| 
									
										
										
										
											1990-10-14 12:07:46 +00:00
										 |  |  |  | /* Math module -- standard C math library functions, pi and e */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | /* Here are some comments from Tim Peters, extracted from the
 | 
					
						
							|  |  |  |  |    discussion attached to http://bugs.python.org/issue1640.  They
 | 
					
						
							|  |  |  |  |    describe the general aims of the math module with respect to | 
					
						
							|  |  |  |  |    special values, IEEE-754 floating-point exceptions, and Python | 
					
						
							|  |  |  |  |    exceptions. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | These are the "spirit of 754" rules: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 1. If the mathematical result is a real number, but of magnitude too | 
					
						
							|  |  |  |  | large to approximate by a machine float, overflow is signaled and the | 
					
						
							|  |  |  |  | result is an infinity (with the appropriate sign). | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 2. If the mathematical result is a real number, but of magnitude too | 
					
						
							|  |  |  |  | small to approximate by a machine float, underflow is signaled and the | 
					
						
							|  |  |  |  | result is a zero (with the appropriate sign). | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 3. At a singularity (a value x such that the limit of f(y) as y | 
					
						
							|  |  |  |  | approaches x exists and is an infinity), "divide by zero" is signaled | 
					
						
							|  |  |  |  | and the result is an infinity (with the appropriate sign).  This is | 
					
						
							|  |  |  |  | complicated a little by that the left-side and right-side limits may | 
					
						
							|  |  |  |  | not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 | 
					
						
							|  |  |  |  | from the positive or negative directions.  In that specific case, the | 
					
						
							|  |  |  |  | sign of the zero determines the result of 1/0. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 4. At a point where a function has no defined result in the extended | 
					
						
							|  |  |  |  | reals (i.e., the reals plus an infinity or two), invalid operation is | 
					
						
							|  |  |  |  | signaled and a NaN is returned. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | And these are what Python has historically /tried/ to do (but not | 
					
						
							|  |  |  |  | always successfully, as platform libm behavior varies a lot): | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | For #1, raise OverflowError. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | For #2, return a zero (with the appropriate sign if that happens by | 
					
						
							|  |  |  |  | accident ;-)). | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | For #3 and #4, raise ValueError.  It may have made sense to raise | 
					
						
							|  |  |  |  | Python's ZeroDivisionError in #3, but historically that's only been | 
					
						
							|  |  |  |  | raised for division by zero and mod by zero. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /*
 | 
					
						
							|  |  |  |  |    In general, on an IEEE-754 platform the aim is to follow the C99 | 
					
						
							|  |  |  |  |    standard, including Annex 'F', whenever possible.  Where the | 
					
						
							|  |  |  |  |    standard recommends raising the 'divide-by-zero' or 'invalid' | 
					
						
							|  |  |  |  |    floating-point exceptions, Python should raise a ValueError.  Where | 
					
						
							|  |  |  |  |    the standard recommends raising 'overflow', Python should raise an | 
					
						
							|  |  |  |  |    OverflowError.  In all other circumstances a value should be | 
					
						
							|  |  |  |  |    returned. | 
					
						
							|  |  |  |  |  */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-10-22 16:36:28 +03:00
										 |  |  |  | #ifndef Py_BUILD_CORE_BUILTIN
 | 
					
						
							|  |  |  |  | #  define Py_BUILD_CORE_MODULE 1
 | 
					
						
							|  |  |  |  | #endif
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-12-09 22:32:36 +00:00
										 |  |  |  | #include "Python.h"
 | 
					
						
							| 
									
										
										
										
											2023-08-26 04:05:17 +02:00
										 |  |  |  | #include "pycore_abstract.h"      // _PyNumber_Index()
 | 
					
						
							| 
									
										
										
										
											2020-06-15 14:33:48 +02:00
										 |  |  |  | #include "pycore_bitutils.h"      // _Py_bit_length()
 | 
					
						
							| 
									
										
										
										
											2021-10-12 08:38:19 +02:00
										 |  |  |  | #include "pycore_call.h"          // _PyObject_CallNoArgs()
 | 
					
						
							| 
									
										
										
										
											2020-10-27 17:12:53 +01:00
										 |  |  |  | #include "pycore_long.h"          // _PyLong_GetZero()
 | 
					
						
							| 
									
										
										
										
											2022-06-12 18:45:02 +09:00
										 |  |  |  | #include "pycore_moduleobject.h"  // _PyModule_GetState()
 | 
					
						
							|  |  |  |  | #include "pycore_object.h"        // _PyObject_LookupSpecial()
 | 
					
						
							| 
									
										
										
										
											2022-02-23 18:16:23 +01:00
										 |  |  |  | #include "pycore_pymath.h"        // _PY_SHORT_FLOAT_REPR
 | 
					
						
							| 
									
										
										
										
											2021-10-25 11:25:27 +03:00
										 |  |  |  | /* For DBL_EPSILON in _math.h */ | 
					
						
							|  |  |  |  | #include <float.h>
 | 
					
						
							|  |  |  |  | /* For _Py_log1p with workarounds for buggy handling of zeros. */ | 
					
						
							| 
									
										
										
										
											2009-12-16 20:23:42 +00:00
										 |  |  |  | #include "_math.h"
 | 
					
						
							| 
									
										
										
										
											2023-01-07 12:46:35 -06:00
										 |  |  |  | #include <stdbool.h>
 | 
					
						
							| 
									
										
										
