| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | /* Complex math module */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* much code borrowed from mathmodule.c */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-12-09 22:59:53 +00:00
										 |  |  | #include "Python.h"
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | /* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
 | 
					
						
							|  |  |  |    float.h.  We assume that FLT_RADIX is either 2 or 16. */ | 
					
						
							|  |  |  | #include <float.h>
 | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | #if (FLT_RADIX != 2 && FLT_RADIX != 16)
 | 
					
						
							|  |  |  | #error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
 | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | #ifndef M_LN2
 | 
					
						
							|  |  |  | #define M_LN2 (0.6931471805599453094) /* natural log of 2 */
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef M_LN10
 | 
					
						
							|  |  |  | #define M_LN10 (2.302585092994045684) /* natural log of 10 */
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | /*
 | 
					
						
							|  |  |  |    CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log, | 
					
						
							|  |  |  |    inverse trig and inverse hyperbolic trig functions.  Its log is used in the | 
					
						
							|  |  |  |    evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unecessary | 
					
						
							|  |  |  |    overflow. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define CM_LARGE_DOUBLE (DBL_MAX/4.)
 | 
					
						
							|  |  |  | #define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
 | 
					
						
							|  |  |  | #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
 | 
					
						
							|  |  |  | #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* 
 | 
					
						
							|  |  |  |    CM_SCALE_UP is an odd integer chosen such that multiplication by | 
					
						
							|  |  |  |    2**CM_SCALE_UP is sufficient to turn a subnormal into a normal. | 
					
						
							|  |  |  |    CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2).  These scalings are used to compute | 
					
						
							|  |  |  |    square roots accurately when the real and imaginary parts of the argument | 
					
						
							|  |  |  |    are subnormal. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if FLT_RADIX==2
 | 
					
						
							|  |  |  | #define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
 | 
					
						
							|  |  |  | #elif FLT_RADIX==16
 | 
					
						
							|  |  |  | #define CM_SCALE_UP (4*DBL_MANT_DIG+1)
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | #define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
 | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | /* forward declarations */ | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | static Py_complex c_asinh(Py_complex); | 
					
						
							|  |  |  | static Py_complex c_atanh(Py_complex); | 
					
						
							|  |  |  | static Py_complex c_cosh(Py_complex); | 
					
						
							|  |  |  | static Py_complex c_sinh(Py_complex); | 
					
						
							| 
									
										
										
										
											2002-07-17 16:30:39 +00:00
										 |  |  | static Py_complex c_sqrt(Py_complex); | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | static Py_complex c_tanh(Py_complex); | 
					
						
							| 
									
										
										
										
											2004-06-14 07:40:10 +00:00
										 |  |  | static PyObject * math_error(void); | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | /* Code to deal with special values (infinities, NaNs, etc.). */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* special_type takes a double and returns an integer code indicating
 | 
					
						
							|  |  |  |    the type of the double as follows: | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | enum special_types { | 
					
						
							|  |  |  | 	ST_NINF,	/* 0, negative infinity */ | 
					
						
							|  |  |  | 	ST_NEG,		/* 1, negative finite number (nonzero) */ | 
					
						
							|  |  |  | 	ST_NZERO,	/* 2, -0. */ | 
					
						
							|  |  |  | 	ST_PZERO,	/* 3, +0. */ | 
					
						
							|  |  |  | 	ST_POS,		/* 4, positive finite number (nonzero) */ | 
					
						
							|  |  |  | 	ST_PINF,	/* 5, positive infinity */ | 
					
						
							|  |  |  | 	ST_NAN,		/* 6, Not a Number */ | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static enum special_types | 
					
						
							|  |  |  | special_type(double d) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	if (Py_IS_FINITE(d)) { | 
					
						
							|  |  |  | 		if (d != 0) { | 
					
						
							|  |  |  | 			if (copysign(1., d) == 1.) | 
					
						
							|  |  |  | 				return ST_POS; | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 				return ST_NEG; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		else { | 
					
						
							|  |  |  | 			if (copysign(1., d) == 1.) | 
					
						
							|  |  |  | 				return ST_PZERO; | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 				return ST_NZERO; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	if (Py_IS_NAN(d)) | 
					
						
							|  |  |  | 		return ST_NAN; | 
					
						
							|  |  |  | 	if (copysign(1., d) == 1.) | 
					
						
							|  |  |  | 		return ST_PINF; | 
					
						
							|  |  |  | 	else | 
					
						
							|  |  |  | 		return ST_NINF; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define SPECIAL_VALUE(z, table)						\
 | 
					
						
							|  |  |  | 	if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) {	\ | 
					
						
							|  |  |  | 		errno = 0;                                              \ | 
					
						
							|  |  |  | 		return table[special_type((z).real)]	                \ | 
					
						
							|  |  |  | 			    [special_type((z).imag)];			\ | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define P Py_MATH_PI
 | 
					
						
							|  |  |  | #define P14 0.25*Py_MATH_PI
 | 
					
						
							|  |  |  | #define P12 0.5*Py_MATH_PI
 | 
					
						
							|  |  |  | #define P34 0.75*Py_MATH_PI
 | 
					
						
							|  |  |  | #ifdef MS_WINDOWS
 | 
					
						
							|  |  |  | /* On Windows HUGE_VAL is an extern variable and not a constant. Since the
 | 
					
						
							|  |  |  |    special value arrays need a constant we have to roll our own infinity | 
					
						
							|  |  |  |    and nan. */ | 
					
						
							|  |  |  | #  define INF (DBL_MAX*DBL_MAX)
 | 
					
						
							|  |  |  | #  define N (INF*0.)
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | #  define INF Py_HUGE_VAL
 | 
					
						
							|  |  |  | #  define N Py_NAN
 | 
					
						
							|  |  |  | #endif /* MS_WINDOWS */
 | 
					
						
							|  |  |  | #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* First, the C functions that do the real work.  Each of the c_*
 | 
					
						
							|  |  |  |    functions computes and returns the C99 Annex G recommended result | 
					
						
							|  |  |  |    and also sets errno as follows: errno = 0 if no floating-point | 
					
						
							|  |  |  |    exception is associated with the result; errno = EDOM if C99 Annex | 
					
						
							|  |  |  |    G recommends raising divide-by-zero or invalid for this result; and | 
					
						
							|  |  |  |    errno = ERANGE where the overflow floating-point signal should be | 
					
						
							|  |  |  |    raised. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static Py_complex acos_special_values[7][7] = { | 
					
						
							|  |  |  |   {{P34,INF},{P,INF}, {P,INF}, {P,-INF}, {P,-INF}, {P34,-INF},{N,INF}}, | 
					
						
							|  |  |  |   {{P12,INF},{U,U},   {U,U},   {U,U},    {U,U},    {P12,-INF},{N,N}}, | 
					
						
							|  |  |  |   {{P12,INF},{U,U},   {P12,0.},{P12,-0.},{U,U},    {P12,-INF},{P12,N}}, | 
					
						
							|  |  |  |   {{P12,INF},{U,U},   {P12,0.},{P12,-0.},{U,U},    {P12,-INF},{P12,N}}, | 
					
						
							|  |  |  |   {{P12,INF},{U,U},   {U,U},   {U,U},    {U,U},    {P12,-INF},{N,N}}, | 
					
						
							|  |  |  |   {{P14,INF},{0.,INF},{0.,INF},{0.,-INF},{0.,-INF},{P14,-INF},{N,INF}}, | 
					
						
							|  |  |  |   {{N,INF},  {N,N},   {N,N},   {N,N},    {N,N},    {N,-INF},  {N,N}} | 
					
						
							|  |  |  | }; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_acos(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	Py_complex s1, s2, r; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	SPECIAL_VALUE(z, acos_special_values); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { | 
					
