2000-02-04 15:28:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								"""Random variable generators.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    integers
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    --------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           uniform within range
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sequences
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ---------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           pick random element
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								           pick random sample
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								           generate random permutation
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    distributions on the real line:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ------------------------------
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								           uniform
							 | 
						
					
						
							
								
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								           normal (Gaussian)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           lognormal
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           negative exponential
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           gamma
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           beta
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								           pareto
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           Weibull
							 | 
						
					
						
							
								
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    distributions on the circle (angles 0 to 2pi)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ---------------------------------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           circular uniform
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           von Mises
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								General notes on the underlying Mersenne Twister core generator:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								* The period is 2**19937-1.
							 | 
						
					
						
							
								
									
										
										
										
											2006-06-10 22:51:45 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								* It is one of the most extensively tested generators in existence.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								* Without a direct way to compute N steps forward, the semantics of
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  jumpahead(n) are weakened to simply jump to another distant state and rely
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  on the large period to avoid overlapping sequences.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								* The random() method is implemented in C, executes in a single Python step,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  and is, therefore, threadsafe.
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								"""
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-29 17:51:31 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from warnings import warn as _warn
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
							 | 
						
					
						
							
								
									
										
										
										
											2005-08-19 01:36:35 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-05 00:00:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from os import urandom as _urandom
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from binascii import hexlify as _hexlify
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								__all__ = ["Random","seed","random","uniform","randint","choice","sample",
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-15 22:15:14 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								           "randrange","shuffle","normalvariate","lognormvariate",
							 | 
						
					
						
							
								
									
										
										
										
											2003-08-05 12:23:19 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								           "expovariate","vonmisesvariate","gammavariate",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           "gauss","betavariate","paretovariate","weibullvariate",
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								           "getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								           "SystemRandom"]
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								TWOPI = 2.0*_pi
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								LOG4 = _log(4.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								SG_MAGICCONST = 1.0 + _log(4.5)
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								BPF = 53        # Number of bits in a float
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-31 02:19:55 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								RECIP_BPF = 2**-BPF
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								# Translated by Guido van Rossum from C source provided by
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-31 01:05:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								# the Mersenne Twister  and os.urandom() core generators.
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-01-07 10:25:55 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								import _random
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-01-07 10:25:55 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								class Random(_random.Random):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    """Random number generator base class used by bound module functions.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    Used to instantiate instances of Random to get generators that don't
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    share state.  Especially useful for multi-threaded programs, creating
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    a different instance of Random for each thread, and using the jumpahead()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    method to ensure that the generated sequences seen by each thread don't
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    overlap.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    Class Random can also be subclassed if you want to use a different basic
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    generator of your own devising: in that case, override the following
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    methods:  random(), seed(), getstate(), setstate() and jumpahead().
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    Optionally, implement a getrandombits() method so that randrange()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    can cover arbitrarily large ranges.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    VERSION = 2     # used by getstate/setstate
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def __init__(self, x=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Initialize an instance.
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        Optional argument x controls seeding, as for Random.seed().
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.seed(x)
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.gauss_next = None
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def seed(self, a=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Initialize internal state from hashable object.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        None or no argument seeds from current time or from an operating
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        system specific randomness source if available.
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 10:06:53 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        If a is not None or an int or long, hash(a) is used instead.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-08-09 18:30:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if a is None:
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-05 00:00:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                a = long(_hexlify(_urandom(16)), 16)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            except NotImplementedError:
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                import time
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                a = long(time.time() * 256) # use fractional seconds
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-01-07 10:25:55 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        super(Random, self).seed(a)
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-05 20:40:00 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.gauss_next = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def getstate(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Return internal state; can be passed to setstate() later."""
							 | 
						
					
						
							
								
									
										
										
										
											2003-01-07 10:25:55 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return self.VERSION, super(Random, self).getstate(), self.gauss_next
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def setstate(self, state):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Restore internal state from object returned by getstate()."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        version = state[0]
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if version == 2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            version, internalstate, self.gauss_next = state
							 | 
						
					
						
							
								
									
										
										
										