										
											1990-10-14 12:07:46 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | #include "clinic/mathmodule.c.h"
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | module math | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-06-12 18:45:02 +09:00
										 |  |  |  | typedef struct { | 
					
						
							|  |  |  |  |     PyObject *str___ceil__; | 
					
						
							|  |  |  |  |     PyObject *str___floor__; | 
					
						
							|  |  |  |  |     PyObject *str___trunc__; | 
					
						
							|  |  |  |  | } math_module_state; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static inline math_module_state* | 
					
						
							|  |  |  |  | get_math_module_state(PyObject *module) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     void *state = _PyModule_GetState(module); | 
					
						
							|  |  |  |  |     assert(state != NULL); | 
					
						
							|  |  |  |  |     return (math_module_state *)state; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-15 15:15:23 -05:00
										 |  |  |  | /*
 | 
					
						
							|  |  |  |  | Double and triple length extended precision algorithms from: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |   Accurate Sum and Dot Product | 
					
						
							|  |  |  |  |   by Takeshi Ogita, Siegfried M. Rump, and Shin’Ichi Oishi | 
					
						
							|  |  |  |  |   https://doi.org/10.1137/030601818
 | 
					
						
							|  |  |  |  |   https://www.tuhh.de/ti3/paper/rump/OgRuOi05.pdf
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | typedef struct{ double hi; double lo; } DoubleLength; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static DoubleLength | 
					
						
							|  |  |  |  | dl_fast_sum(double a, double b) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     /* Algorithm 1.1. Compensated summation of two floating point numbers. */ | 
					
						
							|  |  |  |  |     assert(fabs(a) >= fabs(b)); | 
					
						
							|  |  |  |  |     double x = a + b; | 
					
						
							|  |  |  |  |     double y = (a - x) + b; | 
					
						
							|  |  |  |  |     return (DoubleLength) {x, y}; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static DoubleLength | 
					
						
							|  |  |  |  | dl_sum(double a, double b) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     /* Algorithm 3.1 Error-free transformation of the sum */ | 
					
						
							|  |  |  |  |     double x = a + b; | 
					
						
							|  |  |  |  |     double z = x - a; | 
					
						
							|  |  |  |  |     double y = (a - (x - z)) + (b - z); | 
					
						
							|  |  |  |  |     return (DoubleLength) {x, y}; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | #ifndef UNRELIABLE_FMA
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static DoubleLength | 
					
						
							|  |  |  |  | dl_mul(double x, double y) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     /* Algorithm 3.5. Error-free transformation of a product */ | 
					
						
							|  |  |  |  |     double z = x * y; | 
					
						
							|  |  |  |  |     double zz = fma(x, y, -z); | 
					
						
							|  |  |  |  |     return (DoubleLength) {z, zz}; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | #else
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /*
 | 
					
						
							|  |  |  |  |    The default implementation of dl_mul() depends on the C math library | 
					
						
							|  |  |  |  |    having an accurate fma() function as required by § 7.12.13.1 of the | 
					
						
							|  |  |  |  |    C99 standard. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    The UNRELIABLE_FMA option is provided as a slower but accurate | 
					
						
							|  |  |  |  |    alternative for builds where the fma() function is found wanting. | 
					
						
							|  |  |  |  |    The speed penalty may be modest (17% slower on an Apple M1 Max), | 
					
						
							|  |  |  |  |    so don't hesitate to enable this build option. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    The algorithms are from the T. J. Dekker paper: | 
					
						
							|  |  |  |  |    A Floating-Point Technique for Extending the Available Precision | 
					
						
							|  |  |  |  |    https://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
 | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static DoubleLength | 
					
						
							|  |  |  |  | dl_split(double x) { | 
					
						
							|  |  |  |  |     // Dekker (5.5) and (5.6).
 | 
					
						
							|  |  |  |  |     double t = x * 134217729.0;  // Veltkamp constant = 2.0 ** 27 + 1
 | 
					
						
							|  |  |  |  |     double hi = t - (t - x); | 
					
						
							|  |  |  |  |     double lo = x - hi; | 
					
						
							|  |  |  |  |     return (DoubleLength) {hi, lo}; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static DoubleLength | 
					
						
							|  |  |  |  | dl_mul(double x, double y) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     // Dekker (5.12) and mul12()
 | 
					
						
							|  |  |  |  |     DoubleLength xx = dl_split(x); | 
					
						
							|  |  |  |  |     DoubleLength yy = dl_split(y); | 
					
						
							|  |  |  |  |     double p = xx.hi * yy.hi; | 
					
						
							|  |  |  |  |     double q = xx.hi * yy.lo + xx.lo * yy.hi; | 
					
						
							|  |  |  |  |     double z = p + q; | 
					
						
							|  |  |  |  |     double zz = p - z + q + xx.lo * yy.lo; | 
					
						
							|  |  |  |  |     return (DoubleLength) {z, zz}; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | #endif
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | typedef struct { double hi; double lo; double tiny; } TripleLength; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static const TripleLength tl_zero = {0.0, 0.0, 0.0}; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static TripleLength | 
					
						
							|  |  |  |  | tl_fma(double x, double y, TripleLength total) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     /* Algorithm 5.10 with SumKVert for K=3 */ | 
					