						
							|  |  |  | 		/* avoid unnecessary overflow for large arguments */ | 
					
						
							|  |  |  | 		r.real = atan2(fabs(z.imag), z.real); | 
					
						
							|  |  |  | 		/* split into cases to make sure that the branch cut has the
 | 
					
						
							|  |  |  | 		   correct continuity on systems with unsigned zeros */ | 
					
						
							|  |  |  | 		if (z.real < 0.) { | 
					
						
							|  |  |  | 			r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) + | 
					
						
							|  |  |  | 					   M_LN2*2., z.imag); | 
					
						
							|  |  |  | 		} else { | 
					
						
							|  |  |  | 			r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) + | 
					
						
							|  |  |  | 					  M_LN2*2., -z.imag); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		s1.real = 1.-z.real; | 
					
						
							|  |  |  | 		s1.imag = -z.imag; | 
					
						
							|  |  |  | 		s1 = c_sqrt(s1); | 
					
						
							|  |  |  | 		s2.real = 1.+z.real; | 
					
						
							|  |  |  | 		s2.imag = z.imag; | 
					
						
							|  |  |  | 		s2 = c_sqrt(s2); | 
					
						
							|  |  |  | 		r.real = 2.*atan2(s1.real, s2.real); | 
					
						
							|  |  |  | 		r.imag = asinh(s2.real*s1.imag - s2.imag*s1.real); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	errno = 0; | 
					
						
							|  |  |  | 	return r; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_acos_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "acos(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the arc cosine of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | static Py_complex acosh_special_values[7][7] = { | 
					
						
							|  |  |  |   {{INF,-P34},{INF,-P}, {INF,-P}, {INF,P}, {INF,P}, {INF,P34},{INF,N}}, | 
					
						
							|  |  |  |   {{INF,-P12},{U,U},    {U,U},    {U,U},   {U,U},   {INF,P12},{N,N}}, | 
					
						
							|  |  |  |   {{INF,-P12},{U,U},    {0.,-P12},{0.,P12},{U,U},   {INF,P12},{N,N}}, | 
					
						
							|  |  |  |   {{INF,-P12},{U,U},    {0.,-P12},{0.,P12},{U,U},   {INF,P12},{N,N}}, | 
					
						
							|  |  |  |   {{INF,-P12},{U,U},    {U,U},    {U,U},   {U,U},   {INF,P12},{N,N}}, | 
					
						
							|  |  |  |   {{INF,-P14},{INF,-0.},{INF,-0.},{INF,0.},{INF,0.},{INF,P14},{INF,N}}, | 
					
						
							|  |  |  |   {{INF,N},   {N,N},    {N,N},    {N,N},   {N,N},   {INF,N},  {N,N}} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_acosh(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	Py_complex s1, s2, r; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	SPECIAL_VALUE(z, acosh_special_values); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { | 
					
						
							|  |  |  | 		/* avoid unnecessary overflow for large arguments */ | 
					
						
							|  |  |  | 		r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.; | 
					
						
							|  |  |  | 		r.imag = atan2(z.imag, z.real); | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		s1.real = z.real - 1.; | 
					
						
							|  |  |  | 		s1.imag = z.imag; | 
					
						
							|  |  |  | 		s1 = c_sqrt(s1); | 
					
						
							|  |  |  | 		s2.real = z.real + 1.; | 
					
						
							|  |  |  | 		s2.imag = z.imag; | 
					
						
							|  |  |  | 		s2 = c_sqrt(s2); | 
					
						
							|  |  |  | 		r.real = asinh(s1.real*s2.real + s1.imag*s2.imag); | 
					
						
							|  |  |  | 		r.imag = 2.*atan2(s1.imag, s2.real); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	errno = 0; | 
					
						
							|  |  |  | 	return r; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_acosh_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "acosh(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the hyperbolic arccosine of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_asin(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	/* asin(z) = -i asinh(iz) */ | 
					
						
							|  |  |  | 	Py_complex s, r; | 
					
						
							|  |  |  | 	s.real = -z.imag; | 
					
						
							|  |  |  | 	s.imag = z.real; | 
					
						
							|  |  |  | 	s = c_asinh(s); | 
					
						
							|  |  |  | 	r.real = s.imag; | 
					
						
							|  |  |  | 	r.imag = -s.real; | 
					
						
							|  |  |  | 	return r; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_asin_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "asin(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the arc sine of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | static Py_complex asinh_special_values[7][7] = { | 
					
						
							|  |  |  |   {{-INF,-P14},{-INF,-0.},{-INF,-0.},{-INF,0.},{-INF,0.},{-INF,P14},{-INF,N}}, | 
					
						
							|  |  |  |   {{-INF,-P12},{U,U},     {U,U},     {U,U},    {U,U},    {-INF,P12},{N,N}}, | 
					
						
							|  |  |  |   {{-INF,-P12},{U,U},     {-0.,-0.}, {-0.,0.}, {U,U},    {-INF,P12},{N,N}}, | 
					
						
							|  |  |  |   {{INF,-P12}, {U,U},     {0.,-0.},  {0.,0.},  {U,U},    {INF,P12}, {N,N}}, | 
					
						
							|  |  |  |   {{INF,-P12}, {U,U},     {U,U},     {U,U},    {U,U},    {INF,P12}, {N,N}}, | 
					
						
							|  |  |  |   {{INF,-P14}, {INF,-0.}, {INF,-0.}, {INF,0.}, {INF,0.}, {INF,P14}, {INF,N}}, | 
					
						
							|  |  |  |   {{INF,N},    {N,N},     {N,-0.},   {N,0.},   {N,N},    {INF,N},   {N,N}} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_asinh(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	Py_complex s1, s2, r; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	SPECIAL_VALUE(z, asinh_special_values); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { | 
					
						
							|  |  |  | 		if (z.imag >= 0.) { | 
					
						
							|  |  |  | 			r.real = copysign(log(hypot(z.real/2., z.imag/2.)) + | 
					
						
							|  |  |  | 					  M_LN2*2., z.real); | 
					
						
							|  |  |  | 		} else { | 
					
						
							|  |  |  | 			r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) + | 
					
						
							|  |  |  | 					   M_LN2*2., -z.real); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		r.imag = atan2(z.imag, fabs(z.real)); | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		s1.real = 1.+z.imag; | 
					
						
							|  |  |  | 		s1.imag = -z.real; | 
					
						
							|  |  |  | 		s1 = c_sqrt(s1); | 
					
						
							|  |  |  | 		s2.real = 1.-z.imag; | 
					
						
							|  |  |  | 		s2.imag = z.real; | 
					
						
							|  |  |  | 		s2 = c_sqrt(s2); | 
					
						
							|  |  |  | 		r.real = asinh(s1.real*s2.imag-s2.real*s1.imag); | 
					
						
							|  |  |  | 		r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	errno = 0; | 
					
						
							|  |  |  | 	return r; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_asinh_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "asinh(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the hyperbolic arc sine of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_atan(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	/* atan(z) = -i atanh(iz) */ | 
					
						
							|  |  |  | 	Py_complex s, r; | 
					
						
							|  |  |  | 	s.real = -z.imag; | 
					
						
							|  |  |  | 	s.imag = z.real; | 
					
						
							|  |  |  | 	s = c_atanh(s); | 
					
						
							|  |  |  | 	r.real = s.imag; | 
					
						
							|  |  |  | 	r.imag = -s.real; | 
					
						
							|  |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Windows screws up atan2 for inf and nan */ | 
					
						
							|  |  |  | static double | 
					
						
							|  |  |  | c_atan2(Py_complex z) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)) | 
					