											2003-01-07 10:25:55 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            super(Random, self).setstate(internalstate)
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError("state with version %s passed to "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                             "Random.setstate() of version %s" %
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                             (version, self.VERSION))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## ---- Methods below this point do not need to be overridden when
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								## ---- subclassing for the purpose of using a different core generator.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- pickle support  -------------------
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def __getstate__(self): # for pickle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return self.getstate()
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def __setstate__(self, state):  # for pickle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.setstate(state)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-06-24 20:29:04 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def __reduce__(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return self.__class__, (), self.getstate()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- integer methods  -------------------
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def randrange(self, start, stop=None, step=1, int=int, default=None,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                  maxwidth=1L<<BPF):
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Choose a random item from range(start, stop[, step]).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        This fixes the problem with randint() which includes the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        endpoint; in Python this is usually not what you want.
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        Do not supply the 'int', 'default', and 'maxwidth' arguments.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # This code is a bit messy to make it fast for the
							 | 
						
					
						
							
								
									
										
										
										
											2002-08-16 03:41:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # common case while still doing adequate error checking.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        istart = int(start)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if istart != start:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "non-integer arg 1 for randrange()"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if stop is default:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if istart > 0:
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                if istart >= maxwidth:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    return self._randbelow(istart)
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                return int(self.random() * istart)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "empty range for randrange()"
							 | 
						
					
						
							
								
									
										
										
										
											2002-08-16 03:41:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # stop argument supplied.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        istop = int(stop)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if istop != stop:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "non-integer stop for randrange()"
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        width = istop - istart
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if step == 1 and width > 0:
							 | 
						
					
						
							
								
									
										
										
										
											2003-06-19 03:46:46 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            # Note that
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            #     int(istart + self.random()*width)
							 | 
						
					
						
							
								
									
										
										
										
											2003-06-19 03:46:46 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            # instead would be incorrect.  For example, consider istart
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # = -2 and istop = 0.  Then the guts would be in
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # -2.0 to 0.0 exclusive on both ends (ignoring that random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # might return 0.0), and because int() truncates toward 0, the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # final result would be -1 or 0 (instead of -2 or -1).
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            #     istart + int(self.random()*width)
							 | 
						
					
						
							
								
									
										
										
										
											2003-06-19 03:46:46 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            # would also be incorrect, for a subtler reason:  the RHS
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # can return a long, and then randrange() would also return
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # a long, but we're supposed to return an int (for backward
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # compatibility).
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if width >= maxwidth:
							 | 
						
					
						
							
								
									
										
										
										
											2004-01-18 20:29:55 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                return int(istart + self._randbelow(width))
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            return int(istart + int(self.random()*width))
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if step == 1:
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
							 | 
						
					
						
							
								
									
										
										
										
											2002-08-16 03:41:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Non-unit step argument supplied.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        istep = int(step)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if istep != step:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "non-integer step for randrange()"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if istep > 0:
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-27 15:29:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            n = (width + istep - 1) // istep
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        elif istep < 0:
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-27 15:29:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            n = (width + istep + 1) // istep
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "zero step for randrange()"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if n <= 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "empty range for randrange()"
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if n >= maxwidth:
							 | 
						
					
						
							
								
									
										
										
										
											2006-12-20 06:42:06 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            return istart + istep*self._randbelow(n)
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return istart + istep*int(self.random() * n)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def randint(self, a, b):
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Return random integer in range [a, b], including both end points.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return self.randrange(a, b+1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                   _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Return a random int in the range [0,n)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Handles the case where n has more bits than returned
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        by a single call to the underlying generator.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            getrandbits = self.getrandbits
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        except AttributeError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            pass
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Only call self.getrandbits if the original random() builtin method
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # has not been overridden or if a new getrandbits() was supplied.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # This assures that the two methods correspond.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                k = int(1.00001 + _log(n-1, 2.0))   # 2**k > n-1 > 2**(k-2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                r = getrandbits(k)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                while r >= n:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    r = getrandbits(k)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                return r
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if n >= _maxwidth:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            _warn("Underlying random() generator does not supply \n"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                "enough bits to choose from a population range this large")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return int(self.random() * n)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- sequence methods  -------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def choice(self, seq):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Choose a random element from a non-empty sequence."""
							 | 
						
					
						
							
								
									
										
										
										
											2004-06-07 02:07:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return seq[int(self.random() * len(seq))]  # raises IndexError if seq is empty
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def shuffle(self, x, random=None, int=int):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """x, random=random.random -> shuffle list x in place; return None.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Optional arg random is a 0-argument function returning a random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        float in [0.0, 1.0); by default, the standard random.random.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if random is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            random = self.random
							 | 
						