						
							|  |  |  |  |     DoubleLength pr = dl_mul(x, y); | 
					
						
							|  |  |  |  |     DoubleLength sm = dl_sum(total.hi, pr.hi); | 
					
						
							|  |  |  |  |     DoubleLength r1 = dl_sum(total.lo, pr.lo); | 
					
						
							|  |  |  |  |     DoubleLength r2 = dl_sum(r1.hi, sm.lo); | 
					
						
							|  |  |  |  |     return (TripleLength) {sm.hi, r2.hi, total.tiny + r1.lo + r2.lo}; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static double | 
					
						
							|  |  |  |  | tl_to_d(TripleLength total) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     DoubleLength last = dl_sum(total.lo, total.hi); | 
					
						
							|  |  |  |  |     return total.tiny + last.lo + last.hi; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | /*
 | 
					
						
							|  |  |  |  |    sin(pi*x), giving accurate results for all finite x (especially x | 
					
						
							|  |  |  |  |    integral or close to an integer).  This is here for use in the | 
					
						
							|  |  |  |  |    reflection formula for the gamma function.  It conforms to IEEE | 
					
						
							|  |  |  |  |    754-2008 for finite arguments, but not for infinities or nans. | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static const double pi = 3.141592653589793238462643383279502884197; | 
					
						
							| 
									
										
										
										
											2010-07-07 16:17:31 +00:00
										 |  |  |  | static const double logpi = 1.144729885849400174143427351353058711647; | 
					
						
							| 
									
										
										
										
											2019-01-29 20:39:53 -08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /* Version of PyFloat_AsDouble() with in-line fast paths
 | 
					
						
							|  |  |  |  |    for exact floats and integers.  Gives a substantial | 
					
						
							|  |  |  |  |    speed improvement for extracting float arguments. | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | #define ASSIGN_DOUBLE(target_var, obj, error_label)        \
 | 
					
						
							|  |  |  |  |     if (PyFloat_CheckExact(obj)) {                         \ | 
					
						
							|  |  |  |  |         target_var = PyFloat_AS_DOUBLE(obj);               \ | 
					
						
							|  |  |  |  |     }                                                      \ | 
					
						
							|  |  |  |  |     else if (PyLong_CheckExact(obj)) {                     \ | 
					
						
							|  |  |  |  |         target_var = PyLong_AsDouble(obj);                 \ | 
					
						
							|  |  |  |  |         if (target_var == -1.0 && PyErr_Occurred()) {      \ | 
					
						
							|  |  |  |  |             goto error_label;                              \ | 
					
						
							|  |  |  |  |         }                                                  \ | 
					
						
							|  |  |  |  |     }                                                      \ | 
					
						
							|  |  |  |  |     else {                                                 \ | 
					
						
							|  |  |  |  |         target_var = PyFloat_AsDouble(obj);                \ | 
					
						
							|  |  |  |  |         if (target_var == -1.0 && PyErr_Occurred()) {      \ | 
					
						
							|  |  |  |  |             goto error_label;                              \ | 
					
						
							|  |  |  |  |         }                                                  \ | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | static double | 
					
						
							| 
									
										
										
										
											2019-02-26 06:36:11 +00:00
										 |  |  |  | m_sinpi(double x) | 
					
						
							| 
									
										
										
										
											1991-12-16 15:44:24 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     double y, r; | 
					
						
							|  |  |  |  |     int n; | 
					
						
							|  |  |  |  |     /* this function should only ever be called for finite arguments */ | 
					
						
							|  |  |  |  |     assert(Py_IS_FINITE(x)); | 
					
						
							|  |  |  |  |     y = fmod(fabs(x), 2.0); | 
					
						
							|  |  |  |  |     n = (int)round(2.0*y); | 
					
						
							|  |  |  |  |     assert(0 <= n && n <= 4); | 
					
						
							|  |  |  |  |     switch (n) { | 
					
						
							|  |  |  |  |     case 0: | 
					
						
							|  |  |  |  |         r = sin(pi*y); | 
					
						
							|  |  |  |  |         break; | 
					
						
							|  |  |  |  |     case 1: | 
					
						
							|  |  |  |  |         r = cos(pi*(y-0.5)); | 
					
						
							|  |  |  |  |         break; | 
					
						
							|  |  |  |  |     case 2: | 
					
						
							|  |  |  |  |         /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
 | 
					
						
							|  |  |  |  |            -0.0 instead of 0.0 when y == 1.0. */ | 
					
						
							|  |  |  |  |         r = sin(pi*(1.0-y)); | 
					
						
							|  |  |  |  |         break; | 
					
						
							|  |  |  |  |     case 3: | 
					
						
							|  |  |  |  |         r = -cos(pi*(y-1.5)); | 
					
						
							|  |  |  |  |         break; | 
					
						
							|  |  |  |  |     case 4: | 
					
						
							|  |  |  |  |         r = sin(pi*(y-2.0)); | 
					
						
							|  |  |  |  |         break; | 
					
						
							|  |  |  |  |     default: | 
					
						
							| 
									
										
										
										
											2017-09-14 18:13:16 -07:00
										 |  |  |  |         Py_UNREACHABLE(); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  |     return copysign(1.0, x)*r; | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | } | 
					
						
							| 
									
										
										