						
							|  |  |  | 		return Py_NAN; | 
					
						
							|  |  |  | 	if (Py_IS_INFINITY(z.imag)) { | 
					
						
							|  |  |  | 		if (Py_IS_INFINITY(z.real)) { | 
					
						
							|  |  |  | 			if (copysign(1., z.real) == 1.) | 
					
						
							|  |  |  | 				/* atan2(+-inf, +inf) == +-pi/4 */ | 
					
						
							|  |  |  | 				return copysign(0.25*Py_MATH_PI, z.imag); | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 				/* atan2(+-inf, -inf) == +-pi*3/4 */ | 
					
						
							|  |  |  | 				return copysign(0.75*Py_MATH_PI, z.imag); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		/* atan2(+-inf, x) == +-pi/2 for finite x */ | 
					
						
							|  |  |  | 		return copysign(0.5*Py_MATH_PI, z.imag); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	return atan2(z.imag, z.real); | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_atan_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "atan(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the arc tangent of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | static Py_complex atanh_special_values[7][7] = { | 
					
						
							|  |  |  |   {{-0.,-P12},{-0.,-P12},{-0.,-P12},{-0.,P12},{-0.,P12},{-0.,P12},{-0.,N}}, | 
					
						
							|  |  |  |   {{-0.,-P12},{U,U},     {U,U},     {U,U},    {U,U},    {-0.,P12},{N,N}}, | 
					
						
							|  |  |  |   {{-0.,-P12},{U,U},     {-0.,-0.}, {-0.,0.}, {U,U},    {-0.,P12},{-0.,N}}, | 
					
						
							|  |  |  |   {{0.,-P12}, {U,U},     {0.,-0.},  {0.,0.},  {U,U},    {0.,P12}, {0.,N}}, | 
					
						
							|  |  |  |   {{0.,-P12}, {U,U},     {U,U},     {U,U},    {U,U},    {0.,P12}, {N,N}}, | 
					
						
							|  |  |  |   {{0.,-P12}, {0.,-P12}, {0.,-P12}, {0.,P12}, {0.,P12}, {0.,P12}, {0.,N}}, | 
					
						
							|  |  |  |   {{0.,-P12}, {N,N},     {N,N},     {N,N},    {N,N},    {0.,P12}, {N,N}} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_atanh(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	Py_complex r; | 
					
						
							|  |  |  | 	double ay, h; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	SPECIAL_VALUE(z, atanh_special_values); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */ | 
					
						
							|  |  |  | 	if (z.real < 0.) { | 
					
						
							|  |  |  | 		return c_neg(c_atanh(c_neg(z))); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	ay = fabs(z.imag); | 
					
						
							|  |  |  | 	if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) { | 
					
						
							|  |  |  | 		/*
 | 
					
						
							|  |  |  | 		   if abs(z) is large then we use the approximation | 
					
						
							|  |  |  | 		   atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign | 
					
						
							|  |  |  | 		   of z.imag) | 
					
						
							|  |  |  | 		*/ | 
					
						
							|  |  |  | 		h = hypot(z.real/2., z.imag/2.);  /* safe from overflow */ | 
					
						
							|  |  |  | 		r.real = z.real/4./h/h; | 
					
						
							|  |  |  | 		/* the two negations in the next line cancel each other out
 | 
					
						
							|  |  |  | 		   except when working with unsigned zeros: they're there to | 
					
						
							|  |  |  | 		   ensure that the branch cut has the correct continuity on | 
					
						
							|  |  |  | 		   systems that don't support signed zeros */ | 
					
						
							|  |  |  | 		r.imag = -copysign(Py_MATH_PI/2., -z.imag); | 
					
						
							|  |  |  | 		errno = 0; | 
					
						
							|  |  |  | 	} else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) { | 
					
						
							|  |  |  | 		/* C99 standard says:  atanh(1+/-0.) should be inf +/- 0i */ | 
					
						
							|  |  |  | 		if (ay == 0.) { | 
					
						
							|  |  |  | 			r.real = INF; | 
					
						
							|  |  |  | 			r.imag = z.imag; | 
					
						
							|  |  |  | 			errno = EDOM; | 
					
						
							|  |  |  | 		} else { | 
					
						
							|  |  |  | 			r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.))); | 
					
						
							|  |  |  | 			r.imag = copysign(atan2(2., -ay)/2, z.imag); | 
					
						
							|  |  |  | 			errno = 0; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		r.real = log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.; | 
					
						
							|  |  |  | 		r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.; | 
					
						
							|  |  |  | 		errno = 0; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	return r; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_atanh_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "atanh(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the hyperbolic arc tangent of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_cos(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	/* cos(z) = cosh(iz) */ | 
					
						
							| 
									
										
										
										
											1996-07-21 02:31:35 +00:00
										 |  |  | 	Py_complex r; | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	r.real = -z.imag; | 
					
						
							|  |  |  | 	r.imag = z.real; | 
					
						
							|  |  |  | 	r = c_cosh(r); | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_cos_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "cos(x)\n" | 
					
						
							|  |  |  | "n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the cosine of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | /* cosh(infinity + i*y) needs to be dealt with specially */ | 
					
						
							|  |  |  | static Py_complex cosh_special_values[7][7] = { | 
					
						
							|  |  |  |   {{INF,N},{U,U},{INF,0.}, {INF,-0.},{U,U},{INF,N},{INF,N}}, | 
					
						
							|  |  |  |   {{N,N},  {U,U},{U,U},    {U,U},    {U,U},{N,N},  {N,N}}, | 
					
						
							|  |  |  |   {{N,0.}, {U,U},{1.,0.},  {1.,-0.}, {U,U},{N,0.}, {N,0.}}, | 
					
						
							|  |  |  |   {{N,0.}, {U,U},{1.,-0.}, {1.,0.},  {U,U},{N,0.}, {N,0.}}, | 
					
						
							|  |  |  |   {{N,N},  {U,U},{U,U},    {U,U},    {U,U},{N,N},  {N,N}}, | 
					
						
							|  |  |  |   {{INF,N},{U,U},{INF,-0.},{INF,0.}, {U,U},{INF,N},{INF,N}}, | 
					
						
							|  |  |  |   {{N,N},  {N,N},{N,0.},   {N,0.},   {N,N},{N,N},  {N,N}} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_cosh(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											1996-07-21 02:31:35 +00:00
										 |  |  | 	Py_complex r; | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	double x_minus_one; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* special treatment for cosh(+/-inf + iy) if y is not a NaN */ | 
					
						
							|  |  |  | 	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { | 
					
						
							|  |  |  | 		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) && | 
					
						
							|  |  |  | 		    (z.imag != 0.)) { | 
					
						
							|  |  |  | 			if (z.real > 0) { | 
					
						
							|  |  |  | 				r.real = copysign(INF, cos(z.imag)); | 
					
						
							|  |  |  | 				r.imag = copysign(INF, sin(z.imag)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else { | 
					
						
							|  |  |  | 				r.real = copysign(INF, cos(z.imag)); | 
					
						
							|  |  |  | 				r.imag = -copysign(INF, sin(z.imag)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		else { | 
					
						
							|  |  |  | 			r = cosh_special_values[special_type(z.real)] | 
					
						
							|  |  |  | 				               [special_type(z.imag)]; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		/* need to set errno = EDOM if y is +/- infinity and x is not
 | 
					
						
							|  |  |  | 		   a NaN */ | 
					
						
							|  |  |  | 		if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) | 
					
						
							|  |  |  | 			errno = EDOM; | 
					
						
							|  |  |  | 		else | 
					
						
							|  |  |  | 			errno = 0; | 
					
						
							|  |  |  | 		return r; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { | 
					
						
							|  |  |  | 		/* deal correctly with cases where cosh(z.real) overflows but
 | 
					
						
							|  |  |  | 		   cosh(z) does not. */ | 
					
						
							|  |  |  | 		x_minus_one = z.real - copysign(1., z.real); | 
					
						
							|  |  |  | 		r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E; | 
					
						
							|  |  |  | 		r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E; | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		r.real = cos(z.imag) * cosh(z.real); | 
					