					
						
							
								
									
										
										
										
											2003-11-06 14:06:48 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        for i in reversed(xrange(1, len(x))):
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            # pick an element in x[:i+1] with which to exchange x[i]
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            j = int(random() * (i+1))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            x[i], x[j] = x[j], x[i]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-06-13 07:01:51 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def sample(self, population, k):
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Chooses k unique random elements from a population sequence.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        Returns a new list containing elements from the population while
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        leaving the original population unchanged.  The resulting list is
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        in selection order so that all sub-slices will also be valid random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        samples.  This allows raffle winners (the sample) to be partitioned
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        into grand prize and second place winners (the subslices).
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        Members of the population need not be hashable or unique.  If the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        population contains repeats, then each occurrence is a possible
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        selection in the sample.
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        To choose a sample in a range of integers, use xrange as an argument.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        This is especially fast and space efficient for sampling from a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        large population:   sample(xrange(10000000), 60)
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2006-04-01 00:26:53 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # XXX Although the documentation says `population` is "a sequence",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # XXX attempts are made to cater to any iterable with a __len__
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # XXX method.  This has had mixed success.  Examples from both
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # XXX sides:  sets work fine, and should become officially supported;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # XXX dicts are much harder, and have failed in various subtle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # XXX ways across attempts.  Support for mapping types should probably
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # XXX be dropped (and users should pass mapping.keys() or .values()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # XXX explicitly).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Sampling without replacement entails tracking either potential
							 | 
						
					
						
							
								
									
										
										
										
											2005-08-19 01:36:35 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # selections (the pool) in a list or previous selections in a set.
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2004-02-23 17:27:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # When the number of selections is small compared to the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # population, then tracking selections is efficient, requiring
							 | 
						
					
						
							
								
									
										
										
										
											2005-08-19 01:36:35 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # only a small set and an occasional reselection.  For
							 | 
						
					
						
							
								
									
										
										
										
											2004-02-23 17:27:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # a larger number of selections, the pool tracking method is
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # preferred since the list takes less space than the
							 | 
						
					
						
							
								
									
										
										
										
											2005-08-19 01:36:35 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # set and it doesn't suffer from frequent reselections.
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        n = len(population)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if not 0 <= k <= n:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "sample larger than population"
							 | 
						
					
						
							
								
									
										
										
										
											2003-01-04 05:20:33 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        random = self.random
							 | 
						
					
						
							
								
									
										
										
										
											2003-06-13 07:01:51 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        _int = int
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        result = [None] * k
							 | 
						
					
						
							
								
									
										
										
										
											2005-08-19 01:36:35 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        setsize = 21        # size of a small set minus size of an empty list
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if k > 5:
							 | 
						
					
						
							
								
									
										
										
										
											2005-08-26 15:20:46 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
							 | 
						
					
						
							
								
									
										
										
										
											2006-04-01 00:26:53 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if n <= setsize or hasattr(population, "keys"):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # An n-length list is smaller than a k-length set, or this is a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # mapping type so the other algorithm wouldn't work.
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            pool = list(population)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for i in xrange(k):         # invariant:  non-selected at [0,n-i)
							 | 
						
					
						
							
								
									
										
										
										
											2003-06-13 07:01:51 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                j = _int(random() * (n-i))
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                result[i] = pool[j]
							 | 
						
					
						
							
								
									
										
										
										
											2003-01-04 05:20:33 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-13 15:26:37 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							
								
									
										
										
										
											2003-09-06 04:25:54 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            try:
							 | 
						
					
						
							
								
									
										
										
										
											2006-03-29 09:13:13 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                selected = set()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                selected_add = selected.add
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                for i in xrange(k):
							 | 
						
					
						
							
								
									
										
										
										
											2003-06-13 07:01:51 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                    j = _int(random() * n)
							 | 
						
					
						
							
								
									
										
										
										
											2006-03-29 09:13:13 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                    while j in selected:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        j = _int(random() * n)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    selected_add(j)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    result[i] = population[j]
							 | 
						
					
						
							
								
									
										
										
										
											2006-04-01 00:26:53 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            except (TypeError, KeyError):   # handle (at least) sets
							 | 
						