										
											2001-09-05 22:36:56 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-02-09 11:40:52 +03:00
										 |  |  |  | /* Implementation of the real gamma function.  Kept here to work around
 | 
					
						
							|  |  |  |  |    issues (see e.g. gh-70309) with quality of libm's tgamma/lgamma implementations | 
					
						
							|  |  |  |  |    on various platforms (Windows, MacOS).  In extensive but non-exhaustive | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  |    random tests, this function proved accurate to within <= 10 ulps across the | 
					
						
							|  |  |  |  |    entire float domain.  Note that accuracy may depend on the quality of the | 
					
						
							|  |  |  |  |    system math functions, the pow function in particular.  Special cases | 
					
						
							|  |  |  |  |    follow C99 annex F.  The parameters and method are tailored to platforms | 
					
						
							|  |  |  |  |    whose double format is the IEEE 754 binary64 format. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    Method: for x > 0.0 we use the Lanczos approximation with parameters N=13 | 
					
						
							|  |  |  |  |    and g=6.024680040776729583740234375; these parameters are amongst those | 
					
						
							|  |  |  |  |    used by the Boost library.  Following Boost (again), we re-express the | 
					
						
							|  |  |  |  |    Lanczos sum as a rational function, and compute it that way.  The | 
					
						
							|  |  |  |  |    coefficients below were computed independently using MPFR, and have been | 
					
						
							|  |  |  |  |    double-checked against the coefficients in the Boost source code. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    For x < 0.0 we use the reflection formula. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    There's one minor tweak that deserves explanation: Lanczos' formula for | 
					
						
							|  |  |  |  |    Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5).  For many x | 
					
						
							|  |  |  |  |    values, x+g-0.5 can be represented exactly.  However, in cases where it | 
					
						
							|  |  |  |  |    can't be represented exactly the small error in x+g-0.5 can be magnified | 
					
						
							|  |  |  |  |    significantly by the pow and exp calls, especially for large x.  A cheap | 
					
						
							|  |  |  |  |    correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error | 
					
						
							|  |  |  |  |    involved in the computation of x+g-0.5 (that is, e = computed value of | 
					
						
							|  |  |  |  |    x+g-0.5 - exact value of x+g-0.5).  Here's the proof: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    Correction factor | 
					
						
							|  |  |  |  |    ----------------- | 
					
						
							|  |  |  |  |    Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754 | 
					
						
							|  |  |  |  |    double, and e is tiny.  Then: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e) | 
					
						
							|  |  |  |  |      = pow(y, x-0.5)/exp(y) * C, | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    where the correction_factor C is given by | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |      C = pow(1-e/y, x-0.5) * exp(e) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |      C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    But y-(x-0.5) = g+e, and g+e ~ g.  So we get C ~ 1 + e*g/y, and | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y), | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    Note that for accuracy, when computing r*C it's better to do | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |      r + e*g/y*r; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    than | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |      r * (1 + e*g/y); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    since the addition in the latter throws away most of the bits of | 
					
						
							|  |  |  |  |    information in e*g/y. | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | #define LANCZOS_N 13
 | 
					
						
							|  |  |  |  | static const double lanczos_g = 6.024680040776729583740234375; | 
					
						
							|  |  |  |  | static const double lanczos_g_minus_half = 5.524680040776729583740234375; | 
					
						
							|  |  |  |  | static const double lanczos_num_coeffs[LANCZOS_N] = { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     23531376880.410759688572007674451636754734846804940, | 
					
						
							|  |  |  |  |     42919803642.649098768957899047001988850926355848959, | 
					
						
							|  |  |  |  |     35711959237.355668049440185451547166705960488635843, | 
					
						
							|  |  |  |  |     17921034426.037209699919755754458931112671403265390, | 
					
						
							|  |  |  |  |     6039542586.3520280050642916443072979210699388420708, | 
					
						
							|  |  |  |  |     1439720407.3117216736632230727949123939715485786772, | 
					
						
							|  |  |  |  |     248874557.86205415651146038641322942321632125127801, | 
					
						
							|  |  |  |  |     31426415.585400194380614231628318205362874684987640, | 
					
						
							|  |  |  |  |     2876370.6289353724412254090516208496135991145378768, | 
					
						
							|  |  |  |  |     186056.26539522349504029498971604569928220784236328, | 
					
						
							|  |  |  |  |     8071.6720023658162106380029022722506138218516325024, | 
					
						
							|  |  |  |  |     210.82427775157934587250973392071336271166969580291, | 
					
						
							|  |  |  |  |     2.5066282746310002701649081771338373386264310793408 | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */ | 
					
						
							|  |  |  |  | static const double lanczos_den_coeffs[LANCZOS_N] = { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0, | 
					
						
							|  |  |  |  |     13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0}; | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */ | 
					
						
							|  |  |  |  | #define NGAMMA_INTEGRAL 23
 | 
					
						
							|  |  |  |  | static const double gamma_integral[NGAMMA_INTEGRAL] = { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0, | 
					
						
							|  |  |  |  |     3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0, | 
					
						
							|  |  |  |  |     1307674368000.0, 20922789888000.0, 355687428096000.0, | 
					
						
							|  |  |  |  |     6402373705728000.0, 121645100408832000.0, 2432902008176640000.0, | 
					
						
							|  |  |  |  |     51090942171709440000.0, 1124000727777607680000.0, | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /* Lanczos' sum L_g(x), for positive x */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static double | 
					
						
							|  |  |  |  | lanczos_sum(double x) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     double num = 0.0, den = 0.0; | 
					
						
							|  |  |  |  |     int i; | 
					
						
							|  |  |  |  |     assert(x > 0.0); | 
					
						
							|  |  |  |  |     /* evaluate the rational function lanczos_sum(x).  For large
 | 
					