						
							|  |  |  | 		r.imag = sin(z.imag) * sinh(z.real); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	/* detect overflow, and set errno accordingly */ | 
					
						
							|  |  |  | 	if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) | 
					
						
							|  |  |  | 		errno = ERANGE; | 
					
						
							|  |  |  | 	else | 
					
						
							|  |  |  | 		errno = 0; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_cosh_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "cosh(x)\n" | 
					
						
							|  |  |  | "n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the hyperbolic cosine of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
 | 
					
						
							|  |  |  |    finite y */ | 
					
						
							|  |  |  | static Py_complex exp_special_values[7][7] = { | 
					
						
							|  |  |  |   {{0.,0.},{U,U},{0.,-0.}, {0.,0.}, {U,U},{0.,0.},{0.,0.}}, | 
					
						
							|  |  |  |   {{N,N},  {U,U},{U,U},    {U,U},   {U,U},{N,N},  {N,N}}, | 
					
						
							|  |  |  |   {{N,N},  {U,U},{1.,-0.}, {1.,0.}, {U,U},{N,N},  {N,N}}, | 
					
						
							|  |  |  |   {{N,N},  {U,U},{1.,-0.}, {1.,0.}, {U,U},{N,N},  {N,N}}, | 
					
						
							|  |  |  |   {{N,N},  {U,U},{U,U},    {U,U},   {U,U},{N,N},  {N,N}}, | 
					
						
							|  |  |  |   {{INF,N},{U,U},{INF,-0.},{INF,0.},{U,U},{INF,N},{INF,N}}, | 
					
						
							|  |  |  |   {{N,N},  {N,N},{N,-0.},  {N,0.},  {N,N},{N,N},  {N,N}} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_exp(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											1996-07-21 02:31:35 +00:00
										 |  |  | 	Py_complex r; | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	double l; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { | 
					
						
							|  |  |  | 		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) | 
					
						
							|  |  |  | 		    && (z.imag != 0.)) { | 
					
						
							|  |  |  | 			if (z.real > 0) { | 
					
						
							|  |  |  | 				r.real = copysign(INF, cos(z.imag)); | 
					
						
							|  |  |  | 				r.imag = copysign(INF, sin(z.imag)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else { | 
					
						
							|  |  |  | 				r.real = copysign(0., cos(z.imag)); | 
					
						
							|  |  |  | 				r.imag = copysign(0., sin(z.imag)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		else { | 
					
						
							|  |  |  | 			r = exp_special_values[special_type(z.real)] | 
					
						
							|  |  |  | 				              [special_type(z.imag)]; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		/* need to set errno = EDOM if y is +/- infinity and x is not
 | 
					
						
							|  |  |  | 		   a NaN and not -infinity */ | 
					
						
							|  |  |  | 		if (Py_IS_INFINITY(z.imag) && | 
					
						
							|  |  |  | 		    (Py_IS_FINITE(z.real) || | 
					
						
							|  |  |  | 		     (Py_IS_INFINITY(z.real) && z.real > 0))) | 
					
						
							|  |  |  | 			errno = EDOM; | 
					
						
							|  |  |  | 		else | 
					
						
							|  |  |  | 			errno = 0; | 
					
						
							|  |  |  | 		return r; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (z.real > CM_LOG_LARGE_DOUBLE) { | 
					
						
							|  |  |  | 		l = exp(z.real-1.); | 
					
						
							|  |  |  | 		r.real = l*cos(z.imag)*Py_MATH_E; | 
					
						
							|  |  |  | 		r.imag = l*sin(z.imag)*Py_MATH_E; | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		l = exp(z.real); | 
					
						
							|  |  |  | 		r.real = l*cos(z.imag); | 
					
						
							|  |  |  | 		r.imag = l*sin(z.imag); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	/* detect overflow, and set errno accordingly */ | 
					
						
							|  |  |  | 	if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) | 
					
						
							|  |  |  | 		errno = ERANGE; | 
					
						
							|  |  |  | 	else | 
					
						
							|  |  |  | 		errno = 0; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_exp_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "exp(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the exponential value e**x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | static Py_complex log_special_values[7][7] = { | 
					
						
							|  |  |  |   {{INF,-P34},{INF,-P}, {INF,-P},  {INF,P},  {INF,P}, {INF,P34}, {INF,N}}, | 
					
						
							|  |  |  |   {{INF,-P12},{U,U},    {U,U},     {U,U},    {U,U},   {INF,P12}, {N,N}}, | 
					
						
							|  |  |  |   {{INF,-P12},{U,U},    {-INF,-P}, {-INF,P}, {U,U},   {INF,P12}, {N,N}}, | 
					
						
							|  |  |  |   {{INF,-P12},{U,U},    {-INF,-0.},{-INF,0.},{U,U},   {INF,P12}, {N,N}}, | 
					
						
							|  |  |  |   {{INF,-P12},{U,U},    {U,U},     {U,U},    {U,U},   {INF,P12}, {N,N}}, | 
					
						
							|  |  |  |   {{INF,-P14},{INF,-0.},{INF,-0.}, {INF,0.}, {INF,0.},{INF,P14}, {INF,N}}, | 
					
						
							|  |  |  |   {{INF,N},   {N,N},    {N,N},     {N,N},    {N,N},   {INF,N},   {N,N}} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_log(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	   The usual formula for the real part is log(hypot(z.real, z.imag)). | 
					
						
							|  |  |  | 	   There are four situations where this formula is potentially | 
					
						
							|  |  |  | 	   problematic: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   (1) the absolute value of z is subnormal.  Then hypot is subnormal, | 
					
						
							|  |  |  | 	   so has fewer than the usual number of bits of accuracy, hence may | 
					
						
							|  |  |  | 	   have large relative error.  This then gives a large absolute error | 
					
						
							|  |  |  | 	   in the log.  This can be solved by rescaling z by a suitable power | 
					
						
							|  |  |  | 	   of 2. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   (2) the absolute value of z is greater than DBL_MAX (e.g. when both | 
					
						
							|  |  |  | 	   z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX) | 
					
						
							|  |  |  | 	   Again, rescaling solves this. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   (3) the absolute value of z is close to 1.  In this case it's | 
					
						
							|  |  |  | 	   difficult to achieve good accuracy, at least in part because a | 
					
						
							|  |  |  | 	   change of 1ulp in the real or imaginary part of z can result in a | 
					
						
							|  |  |  | 	   change of billions of ulps in the correctly rounded answer. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   (4) z = 0.  The simplest thing to do here is to call the | 
					
						
							|  |  |  | 	   floating-point log with an argument of 0, and let its behaviour | 
					
						
							|  |  |  | 	   (returning -infinity, signaling a floating-point exception, setting | 
					
						
							|  |  |  | 	   errno, or whatever) determine that of c_log.  So the usual formula | 
					
						
							|  |  |  | 	   is fine here. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	 */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-07-21 02:31:35 +00:00
										 |  |  | 	Py_complex r; | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	double ax, ay, am, an, h; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	SPECIAL_VALUE(z, log_special_values); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	ax = fabs(z.real); | 
					
						
							|  |  |  | 	ay = fabs(z.imag); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) { | 
					