					
						
							
								
									
										
										
										
											2006-03-29 09:13:13 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                if isinstance(population, list):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    raise
							 | 
						
					
						
							
								
									
										
										
										
											2006-04-01 00:26:53 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                return self.sample(tuple(population), k)
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-18 09:01:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return result
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- real-valued distributions  -------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								## -------------------- uniform distribution -------------------
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def uniform(self, a, b):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Get a random number in the range [a, b)."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return a + (b-a) * self.random()
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- normal distribution --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def normalvariate(self, mu, sigma):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Normal distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        mu is the mean, and sigma is the standard deviation.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # mu = mean, sigma = standard deviation
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Uses Kinderman and Monahan method. Reference: Kinderman,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # A.J. and Monahan, J.F., "Computer generation of random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # variables using the ratio of uniform deviates", ACM Trans
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Math Software, 3, (1977), pp257-260.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        random = self.random
							 | 
						
					
						
							
								
									
										
										
										
											2005-04-30 09:02:51 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        while 1:
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            u1 = random()
							 | 
						
					
						
							
								
									
										
										
										
											2003-01-04 09:26:32 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            u2 = 1.0 - random()
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            z = NV_MAGICCONST*(u1-0.5)/u2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            zz = z*z/4.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if zz <= -_log(u2):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return mu + z*sigma
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- lognormal distribution --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def lognormvariate(self, mu, sigma):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Log normal distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        If you take the natural logarithm of this distribution, you'll get a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        normal distribution with mean mu and standard deviation sigma.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        mu can have any value, and sigma must be greater than zero.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return _exp(self.normalvariate(mu, sigma))
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- exponential distribution --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def expovariate(self, lambd):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Exponential distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        lambd is 1.0 divided by the desired mean.  (The parameter would be
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        called "lambda", but that is a reserved word in Python.)  Returned
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        values range from 0 to positive infinity.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # lambd: rate lambd = 1/mean
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # ('lambda' is a Python reserved word)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        random = self.random
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        u = random()
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        while u <= 1e-7:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            u = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return -_log(u)/lambd
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- von Mises distribution --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def vonmisesvariate(self, mu, kappa):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Circular data distribution.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        mu is the mean angle, expressed in radians between 0 and 2*pi, and
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        kappa is the concentration parameter, which must be greater than or
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        equal to zero.  If kappa is equal to zero, this distribution reduces
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        to a uniform random angle over the range 0 to 2*pi.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # mu:    mean angle (in radians between 0 and 2*pi)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # kappa: concentration parameter kappa (>= 0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # if kappa = 0 generate uniform random angle
							 | 
						
					
						
							
								
									
										
										
										
											1998-04-06 14:12:13 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Based upon an algorithm published in: Fisher, N.I.,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # "Statistical Analysis of Circular Data", Cambridge
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # University Press, 1993.
							 | 
						
					
						
							
								
									
										
										
										
											1998-04-06 14:12:13 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Thanks to Magnus Kessler for a correction to the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # implementation of step 4.
							 | 
						
					
						
							
								
									
										
										
										
											1998-04-06 14:12:13 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        random = self.random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if kappa <= 1e-6:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return TWOPI * random()
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        r = (1.0 + b * b)/(2.0 * b)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2005-04-30 09:02:51 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        while 1:
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            u1 = random()
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            z = _cos(_pi * u1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            f = (1.0 + r * z)/(r + z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            c = kappa * (r - f)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            u2 = random()
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2005-04-30 09:02:51 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c):
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                break
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        u3 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if u3 > 0.5:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            theta = (mu % TWOPI) + _acos(f)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            theta = (mu % TWOPI) - _acos(f)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return theta
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- gamma distribution --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def gammavariate(self, alpha, beta):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Gamma distribution.  Not the gamma function!
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Conditions on the parameters are alpha > 0 and beta > 0.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 14:08:12 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Warning: a few older sources define the gamma distribution in terms
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # of alpha > -1.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if alpha <= 0.0 or beta <= 0.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        random = self.random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if alpha > 1.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Uses R.C.H. Cheng, "The generation of Gamma
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # variables with non-integral shape parameters",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Applied Statistics, (1977), 26, No. 1, p71-74
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-13 23:40:14 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            ainv = _sqrt(2.0 * alpha - 1.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            bbb = alpha - LOG4
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            ccc = alpha + ainv
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2005-04-30 09:02:51 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            while 1:
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                u1 = random()
							 | 
						