						
							|  |  |  |  |        x, the obvious algorithm risks overflow, so we instead | 
					
						
							|  |  |  |  |        rescale the denominator and numerator of the rational | 
					
						
							|  |  |  |  |        function by x**(1-LANCZOS_N) and treat this as a | 
					
						
							|  |  |  |  |        rational function in 1/x.  This also reduces the error for | 
					
						
							|  |  |  |  |        larger x values.  The choice of cutoff point (5.0 below) is | 
					
						
							|  |  |  |  |        somewhat arbitrary; in tests, smaller cutoff values than | 
					
						
							|  |  |  |  |        this resulted in lower accuracy. */ | 
					
						
							|  |  |  |  |     if (x < 5.0) { | 
					
						
							|  |  |  |  |         for (i = LANCZOS_N; --i >= 0; ) { | 
					
						
							|  |  |  |  |             num = num * x + lanczos_num_coeffs[i]; | 
					
						
							|  |  |  |  |             den = den * x + lanczos_den_coeffs[i]; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else { | 
					
						
							|  |  |  |  |         for (i = 0; i < LANCZOS_N; i++) { | 
					
						
							|  |  |  |  |             num = num / x + lanczos_num_coeffs[i]; | 
					
						
							|  |  |  |  |             den = den / x + lanczos_den_coeffs[i]; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return num/den; | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-01-11 11:55:29 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | static double | 
					
						
							|  |  |  |  | m_tgamma(double x) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     double absx, r, y, z, sqrtpow; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* special cases */ | 
					
						
							|  |  |  |  |     if (!Py_IS_FINITE(x)) { | 
					
						
							|  |  |  |  |         if (Py_IS_NAN(x) || x > 0.0) | 
					
						
							|  |  |  |  |             return x;  /* tgamma(nan) = nan, tgamma(inf) = inf */ | 
					
						
							|  |  |  |  |         else { | 
					
						
							|  |  |  |  |             errno = EDOM; | 
					
						
							|  |  |  |  |             return Py_NAN;  /* tgamma(-inf) = nan, invalid */ | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (x == 0.0) { | 
					
						
							|  |  |  |  |         errno = EDOM; | 
					
						
							| 
									
										
										
										
											2011-09-25 15:26:43 +01:00
										 |  |  |  |         /* tgamma(+-0.0) = +-inf, divide-by-zero */ | 
					
						
							| 
									
										
										
										
											2023-05-10 18:44:52 +02:00
										 |  |  |  |         return copysign(Py_INFINITY, x); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* integer arguments */ | 
					
						
							|  |  |  |  |     if (x == floor(x)) { | 
					
						
							|  |  |  |  |         if (x < 0.0) { | 
					
						
							|  |  |  |  |             errno = EDOM;  /* tgamma(n) = nan, invalid for */ | 
					
						
							|  |  |  |  |             return Py_NAN; /* negative integers n */ | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         if (x <= NGAMMA_INTEGRAL) | 
					
						
							|  |  |  |  |             return gamma_integral[(int)x - 1]; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     absx = fabs(x); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* tiny arguments:  tgamma(x) ~ 1/x for x near 0 */ | 
					
						
							|  |  |  |  |     if (absx < 1e-20) { | 
					
						
							|  |  |  |  |         r = 1.0/x; | 
					
						
							|  |  |  |  |         if (Py_IS_INFINITY(r)) | 
					
						
							|  |  |  |  |             errno = ERANGE; | 
					
						
							|  |  |  |  |         return r; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
 | 
					
						
							|  |  |  |  |        x > 200, and underflows to +-0.0 for x < -200, not a negative | 
					
						
							|  |  |  |  |        integer. */ | 
					
						
							|  |  |  |  |     if (absx > 200.0) { | 
					
						
							|  |  |  |  |         if (x < 0.0) { | 
					
						
							| 
									
										
										
										
											2019-02-26 06:36:11 +00:00
										 |  |  |  |             return 0.0/m_sinpi(x); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         } | 
					
						
							|  |  |  |  |         else { | 
					
						
							|  |  |  |  |             errno = ERANGE; | 
					
						
							|  |  |  |  |             return Py_HUGE_VAL; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     y = absx + lanczos_g_minus_half; | 
					
						
							|  |  |  |  |     /* compute error in sum */ | 
					
						
							|  |  |  |  |     if (absx > lanczos_g_minus_half) { | 
					
						
							|  |  |  |  |         /* note: the correction can be foiled by an optimizing
 | 
					
						
							|  |  |  |  |            compiler that (incorrectly) thinks that an expression like | 
					
						
							|  |  |  |  |            a + b - a - b can be optimized to 0.0.  This shouldn't | 
					
						
							|  |  |  |  |            happen in a standards-conforming compiler. */ | 
					
						
							|  |  |  |  |         double q = y - absx; | 
					
						
							|  |  |  |  |         z = q - lanczos_g_minus_half; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else { | 
					
						
							|  |  |  |  |         double q = y - lanczos_g_minus_half; | 
					
						
							|  |  |  |  |         z = q - absx; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     z = z * lanczos_g / y; | 
					
						
							|  |  |  |  |     if (x < 0.0) { | 
					
						
							| 
									
										
										