						
							|  |  |  | 		r.real = log(hypot(ax/2., ay/2.)) + M_LN2; | 
					
						
							|  |  |  | 	} else if (ax < DBL_MIN && ay < DBL_MIN) { | 
					
						
							|  |  |  | 		if (ax > 0. || ay > 0.) { | 
					
						
							|  |  |  | 			/* catch cases where hypot(ax, ay) is subnormal */ | 
					
						
							|  |  |  | 			r.real = log(hypot(ldexp(ax, DBL_MANT_DIG), | 
					
						
							|  |  |  | 				 ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		else { | 
					
						
							|  |  |  | 			/* log(+/-0. +/- 0i) */ | 
					
						
							|  |  |  | 			r.real = -INF; | 
					
						
							|  |  |  | 			r.imag = atan2(z.imag, z.real); | 
					
						
							|  |  |  | 			errno = EDOM; | 
					
						
							|  |  |  | 			return r; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		h = hypot(ax, ay); | 
					
						
							|  |  |  | 		if (0.71 <= h && h <= 1.73) { | 
					
						
							|  |  |  | 			am = ax > ay ? ax : ay;  /* max(ax, ay) */ | 
					
						
							|  |  |  | 			an = ax > ay ? ay : ax;  /* min(ax, ay) */ | 
					
						
							|  |  |  | 			r.real = log1p((am-1)*(am+1)+an*an)/2.; | 
					
						
							|  |  |  | 		} else { | 
					
						
							|  |  |  | 			r.real = log(h); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	r.imag = atan2(z.imag, z.real); | 
					
						
							|  |  |  | 	errno = 0; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_log10(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											1996-07-21 02:31:35 +00:00
										 |  |  | 	Py_complex r; | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	int errno_save; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	r = c_log(z); | 
					
						
							|  |  |  | 	errno_save = errno; /* just in case the divisions affect errno */ | 
					
						
							|  |  |  | 	r.real = r.real / M_LN10; | 
					
						
							|  |  |  | 	r.imag = r.imag / M_LN10; | 
					
						
							|  |  |  | 	errno = errno_save; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_log10_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "log10(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the base-10 logarithm of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_sin(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	/* sin(z) = -i sin(iz) */ | 
					
						
							|  |  |  | 	Py_complex s, r; | 
					
						
							|  |  |  | 	s.real = -z.imag; | 
					
						
							|  |  |  | 	s.imag = z.real; | 
					
						
							|  |  |  | 	s = c_sinh(s); | 
					
						
							|  |  |  | 	r.real = s.imag; | 
					
						
							|  |  |  | 	r.imag = -s.real; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_sin_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "sin(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the sine of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | /* sinh(infinity + i*y) needs to be dealt with specially */ | 
					
						
							|  |  |  | static Py_complex sinh_special_values[7][7] = { | 
					
						
							|  |  |  |   {{INF,N},{U,U},{-INF,-0.},{-INF,0.},{U,U},{INF,N},{INF,N}}, | 
					
						
							|  |  |  |   {{N,N},  {U,U},{U,U},     {U,U},    {U,U},{N,N},  {N,N}}, | 
					
						
							|  |  |  |   {{0.,N}, {U,U},{-0.,-0.}, {-0.,0.}, {U,U},{0.,N}, {0.,N}}, | 
					
						
							|  |  |  |   {{0.,N}, {U,U},{0.,-0.},  {0.,0.},  {U,U},{0.,N}, {0.,N}}, | 
					
						
							|  |  |  |   {{N,N},  {U,U},{U,U},     {U,U},    {U,U},{N,N},  {N,N}}, | 
					
						
							|  |  |  |   {{INF,N},{U,U},{INF,-0.}, {INF,0.}, {U,U},{INF,N},{INF,N}}, | 
					
						
							|  |  |  |   {{N,N},  {N,N},{N,-0.},   {N,0.},   {N,N},{N,N},  {N,N}} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_sinh(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											1996-07-21 02:31:35 +00:00
										 |  |  | 	Py_complex r; | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	double x_minus_one; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* special treatment for sinh(+/-inf + iy) if y is finite and
 | 
					
						
							|  |  |  | 	   nonzero */ | 
					
						
							|  |  |  | 	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { | 
					
						
							|  |  |  | 		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) | 
					
						
							|  |  |  | 		    && (z.imag != 0.)) { | 
					
						
							|  |  |  | 			if (z.real > 0) { | 
					
						
							|  |  |  | 				r.real = copysign(INF, cos(z.imag)); | 
					
						
							|  |  |  | 				r.imag = copysign(INF, sin(z.imag)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else { | 
					
						
							|  |  |  | 				r.real = -copysign(INF, cos(z.imag)); | 
					
						
							|  |  |  | 				r.imag = copysign(INF, sin(z.imag)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		else { | 
					
						
							|  |  |  | 			r = sinh_special_values[special_type(z.real)] | 
					
						
							|  |  |  | 				               [special_type(z.imag)]; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		/* need to set errno = EDOM if y is +/- infinity and x is not
 | 
					
						
							|  |  |  | 		   a NaN */ | 
					
						
							|  |  |  | 		if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) | 
					
						
							|  |  |  | 			errno = EDOM; | 
					
						
							|  |  |  | 		else | 
					
						
							|  |  |  | 			errno = 0; | 
					
						
							|  |  |  | 		return r; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { | 
					
						
							|  |  |  | 		x_minus_one = z.real - copysign(1., z.real); | 
					
						
							|  |  |  | 		r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E; | 
					
						
							|  |  |  | 		r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E; | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		r.real = cos(z.imag) * sinh(z.real); | 
					
						
							|  |  |  | 		r.imag = sin(z.imag) * cosh(z.real); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	/* detect overflow, and set errno accordingly */ | 
					
						
							|  |  |  | 	if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) | 
					
						
							|  |  |  | 		errno = ERANGE; | 
					
						
							|  |  |  | 	else | 
					
						
							|  |  |  | 		errno = 0; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_sinh_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "sinh(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the hyperbolic sine of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | static Py_complex sqrt_special_values[7][7] = { | 
					
						
							|  |  |  |   {{INF,-INF},{0.,-INF},{0.,-INF},{0.,INF},{0.,INF},{INF,INF},{N,INF}}, | 
					
						
							|  |  |  |   {{INF,-INF},{U,U},    {U,U},    {U,U},   {U,U},   {INF,INF},{N,N}}, | 
					
						
							|  |  |  |   {{INF,-INF},{U,U},    {0.,-0.}, {0.,0.}, {U,U},   {INF,INF},{N,N}}, | 
					
						
							|  |  |  |   {{INF,-INF},{U,U},    {0.,-0.}, {0.,0.}, {U,U},   {INF,INF},{N,N}}, | 
					
						
							|  |  |  |   {{INF,-INF},{U,U},    {U,U},    {U,U},   {U,U},   {INF,INF},{N,N}}, | 
					
						
							|  |  |  |   {{INF,-INF},{INF,-0.},{INF,-0.},{INF,0.},{INF,0.},{INF,INF},{INF,N}}, | 
					
						
							|  |  |  |   {{INF,-INF},{N,N},    {N,N},    {N,N},   {N,N},   {INF,INF},{N,N}} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_sqrt(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	/*
 | 
					
						
							|  |  |  | 	   Method: use symmetries to reduce to the case when x = z.real and y | 
					
						
							|  |  |  | 	   = z.imag are nonnegative.  Then the real part of the result is | 
					
						
							|  |  |  | 	   given by | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	     s = sqrt((x + hypot(x, y))/2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   and the imaginary part is | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	     d = (y/2)/s | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   If either x or y is very large then there's a risk of overflow in | 
					
						
							|  |  |  | 	   computation of the expression x + hypot(x, y).  We can avoid this | 
					
						
							|  |  |  | 	   by rewriting the formula for s as: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	     s = 2*sqrt(x/8 + hypot(x/8, y/8)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   This costs us two extra multiplications/divisions, but avoids the | 
					