					
						
							
								
									
										
										
										
											2003-01-04 09:26:32 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                if not 1e-7 < u1 < .9999999:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                u2 = 1.0 - random()
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                v = _log(u1/(1.0-u1))/ainv
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                x = alpha*_exp(v)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                z = u1*u1*u2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                r = bbb+ccc*v-x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                    return x * beta
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        elif alpha == 1.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # expovariate(1)
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            u = random()
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            while u <= 1e-7:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                u = random()
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            return -_log(u) * beta
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:   # alpha is between 0 and 1 (exclusive)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2005-04-30 09:02:51 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            while 1:
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                u = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                b = (_e + alpha)/_e
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                p = b*u
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                if p <= 1.0:
							 | 
						
					
						
							
								
									
										
										
										
											2005-04-30 09:02:51 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                    x = p ** (1.0/alpha)
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    x = -_log((b-p)/alpha)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                u1 = random()
							 | 
						
					
						
							
								
									
										
										
										
											2005-04-30 09:02:51 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                if p > 1.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    if u1 <= x ** (alpha - 1.0):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                elif u1 <= _exp(-x):
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                    break
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            return x * beta
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- Gauss (faster alternative) --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def gauss(self, mu, sigma):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Gaussian distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        mu is the mean, and sigma is the standard deviation.  This is
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        slightly faster than the normalvariate() function.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Not thread-safe without a lock around calls.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # When x and y are two variables from [0, 1), uniformly
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # distributed, then
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #    cos(2*pi*x)*sqrt(-2*log(1-y))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #    sin(2*pi*x)*sqrt(-2*log(1-y))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # are two *independent* variables with normal distribution
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # (mu = 0, sigma = 1).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # (Lambert Meertens)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # (corrected version; bug discovered by Mike Miller, fixed by LM)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Multithreading note: When two threads call this function
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # simultaneously, it is possible that they will receive the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # same return value.  The window is very small though.  To
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # avoid this, you have to use a lock around all calls.  (I
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # didn't want to slow this down in the serial case by using a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # lock here.)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        random = self.random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        z = self.gauss_next
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.gauss_next = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if z is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            x2pi = random() * TWOPI
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            z = _cos(x2pi) * g2rad
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            self.gauss_next = _sin(x2pi) * g2rad
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return mu + z*sigma
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- beta --------------------
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-26 06:49:56 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## See
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								## for Ivan Frohne's insightful analysis of why the original implementation:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##    def betavariate(self, alpha, beta):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##        # Discrete Event Simulation in C, pp 87-88.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##        y = self.expovariate(alpha)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##        z = self.expovariate(1.0/beta)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##        return z/(y+z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								## was dead wrong, and how it probably got that way.
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def betavariate(self, alpha, beta):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Beta distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2007-01-19 18:07:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        Conditions on the parameters are alpha > 0 and beta > 0.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        Returned values range between 0 and 1.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-26 06:49:56 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # This version due to Janne Sinkkonen, and matches all the std
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        y = self.gammavariate(alpha, 1.)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if y == 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return 0.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return y / (y + self.gammavariate(beta, 1.))
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- Pareto --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def paretovariate(self, alpha):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Pareto distribution.  alpha is the shape parameter."""
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Jain, pg. 495
							 | 
						
					
						
							
								
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-01-04 09:26:32 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        u = 1.0 - self.random()
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return 1.0 / pow(u, 1.0/alpha)
							 | 
						
					
						
							
								
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- Weibull --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def weibullvariate(self, alpha, beta):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Weibull distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        alpha is the scale parameter and beta is the shape parameter.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Jain, pg. 499; bug fix courtesy Bill Arms
							 | 
						
					
						
							
								
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-01-04 09:26:32 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        u = 1.0 - self.random()
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return alpha * pow(-_log(u), 1.0/beta)
							 | 
						
					
						
							
								
									
										
										
										