										
											2019-02-26 06:36:11 +00:00
										 |  |  |  |         r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         r -= z * r; | 
					
						
							|  |  |  |  |         if (absx < 140.0) { | 
					
						
							|  |  |  |  |             r /= pow(y, absx - 0.5); | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         else { | 
					
						
							|  |  |  |  |             sqrtpow = pow(y, absx / 2.0 - 0.25); | 
					
						
							|  |  |  |  |             r /= sqrtpow; | 
					
						
							|  |  |  |  |             r /= sqrtpow; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else { | 
					
						
							|  |  |  |  |         r = lanczos_sum(absx) / exp(y); | 
					
						
							|  |  |  |  |         r += z * r; | 
					
						
							|  |  |  |  |         if (absx < 140.0) { | 
					
						
							|  |  |  |  |             r *= pow(y, absx - 0.5); | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         else { | 
					
						
							|  |  |  |  |             sqrtpow = pow(y, absx / 2.0 - 0.25); | 
					
						
							|  |  |  |  |             r *= sqrtpow; | 
					
						
							|  |  |  |  |             r *= sqrtpow; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (Py_IS_INFINITY(r)) | 
					
						
							|  |  |  |  |         errno = ERANGE; | 
					
						
							|  |  |  |  |     return r; | 
					
						
							| 
									
										
										
										
											1991-12-16 15:44:24 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-12-11 20:17:17 +00:00
										 |  |  |  | /*
 | 
					
						
							|  |  |  |  |    lgamma:  natural log of the absolute value of the Gamma function. | 
					
						
							|  |  |  |  |    For large arguments, Lanczos' formula works extremely well here. | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static double | 
					
						
							|  |  |  |  | m_lgamma(double x) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2017-03-11 23:37:16 +02:00
										 |  |  |  |     double r; | 
					
						
							|  |  |  |  |     double absx; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* special cases */ | 
					
						
							|  |  |  |  |     if (!Py_IS_FINITE(x)) { | 
					
						
							|  |  |  |  |         if (Py_IS_NAN(x)) | 
					
						
							|  |  |  |  |             return x;  /* lgamma(nan) = nan */ | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */ | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* integer arguments */ | 
					
						
							|  |  |  |  |     if (x == floor(x) && x <= 2.0) { | 
					
						
							|  |  |  |  |         if (x <= 0.0) { | 
					
						
							|  |  |  |  |             errno = EDOM;  /* lgamma(n) = inf, divide-by-zero for */ | 
					
						
							|  |  |  |  |             return Py_HUGE_VAL; /* integers n <= 0 */ | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         else { | 
					
						
							|  |  |  |  |             return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */ | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     absx = fabs(x); | 
					
						
							|  |  |  |  |     /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */ | 
					
						
							|  |  |  |  |     if (absx < 1e-20) | 
					
						
							|  |  |  |  |         return -log(absx); | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-07-07 16:17:31 +00:00
										 |  |  |  |     /* Lanczos' formula.  We could save a fraction of a ulp in accuracy by
 | 
					
						
							|  |  |  |  |        having a second set of numerator coefficients for lanczos_sum that | 
					
						
							|  |  |  |  |        absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g | 
					
						
							|  |  |  |  |        subtraction below; it's probably not worth it. */ | 
					
						
							|  |  |  |  |     r = log(lanczos_sum(absx)) - lanczos_g; | 
					
						
							|  |  |  |  |     r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1); | 
					
						
							|  |  |  |  |     if (x < 0.0) | 
					
						
							|  |  |  |  |         /* Use reflection formula to get value for negative x. */ | 
					
						
							| 
									
										
										
										
											2019-02-26 06:36:11 +00:00
										 |  |  |  |         r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     if (Py_IS_INFINITY(r)) | 
					
						
							|  |  |  |  |         errno = ERANGE; | 
					
						
							|  |  |  |  |     return r; | 
					
						
							| 
									
										
										
										
											2009-12-11 20:17:17 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-21 13:08:03 +00:00
										 |  |  |  | /*
 | 
					
						
							|  |  |  |  |    wrapper for atan2 that deals directly with special cases before | 
					
						
							|  |  |  |  |    delegating to the platform libm for the remaining cases.  This | 
					
						
							|  |  |  |  |    is necessary to get consistent behaviour across platforms. | 
					
						
							|  |  |  |  |    Windows, FreeBSD and alpha Tru64 are amongst platforms that don't | 
					
						
							|  |  |  |  |    always follow C99. | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static double | 
					
						
							|  |  |  |  | m_atan2(double y, double x) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     if (Py_IS_NAN(x) || Py_IS_NAN(y)) | 
					
						
							|  |  |  |  |         return Py_NAN; | 
					
						
							|  |  |  |  |     if (Py_IS_INFINITY(y)) { | 
					
						
							|  |  |  |  |         if (Py_IS_INFINITY(x)) { | 
					
						
							|  |  |  |  |             if (copysign(1., x) == 1.) | 
					
						
							|  |  |  |  |                 /* atan2(+-inf, +inf) == +-pi/4 */ | 
					
						
							|  |  |  |  |                 return copysign(0.25*Py_MATH_PI, y); | 
					
						
							|  |  |  |  |             else | 
					
						
							|  |  |  |  |                 /* atan2(+-inf, -inf) == +-pi*3/4 */ | 
					
						
							|  |  |  |  |                 return copysign(0.75*Py_MATH_PI, y); | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         /* atan2(+-inf, x) == +-pi/2 for finite x */ | 
					
						
							|  |  |  |  |         return copysign(0.5*Py_MATH_PI, y); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (Py_IS_INFINITY(x) || y == 0.) { | 
					
						
							|  |  |  |  |         if (copysign(1., x) == 1.) | 
					
						
							|  |  |  |  |             /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */ | 
					
						
							|  |  |  |  |             return copysign(0., y); | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */ | 
					
						
							|  |  |  |  |             return copysign(Py_MATH_PI, y); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return atan2(y, x); | 
					
						
							| 
									
										
										