						
							|  |  |  | 	   overhead of checking for x and y large. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   If both x and y are subnormal then hypot(x, y) may also be | 
					
						
							|  |  |  | 	   subnormal, so will lack full precision.  We solve this by rescaling | 
					
						
							|  |  |  | 	   x and y by a sufficiently large power of 2 to ensure that x and y | 
					
						
							|  |  |  | 	   are normal. | 
					
						
							|  |  |  | 	*/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-07-21 02:31:35 +00:00
										 |  |  | 	Py_complex r; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	double s,d; | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	double ax, ay; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	SPECIAL_VALUE(z, sqrt_special_values); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (z.real == 0. && z.imag == 0.) { | 
					
						
							|  |  |  | 		r.real = 0.; | 
					
						
							|  |  |  | 		r.imag = z.imag; | 
					
						
							|  |  |  | 		return r; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	ax = fabs(z.real); | 
					
						
							|  |  |  | 	ay = fabs(z.imag); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) { | 
					
						
							|  |  |  | 		/* here we catch cases where hypot(ax, ay) is subnormal */ | 
					
						
							|  |  |  | 		ax = ldexp(ax, CM_SCALE_UP); | 
					
						
							|  |  |  | 		s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))), | 
					
						
							|  |  |  | 			  CM_SCALE_DOWN); | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		ax /= 8.; | 
					
						
							|  |  |  | 		s = 2.*sqrt(ax + hypot(ax, ay/8.)); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	d = ay/(2.*s); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (z.real >= 0.) { | 
					
						
							|  |  |  | 		r.real = s; | 
					
						
							|  |  |  | 		r.imag = copysign(d, z.imag); | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		r.real = d; | 
					
						
							|  |  |  | 		r.imag = copysign(s, z.imag); | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	} | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	errno = 0; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_sqrt_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "sqrt(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the square root of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_tan(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	/* tan(z) = -i tanh(iz) */ | 
					
						
							|  |  |  | 	Py_complex s, r; | 
					
						
							|  |  |  | 	s.real = -z.imag; | 
					
						
							|  |  |  | 	s.imag = z.real; | 
					
						
							|  |  |  | 	s = c_tanh(s); | 
					
						
							|  |  |  | 	r.real = s.imag; | 
					
						
							|  |  |  | 	r.imag = -s.real; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_tan_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "tan(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the tangent of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | /* tanh(infinity + i*y) needs to be dealt with specially */ | 
					
						
							|  |  |  | static Py_complex tanh_special_values[7][7] = { | 
					
						
							|  |  |  |   {{-1.,0.},{U,U},{-1.,-0.},{-1.,0.},{U,U},{-1.,0.},{-1.,0.}}, | 
					
						
							|  |  |  |   {{N,N},   {U,U},{U,U},    {U,U},   {U,U},{N,N},   {N,N}}, | 
					
						
							|  |  |  |   {{N,N},   {U,U},{-0.,-0.},{-0.,0.},{U,U},{N,N},   {N,N}}, | 
					
						
							|  |  |  |   {{N,N},   {U,U},{0.,-0.}, {0.,0.}, {U,U},{N,N},   {N,N}}, | 
					
						
							|  |  |  |   {{N,N},   {U,U},{U,U},    {U,U},   {U,U},{N,N},   {N,N}}, | 
					
						
							|  |  |  |   {{1.,0.}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{1.,0.}, {1.,0.}}, | 
					
						
							|  |  |  |   {{N,N},   {N,N},{N,-0.},  {N,0.},  {N,N},{N,N},   {N,N}} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | static Py_complex | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | c_tanh(Py_complex z) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	/* Formula:
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) / | 
					
						
							|  |  |  | 	   (1+tan(y)^2 tanh(x)^2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   To avoid excessive roundoff error, 1-tanh(x)^2 is better computed | 
					
						
							|  |  |  | 	   as 1/cosh(x)^2.  When abs(x) is large, we approximate 1-tanh(x)^2 | 
					
						
							|  |  |  | 	   by 4 exp(-2*x) instead, to avoid possible overflow in the | 
					
						
							|  |  |  | 	   computation of cosh(x). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	*/ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-07-21 02:31:35 +00:00
										 |  |  | 	Py_complex r; | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	double tx, ty, cx, txty, denom; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* special treatment for tanh(+/-inf + iy) if y is finite and
 | 
					
						
							|  |  |  | 	   nonzero */ | 
					
						
							|  |  |  | 	if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { | 
					
						
							|  |  |  | 		if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) | 
					
						
							|  |  |  | 		    && (z.imag != 0.)) { | 
					
						
							|  |  |  | 			if (z.real > 0) { | 
					
						
							|  |  |  | 				r.real = 1.0; | 
					
						
							|  |  |  | 				r.imag = copysign(0., | 
					
						
							|  |  |  | 						  2.*sin(z.imag)*cos(z.imag)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else { | 
					
						
							|  |  |  | 				r.real = -1.0; | 
					
						
							|  |  |  | 				r.imag = copysign(0., | 
					
						
							|  |  |  | 						  2.*sin(z.imag)*cos(z.imag)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		else { | 
					
						
							|  |  |  | 			r = tanh_special_values[special_type(z.real)] | 
					
						
							|  |  |  | 				               [special_type(z.imag)]; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		/* need to set errno = EDOM if z.imag is +/-infinity and
 | 
					
						
							|  |  |  | 		   z.real is finite */ | 
					
						
							|  |  |  | 		if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real)) | 
					
						
							|  |  |  | 			errno = EDOM; | 
					
						
							|  |  |  | 		else | 
					
						
							|  |  |  | 			errno = 0; | 
					
						
							|  |  |  | 		return r; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* danger of overflow in 2.*z.imag !*/ | 
					
						
							|  |  |  | 	if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { | 
					
						
							|  |  |  | 		r.real = copysign(1., z.real); | 
					
						
							|  |  |  | 		r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real)); | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		tx = tanh(z.real); | 
					
						
							|  |  |  | 		ty = tan(z.imag); | 
					
						
							|  |  |  | 		cx = 1./cosh(z.real); | 
					
						
							|  |  |  | 		txty = tx*ty; | 
					
						
							|  |  |  | 		denom = 1. + txty*txty; | 
					
						
							|  |  |  | 		r.real = tx*(1.+ty*ty)/denom; | 
					
						
							|  |  |  | 		r.imag = ((ty/denom)*cx)*cx; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	errno = 0; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(c_tanh_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "tanh(x)\n" | 
					
						
							|  |  |  | "\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "Return the hyperbolic tangent of x."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2004-06-14 07:40:10 +00:00
										 |  |  | static PyObject * | 
					
						
							|  |  |  | cmath_log(PyObject *self, PyObject *args) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	Py_complex x; | 
					
						
							|  |  |  | 	Py_complex y; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (!PyArg_ParseTuple(args, "D|D", &x, &y)) | 
					
						
							|  |  |  | 		return NULL; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	errno = 0; | 
					
						
							|  |  |  | 	PyFPE_START_PROTECT("complex function", return 0) | 
					
						
							|  |  |  | 	x = c_log(x); | 
					
						
							|  |  |  | 	if (PyTuple_GET_SIZE(args) == 2) | 
					
						
							|  |  |  | 		x = c_quot(x, c_log(y)); | 
					
						
							|  |  |  | 	PyFPE_END_PROTECT(x) | 
					
						
							|  |  |  | 	if (errno != 0) | 
					
						
							|  |  |  | 		return math_error(); | 
					
						
							|  |  |  | 	return PyComplex_FromCComplex(x); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | PyDoc_STRVAR(cmath_log_doc, | 
					
						
							|  |  |  | "log(x[, base]) -> the logarithm of x to the given base.\n\
 | 
					
						
							|  |  |  | If the base not specified, returns the natural logarithm (base e) of x."); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | /* And now the glue to make them available from Python: */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-12-09 22:59:53 +00:00
										 |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2000-07-21 06:00:07 +00:00
										 |  |  | math_error(void) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							|  |  |  | 	if (errno == EDOM) | 
					
						
							| 
									
										
										