											1999-08-18 13:53:28 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- Wichmann-Hill -------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class WichmannHill(Random):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    VERSION = 1     # used by getstate/setstate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def seed(self, a=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Initialize internal state from hashable object.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        None or no argument seeds from current time or from an operating
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        system specific randomness source if available.
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        If a is not None or an int or long, hash(a) is used instead.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        If a is an int or long, a is used directly.  Distinct values between
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        0 and 27814431486575L inclusive are guaranteed to yield distinct
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        internal states (this guarantee is specific to the default
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Wichmann-Hill generator).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if a is None:
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-05 00:00:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                a = long(_hexlify(_urandom(16)), 16)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            except NotImplementedError:
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                import time
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                a = long(time.time() * 256) # use fractional seconds
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if not isinstance(a, (int, long)):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            a = hash(a)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, x = divmod(a, 30268)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, y = divmod(a, 30306)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, z = divmod(a, 30322)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self._seed = int(x)+1, int(y)+1, int(z)+1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.gauss_next = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def random(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Get the next random number in the range [0.0, 1.0)."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Wichman-Hill random number generator.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Wichmann, B. A. & Hill, I. D. (1982)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Algorithm AS 183:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # An efficient and portable pseudo-random number generator
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Applied Statistics 31 (1982) 188-190
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # see also:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #        Correction to Algorithm AS 183
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #        Applied Statistics 33 (1984) 123
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #        McLeod, A. I. (1985)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #        A remark on Algorithm AS 183
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #        Applied Statistics 34 (1985),198-200
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # This part is thread-unsafe:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # BEGIN CRITICAL SECTION
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x, y, z = self._seed
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x = (171 * x) % 30269
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        y = (172 * y) % 30307
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        z = (170 * z) % 30323
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self._seed = x, y, z
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # END CRITICAL SECTION
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Note:  on a platform using IEEE-754 double arithmetic, this can
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # never return 0.0 (asserted by Tim; proof too long for a comment).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def getstate(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Return internal state; can be passed to setstate() later."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return self.VERSION, self._seed, self.gauss_next
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def setstate(self, state):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Restore internal state from object returned by getstate()."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        version = state[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if version == 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            version, self._seed, self.gauss_next = state
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError("state with version %s passed to "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                             "Random.setstate() of version %s" %
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                             (version, self.VERSION))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def jumpahead(self, n):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Act as if n calls to random() were made, but quickly.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        n is an int, greater than or equal to 0.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Example use:  If you have 2 threads and know that each will
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        consume no more than a million random numbers, create two Random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        objects r1 and r2, then do
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            r2.setstate(r1.getstate())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            r2.jumpahead(1000000)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Then r1 and r2 will use guaranteed-disjoint segments of the full
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        period.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if not n >= 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError("n must be >= 0")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x, y, z = self._seed
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x = int(x * pow(171, n, 30269)) % 30269
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        y = int(y * pow(172, n, 30307)) % 30307
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        z = int(z * pow(170, n, 30323)) % 30323
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self._seed = x, y, z
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def __whseed(self, x=0, y=0, z=0):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Set the Wichmann-Hill seed from (x, y, z).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        These must be integers in the range [0, 256).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if not type(x) == type(y) == type(z) == int:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise TypeError('seeds must be integers')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError('seeds must be in range(0, 256)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if 0 == x == y == z:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Initialize from current time
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            import time
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            t = long(time.time() * 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            t = int((t&0xffffff) ^ (t>>24))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            t, x = divmod(t, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            t, y = divmod(t, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            t, z = divmod(t, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Zero is a poor seed, so substitute 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self._seed = (x or 1, y or 1, z or 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.gauss_next = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def whseed(self, a=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Seed from hashable object's hash code.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        None or no argument seeds from current time.  It is not guaranteed
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        that objects with distinct hash codes lead to distinct internal
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        states.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        This is obsolete, provided for compatibility with the seed routine
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        used prior to Python 2.1.  Use the .seed() method instead.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if a is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            self.__whseed()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a = hash(a)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, x = divmod(a, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, y = divmod(a, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, z = divmod(a, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x = (x + a) % 256 or 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        y = (y + a) % 256 or 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        z = (z + a) % 256 or 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.__whseed(x, y, z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## --------------- Operating System Random Source  ------------------
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								class SystemRandom(Random):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    """Alternate random number generator using sources provided
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    by the operating system (such as /dev/urandom on Unix or
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    CryptGenRandom on Windows).
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								     Not available on all systems (see os.urandom() for details).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def random(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Get the next random number in the range [0.0, 1.0)."""
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-31 02:19:55 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def getrandbits(self, k):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """getrandbits(k) -> x.  Generates a long int with k random bits."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if k <= 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError('number of bits must be greater than zero')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if k != int(k):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise TypeError('number of bits should be an integer')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        bytes = (k + 7) // 8                    # bits / 8 and rounded up
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x = long(_hexlify(_urandom(bytes)), 16)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return x >> (bytes * 8 - k)             # trim excess bits
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def _stub(self, *args, **kwds):
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        "Stub method.  Not used for a system random number generator."
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    seed = jumpahead = _stub
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def _notimplemented(self, *args, **kwds):
							 | 
						