										
											2008-04-21 13:08:03 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-04-05 18:34:27 +01:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /* IEEE 754-style remainder operation: x - n*y where n*y is the nearest
 | 
					
						
							|  |  |  |  |    multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754 | 
					
						
							|  |  |  |  |    binary floating-point format, the result is always exact. */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static double | 
					
						
							|  |  |  |  | m_remainder(double x, double y) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     /* Deal with most common case first. */ | 
					
						
							|  |  |  |  |     if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) { | 
					
						
							|  |  |  |  |         double absx, absy, c, m, r; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         if (y == 0.0) { | 
					
						
							|  |  |  |  |             return Py_NAN; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         absx = fabs(x); | 
					
						
							|  |  |  |  |         absy = fabs(y); | 
					
						
							|  |  |  |  |         m = fmod(absx, absy); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         /*
 | 
					
						
							|  |  |  |  |            Warning: some subtlety here. What we *want* to know at this point is | 
					
						
							|  |  |  |  |            whether the remainder m is less than, equal to, or greater than half | 
					
						
							|  |  |  |  |            of absy. However, we can't do that comparison directly because we | 
					
						
							| 
									
										
										
										
											2019-07-13 16:50:03 +01:00
										 |  |  |  |            can't be sure that 0.5*absy is representable (the multiplication | 
					
						
							| 
									
										
										
										
											2017-04-05 18:34:27 +01:00
										 |  |  |  |            might incur precision loss due to underflow). So instead we compare | 
					
						
							|  |  |  |  |            m with the complement c = absy - m: m < 0.5*absy if and only if m < | 
					
						
							|  |  |  |  |            c, and so on. The catch is that absy - m might also not be | 
					
						
							|  |  |  |  |            representable, but it turns out that it doesn't matter: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |            - if m > 0.5*absy then absy - m is exactly representable, by | 
					
						
							|  |  |  |  |              Sterbenz's lemma, so m > c | 
					
						
							|  |  |  |  |            - if m == 0.5*absy then again absy - m is exactly representable | 
					
						
							|  |  |  |  |              and m == c | 
					
						
							|  |  |  |  |            - if m < 0.5*absy then either (i) 0.5*absy is exactly representable, | 
					
						
							|  |  |  |  |              in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m < | 
					
						
							|  |  |  |  |              c, or (ii) absy is tiny, either subnormal or in the lowest normal | 
					
						
							|  |  |  |  |              binade. Then absy - m is exactly representable and again m < c. | 
					
						
							|  |  |  |  |         */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         c = absy - m; | 
					
						
							|  |  |  |  |         if (m < c) { | 
					
						
							|  |  |  |  |             r = m; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         else if (m > c) { | 
					
						
							|  |  |  |  |             r = -c; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         else { | 
					
						
							|  |  |  |  |             /*
 | 
					
						
							|  |  |  |  |                Here absx is exactly halfway between two multiples of absy, | 
					
						
							|  |  |  |  |                and we need to choose the even multiple. x now has the form | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                    absx = n * absy + m | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                for some integer n (recalling that m = 0.5*absy at this point). | 
					
						
							|  |  |  |  |                If n is even we want to return m; if n is odd, we need to | 
					
						
							|  |  |  |  |                return -m. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                So | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                    0.5 * (absx - m) = (n/2) * absy | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                and now reducing modulo absy gives us: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                                                   | m, if n is odd | 
					
						
							|  |  |  |  |                    fmod(0.5 * (absx - m), absy) = | | 
					
						
							|  |  |  |  |                                                   | 0, if n is even | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                Now m - 2.0 * fmod(...) gives the desired result: m | 
					
						
							|  |  |  |  |                if n is even, -m if m is odd. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                Note that all steps in fmod(0.5 * (absx - m), absy) | 
					
						
							|  |  |  |  |                will be computed exactly, with no rounding error | 
					
						
							|  |  |  |  |                introduced. | 
					
						
							|  |  |  |  |             */ | 
					
						
							|  |  |  |  |             assert(m == c); | 
					
						
							|  |  |  |  |             r = m - 2.0 * fmod(0.5 * (absx - m), absy); | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         return copysign(1.0, x) * r; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* Special values. */ | 
					
						
							|  |  |  |  |     if (Py_IS_NAN(x)) { | 
					
						
							|  |  |  |  |         return x; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (Py_IS_NAN(y)) { | 
					
						
							|  |  |  |  |         return y; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (Py_IS_INFINITY(x)) { | 
					
						
							|  |  |  |  |         return Py_NAN; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     assert(Py_IS_INFINITY(y)); | 
					
						
							|  |  |  |  |     return x; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-12-11 21:56:00 +00:00
										 |  |  |  | /*
 | 
					
						
							|  |  |  |  |     Various platforms (Solaris, OpenBSD) do nonstandard things for log(0), | 
					
