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        child2pos = (pos + 1) * 2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        child1pos = child2pos - 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if child2pos < endpos:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            child1 = heap[child1pos]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            child2 = heap[child2pos]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if item <= child1 and item <= child2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if child1 < child2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                heap[pos] = child1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                pos = child1pos
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            heap[pos] = child2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            pos = child2pos
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if child1pos < endpos:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            child1 = heap[child1pos]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if child1 < item:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                heap[pos] = child1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                pos = child1pos
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    heap[pos] = item
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return returnitem
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								if __name__ == "__main__":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Simple sanity test
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    heap = []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for item in data:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        heappush(heap, item)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    sort = []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    while heap:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sort.append(heappop(heap))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    print sort
							 |