										
											1996-12-09 22:59:53 +00:00
										 |  |  | 		PyErr_SetString(PyExc_ValueError, "math domain error"); | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	else if (errno == ERANGE) | 
					
						
							| 
									
										
										
										
											1996-12-09 22:59:53 +00:00
										 |  |  | 		PyErr_SetString(PyExc_OverflowError, "math range error"); | 
					
						
							|  |  |  | 	else    /* Unexpected math error */ | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | 		PyErr_SetFromErrno(PyExc_ValueError); | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	return NULL; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-12-09 22:59:53 +00:00
										 |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2000-07-10 09:31:34 +00:00
										 |  |  | math_1(PyObject *args, Py_complex (*func)(Py_complex)) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	Py_complex x,r ; | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	if (!PyArg_ParseTuple(args, "D", &x)) | 
					
						
							|  |  |  | 		return NULL; | 
					
						
							|  |  |  | 	errno = 0; | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	PyFPE_START_PROTECT("complex function", return 0); | 
					
						
							|  |  |  | 	r = (*func)(x); | 
					
						
							|  |  |  | 	PyFPE_END_PROTECT(r); | 
					
						
							|  |  |  | 	if (errno == EDOM) { | 
					
						
							|  |  |  | 		PyErr_SetString(PyExc_ValueError, "math domain error"); | 
					
						
							|  |  |  | 		return NULL; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	else if (errno == ERANGE) { | 
					
						
							|  |  |  | 		PyErr_SetString(PyExc_OverflowError, "math range error"); | 
					
						
							|  |  |  | 		return NULL; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	else { | 
					
						
							|  |  |  | 		return PyComplex_FromCComplex(r); | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define FUNC1(stubname, func) \
 | 
					
						
							| 
									
										
										
										
											2000-07-10 09:31:34 +00:00
										 |  |  | 	static PyObject * stubname(PyObject *self, PyObject *args) { \ | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 		return math_1(args, func); \ | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | FUNC1(cmath_acos, c_acos) | 
					
						
							|  |  |  | FUNC1(cmath_acosh, c_acosh) | 
					
						
							|  |  |  | FUNC1(cmath_asin, c_asin) | 
					
						
							|  |  |  | FUNC1(cmath_asinh, c_asinh) | 
					
						
							|  |  |  | FUNC1(cmath_atan, c_atan) | 
					
						
							|  |  |  | FUNC1(cmath_atanh, c_atanh) | 
					
						
							|  |  |  | FUNC1(cmath_cos, c_cos) | 
					
						
							|  |  |  | FUNC1(cmath_cosh, c_cosh) | 
					
						
							|  |  |  | FUNC1(cmath_exp, c_exp) | 
					
						
							|  |  |  | FUNC1(cmath_log10, c_log10) | 
					
						
							|  |  |  | FUNC1(cmath_sin, c_sin) | 
					
						
							|  |  |  | FUNC1(cmath_sinh, c_sinh) | 
					
						
							|  |  |  | FUNC1(cmath_sqrt, c_sqrt) | 
					
						
							|  |  |  | FUNC1(cmath_tan, c_tan) | 
					
						
							|  |  |  | FUNC1(cmath_tanh, c_tanh) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | static PyObject * | 
					
						
							|  |  |  | cmath_phase(PyObject *self, PyObject *args) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	Py_complex z; | 
					
						
							|  |  |  | 	double phi; | 
					
						
							|  |  |  | 	if (!PyArg_ParseTuple(args, "D:phase", &z)) | 
					
						
							|  |  |  | 		return NULL; | 
					
						
							|  |  |  | 	errno = 0; | 
					
						
							|  |  |  | 	PyFPE_START_PROTECT("arg function", return 0) | 
					
						
							|  |  |  | 	phi = c_atan2(z); | 
					
						
							|  |  |  | 	PyFPE_END_PROTECT(r) | 
					
						
							|  |  |  | 	if (errno != 0) | 
					
						
							|  |  |  | 		return math_error(); | 
					
						
							|  |  |  | 	else | 
					
						
							|  |  |  | 		return PyFloat_FromDouble(phi); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | PyDoc_STRVAR(cmath_phase_doc, | 
					
						
							|  |  |  | "phase(z) -> float\n\n\
 | 
					
						
							|  |  |  | Return argument, also known as the phase angle, of a complex."); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static PyObject * | 
					
						
							|  |  |  | cmath_polar(PyObject *self, PyObject *args) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	Py_complex z; | 
					
						
							|  |  |  | 	double r, phi; | 
					
						
							|  |  |  | 	if (!PyArg_ParseTuple(args, "D:polar", &z)) | 
					
						
							|  |  |  | 		return NULL; | 
					
						
							|  |  |  | 	PyFPE_START_PROTECT("polar function", return 0) | 
					
						
							|  |  |  | 	phi = c_atan2(z); /* should not cause any exception */ | 
					
						
							|  |  |  | 	r = c_abs(z); /* sets errno to ERANGE on overflow;  otherwise 0 */ | 
					
						
							|  |  |  | 	PyFPE_END_PROTECT(r) | 
					
						
							|  |  |  | 	if (errno != 0) | 
					
						
							|  |  |  | 		return math_error(); | 
					
						
							|  |  |  | 	else | 
					
						
							|  |  |  | 		return Py_BuildValue("dd", r, phi); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | PyDoc_STRVAR(cmath_polar_doc, | 
					
						
							|  |  |  | "polar(z) -> r: float, phi: float\n\n\
 | 
					
						
							|  |  |  | Convert a complex from rectangular coordinates to polar coordinates. r is\n\ | 
					
						
							|  |  |  | the distance from 0 and phi the phase angle."); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |   rect() isn't covered by the C99 standard, but it's not too hard to | 
					
						
							|  |  |  |   figure out 'spirit of C99' rules for special value handing: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     rect(x, t) should behave like exp(log(x) + it) for positive-signed x | 
					
						
							|  |  |  |     rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x | 
					
						
							|  |  |  |     rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0) | 
					
						
							|  |  |  |       gives nan +- i0 with the sign of the imaginary part unspecified. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static Py_complex rect_special_values[7][7] = { | 
					
						
							|  |  |  |   {{INF,N},{U,U},{-INF,0.},{-INF,-0.},{U,U},{INF,N},{INF,N}}, | 
					
						
							|  |  |  |   {{N,N},  {U,U},{U,U},    {U,U},     {U,U},{N,N},  {N,N}}, | 
					
						
							|  |  |  |   {{0.,0.},{U,U},{-0.,0.}, {-0.,-0.}, {U,U},{0.,0.},{0.,0.}}, | 
					
						
							|  |  |  |   {{0.,0.},{U,U},{0.,-0.}, {0.,0.},   {U,U},{0.,0.},{0.,0.}}, | 
					
						
							|  |  |  |   {{N,N},  {U,U},{U,U},    {U,U},     {U,U},{N,N},  {N,N}}, | 
					
						
							|  |  |  |   {{INF,N},{U,U},{INF,-0.},{INF,0.},  {U,U},{INF,N},{INF,N}}, | 
					
						
							|  |  |  |   {{N,N},  {N,N},{N,0.},   {N,0.},    {N,N},{N,N},  {N,N}} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static PyObject * | 
					
						
							|  |  |  | cmath_rect(PyObject *self, PyObject *args) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	Py_complex z; | 
					