					
						
							
								
									
										
										
										
											2004-09-13 22:23:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        "Method should not be called for a system random number generator."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        raise NotImplementedError('System entropy source does not have state.')
							 | 
						
					
						
							
								
									
										
										
										
											2004-08-30 06:14:31 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    getstate = setstate = _notimplemented
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- test program --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2003-08-30 01:24:19 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def _test_generator(n, func, args):
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    import time
							 | 
						
					
						
							
								
									
										
										
										
											2003-08-30 01:24:19 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    print n, 'times', func.__name__
							 | 
						
					
						
							
								
									
										
										
										
											2003-05-24 17:26:02 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    total = 0.0
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    sqsum = 0.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    smallest = 1e10
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    largest = -1e10
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    t0 = time.time()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i in range(n):
							 | 
						
					
						
							
								
									
										
										
										
											2003-08-30 01:24:19 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        x = func(*args)
							 | 
						
					
						
							
								
									
										
										
										
											2003-05-24 17:26:02 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        total += x
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        sqsum = sqsum + x*x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        smallest = min(x, smallest)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        largest = max(x, largest)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    t1 = time.time()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print round(t1-t0, 3), 'sec,',
							 | 
						
					
						
							
								
									
										
										
										
											2003-05-24 17:26:02 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    avg = total/n
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    stddev = _sqrt(sqsum/n - avg*avg)
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    print 'avg %g, stddev %g, min %g, max %g' % \
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								              (avg, stddev, smallest, largest)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def _test(N=2000):
							 | 
						
					
						
							
								
									
										
										
										
											2003-08-30 01:24:19 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, random, ())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, normalvariate, (0.0, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, lognormvariate, (0.0, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, vonmisesvariate, (0.0, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, gammavariate, (0.01, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, gammavariate, (0.1, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, gammavariate, (0.1, 2.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, gammavariate, (0.5, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, gammavariate, (0.9, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, gammavariate, (1.0, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, gammavariate, (2.0, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, gammavariate, (20.0, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, gammavariate, (200.0, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, gauss, (0.0, 1.0))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, betavariate, (3.0, 3.0))
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-26 22:56:56 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								# Create one instance, seeded from current time, and export its methods
							 | 
						
					
						
							
								
									
										
										
										
											2002-12-29 23:03:38 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								# as module-level functions.  The functions share state across all uses
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#(both in the user's code and in the Python libraries), but that's fine
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# for most programs and is easier for the casual user than making them
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# instantiate their own Random() instance.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								_inst = Random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								seed = _inst.seed
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								random = _inst.random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								uniform = _inst.uniform
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								randint = _inst.randint
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								choice = _inst.choice
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								randrange = _inst.randrange
							 | 
						
					
						
							
								
									
										
										
										
											2002-11-12 17:41:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								sample = _inst.sample
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								shuffle = _inst.shuffle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								normalvariate = _inst.normalvariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								lognormvariate = _inst.lognormvariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								expovariate = _inst.expovariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								vonmisesvariate = _inst.vonmisesvariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								gammavariate = _inst.gammavariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								gauss = _inst.gauss
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								betavariate = _inst.betavariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								paretovariate = _inst.paretovariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								weibullvariate = _inst.weibullvariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								getstate = _inst.getstate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								setstate = _inst.setstate
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 06:23:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								jumpahead = _inst.jumpahead
							 | 
						
					
						
							
								
									
										
										
										
											2003-10-05 09:09:15 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								getrandbits = _inst.getrandbits
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								if __name__ == '__main__':
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    _test()
							 |