						
							|  |  |  | 	double r, phi; | 
					
						
							|  |  |  | 	if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi)) | 
					
						
							|  |  |  | 		return NULL; | 
					
						
							|  |  |  | 	errno = 0; | 
					
						
							|  |  |  | 	PyFPE_START_PROTECT("rect function", return 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* deal with special values */ | 
					
						
							|  |  |  | 	if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) { | 
					
						
							|  |  |  | 		/* if r is +/-infinity and phi is finite but nonzero then
 | 
					
						
							|  |  |  | 		   result is (+-INF +-INF i), but we need to compute cos(phi) | 
					
						
							|  |  |  | 		   and sin(phi) to figure out the signs. */ | 
					
						
							|  |  |  | 		if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi) | 
					
						
							|  |  |  | 					  && (phi != 0.))) { | 
					
						
							|  |  |  | 			if (r > 0) { | 
					
						
							|  |  |  | 				z.real = copysign(INF, cos(phi)); | 
					
						
							|  |  |  | 				z.imag = copysign(INF, sin(phi)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else { | 
					
						
							|  |  |  | 				z.real = -copysign(INF, cos(phi)); | 
					
						
							|  |  |  | 				z.imag = -copysign(INF, sin(phi)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		else { | 
					
						
							|  |  |  | 			z = rect_special_values[special_type(r)] | 
					
						
							|  |  |  | 				               [special_type(phi)]; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		/* need to set errno = EDOM if r is a nonzero number and phi
 | 
					
						
							|  |  |  | 		   is infinite */ | 
					
						
							|  |  |  | 		if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi)) | 
					
						
							|  |  |  | 			errno = EDOM; | 
					
						
							|  |  |  | 		else | 
					
						
							|  |  |  | 			errno = 0; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	else { | 
					
						
							|  |  |  | 		z.real = r * cos(phi); | 
					
						
							|  |  |  | 		z.imag = r * sin(phi); | 
					
						
							|  |  |  | 		errno = 0; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	PyFPE_END_PROTECT(z) | 
					
						
							|  |  |  | 	if (errno != 0) | 
					
						
							|  |  |  | 		return math_error(); | 
					
						
							|  |  |  | 	else | 
					
						
							|  |  |  | 		return PyComplex_FromCComplex(z); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | PyDoc_STRVAR(cmath_rect_doc, | 
					
						
							|  |  |  | "rect(r, phi) -> z: complex\n\n\
 | 
					
						
							|  |  |  | Convert from polar coordinates to rectangular coordinates."); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static PyObject * | 
					
						
							|  |  |  | cmath_isnan(PyObject *self, PyObject *args) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	Py_complex z; | 
					
						
							|  |  |  | 	if (!PyArg_ParseTuple(args, "D:isnan", &z)) | 
					
						
							|  |  |  | 		return NULL; | 
					
						
							|  |  |  | 	return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | PyDoc_STRVAR(cmath_isnan_doc, | 
					
						
							|  |  |  | "isnan(z) -> bool\n\
 | 
					
						
							|  |  |  | Checks if the real or imaginary part of z not a number (NaN)"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static PyObject * | 
					
						
							|  |  |  | cmath_isinf(PyObject *self, PyObject *args) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	Py_complex z; | 
					
						
							|  |  |  | 	if (!PyArg_ParseTuple(args, "D:isnan", &z)) | 
					
						
							|  |  |  | 		return NULL; | 
					
						
							|  |  |  | 	return PyBool_FromLong(Py_IS_INFINITY(z.real) || | 
					
						
							|  |  |  | 			       Py_IS_INFINITY(z.imag)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | PyDoc_STRVAR(cmath_isinf_doc, | 
					
						
							|  |  |  | "isinf(z) -> bool\n\
 | 
					
						
							|  |  |  | Checks if the real or imaginary part of z is infinite."); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | PyDoc_STRVAR(module_doc, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | "This module is always available. It provides access to mathematical\n" | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  | "functions for complex numbers."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-12-09 22:59:53 +00:00
										 |  |  | static PyMethodDef cmath_methods[] = { | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | 	{"acos",   cmath_acos,  METH_VARARGS, c_acos_doc}, | 
					
						
							|  |  |  | 	{"acosh",  cmath_acosh, METH_VARARGS, c_acosh_doc}, | 
					
						
							|  |  |  | 	{"asin",   cmath_asin,  METH_VARARGS, c_asin_doc}, | 
					
						
							|  |  |  | 	{"asinh",  cmath_asinh, METH_VARARGS, c_asinh_doc}, | 
					
						
							|  |  |  | 	{"atan",   cmath_atan,  METH_VARARGS, c_atan_doc}, | 
					
						
							|  |  |  | 	{"atanh",  cmath_atanh, METH_VARARGS, c_atanh_doc}, | 
					
						
							|  |  |  | 	{"cos",    cmath_cos,   METH_VARARGS, c_cos_doc}, | 
					
						
							|  |  |  | 	{"cosh",   cmath_cosh,  METH_VARARGS, c_cosh_doc}, | 
					
						
							|  |  |  | 	{"exp",    cmath_exp,   METH_VARARGS, c_exp_doc}, | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	{"isinf",  cmath_isinf, METH_VARARGS, cmath_isinf_doc}, | 
					
						
							|  |  |  | 	{"isnan",  cmath_isnan, METH_VARARGS, cmath_isnan_doc}, | 
					
						
							| 
									
										
										
										
											2004-06-14 07:40:10 +00:00
										 |  |  | 	{"log",    cmath_log,   METH_VARARGS, cmath_log_doc}, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | 	{"log10",  cmath_log10, METH_VARARGS, c_log10_doc}, | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  | 	{"phase",  cmath_phase, METH_VARARGS, cmath_phase_doc}, | 
					
						
							|  |  |  | 	{"polar",  cmath_polar, METH_VARARGS, cmath_polar_doc}, | 
					
						
							|  |  |  | 	{"rect",   cmath_rect,  METH_VARARGS, cmath_rect_doc}, | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | 	{"sin",    cmath_sin,   METH_VARARGS, c_sin_doc}, | 
					
						
							|  |  |  | 	{"sinh",   cmath_sinh,  METH_VARARGS, c_sinh_doc}, | 
					
						
							|  |  |  | 	{"sqrt",   cmath_sqrt,  METH_VARARGS, c_sqrt_doc}, | 
					
						
							|  |  |  | 	{"tan",    cmath_tan,   METH_VARARGS, c_tan_doc}, | 
					
						
							|  |  |  | 	{"tanh",   cmath_tanh,  METH_VARARGS, c_tanh_doc}, | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | 	{NULL,		NULL}		/* sentinel */ | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-08-02 02:27:13 +00:00
										 |  |  | PyMODINIT_FUNC | 
					
						
							| 
									
										
										
										
											2000-07-21 06:00:07 +00:00
										 |  |  | initcmath(void) | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | { | 
					
						
							| 
									
										
										
										
											2002-04-01 03:45:06 +00:00
										 |  |  | 	PyObject *m; | 
					
						
							| 
									
										
										
										
											2001-02-20 20:15:19 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  | 	m = Py_InitModule3("cmath", cmath_methods, module_doc); | 
					
						
							| 
									
										
										
										
											2006-01-19 06:09:39 +00:00
										 |  |  | 	if (m == NULL) | 
					
						
							|  |  |  | 		return; | 
					
						
							| 
									
										
										
										
											2002-04-01 03:45:06 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	PyModule_AddObject(m, "pi", | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |                            PyFloat_FromDouble(Py_MATH_PI)); | 
					
						
							|  |  |  | 	PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); | 
					
						
							| 
									
										
										
										
											1996-01-12 01:34:57 +00:00
										 |  |  | } |