						
							|  |  |  |  |     log(-ve), log(NaN).  Here are wrappers for log and log10 that deal with | 
					
						
							|  |  |  |  |     special values directly, passing positive non-special values through to | 
					
						
							|  |  |  |  |     the system log/log10. | 
					
						
							|  |  |  |  |  */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static double | 
					
						
							|  |  |  |  | m_log(double x) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     if (Py_IS_FINITE(x)) { | 
					
						
							|  |  |  |  |         if (x > 0.0) | 
					
						
							|  |  |  |  |             return log(x); | 
					
						
							|  |  |  |  |         errno = EDOM; | 
					
						
							|  |  |  |  |         if (x == 0.0) | 
					
						
							|  |  |  |  |             return -Py_HUGE_VAL; /* log(0) = -inf */ | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             return Py_NAN; /* log(-ve) = nan */ | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else if (Py_IS_NAN(x)) | 
					
						
							|  |  |  |  |         return x; /* log(nan) = nan */ | 
					
						
							|  |  |  |  |     else if (x > 0.0) | 
					
						
							|  |  |  |  |         return x; /* log(inf) = inf */ | 
					
						
							|  |  |  |  |     else { | 
					
						
							|  |  |  |  |         errno = EDOM; | 
					
						
							|  |  |  |  |         return Py_NAN; /* log(-inf) = nan */ | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2008-12-11 21:56:00 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-05-09 01:01:09 +02:00
										 |  |  |  | /*
 | 
					
						
							|  |  |  |  |    log2: log to base 2. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    Uses an algorithm that should: | 
					
						
							| 
									
										
										
										
											2011-05-09 08:40:20 +01:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-05-09 01:01:09 +02:00
										 |  |  |  |      (a) produce exact results for powers of 2, and | 
					
						
							| 
									
										
										
										
											2011-05-09 08:40:20 +01:00
										 |  |  |  |      (b) give a monotonic log2 (for positive finite floats), | 
					
						
							|  |  |  |  |          assuming that the system log is monotonic. | 
					
						
							| 
									
										
										
										
											2011-05-09 01:01:09 +02:00
										 |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static double | 
					
						
							|  |  |  |  | m_log2(double x) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     if (!Py_IS_FINITE(x)) { | 
					
						
							|  |  |  |  |         if (Py_IS_NAN(x)) | 
					
						
							|  |  |  |  |             return x; /* log2(nan) = nan */ | 
					
						
							|  |  |  |  |         else if (x > 0.0) | 
					
						
							|  |  |  |  |             return x; /* log2(+inf) = +inf */ | 
					
						
							|  |  |  |  |         else { | 
					
						
							|  |  |  |  |             errno = EDOM; | 
					
						
							|  |  |  |  |             return Py_NAN; /* log2(-inf) = nan, invalid-operation */ | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (x > 0.0) { | 
					
						
							| 
									
										
										
										
											2011-05-09 12:45:41 +02:00
										 |  |  |  |         return log2(x); | 
					
						
							| 
									
										
										
										
											2011-05-09 01:01:09 +02:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  |     else if (x == 0.0) { | 
					
						
							|  |  |  |  |         errno = EDOM; | 
					
						
							|  |  |  |  |         return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */ | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else { | 
					
						
							|  |  |  |  |         errno = EDOM; | 
					
						
							| 
									
										
										
										
											2011-05-09 08:05:00 +01:00
										 |  |  |  |         return Py_NAN; /* log2(-inf) = nan, invalid-operation */ | 
					
						
							| 
									
										
										
										
											2011-05-09 01:01:09 +02:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-12-11 21:56:00 +00:00
										 |  |  |  | static double | 
					
						
							|  |  |  |  | m_log10(double x) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     if (Py_IS_FINITE(x)) { | 
					
						
							|  |  |  |  |         if (x > 0.0) | 
					
						
							|  |  |  |  |             return log10(x); | 
					
						
							|  |  |  |  |         errno = EDOM; | 
					
						
							|  |  |  |  |         if (x == 0.0) | 
					
						
							|  |  |  |  |             return -Py_HUGE_VAL; /* log10(0) = -inf */ | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             return Py_NAN; /* log10(-ve) = nan */ | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else if (Py_IS_NAN(x)) | 
					
						
							|  |  |  |  |         return x; /* log10(nan) = nan */ | 
					
						
							|  |  |  |  |     else if (x > 0.0) | 
					
						
							|  |  |  |  |         return x; /* log10(inf) = inf */ | 
					
						
							|  |  |  |  |     else { | 
					
						
							|  |  |  |  |         errno = EDOM; | 
					
						
							|  |  |  |  |         return Py_NAN; /* log10(-inf) = nan */ | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2008-12-11 21:56:00 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_gcd(PyObject *module, PyObject * const *args, Py_ssize_t nargs) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     PyObject *res, *x; | 
					
						
							|  |  |  |  |     Py_ssize_t i; | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  |     if (nargs == 0) { | 
					
						
							|  |  |  |  |         return PyLong_FromLong(0); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     res = PyNumber_Index(args[0]); | 
					
						
							|  |  |  |  |     if (res == NULL) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (nargs == 1) { | 
					
						
							|  |  |  |  |         Py_SETREF(res, PyNumber_Absolute(res)); | 
					
						
							|  |  |  |  |         return res; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-05-27 00:51:07 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     PyObject *one = _PyLong_GetOne();  // borrowed ref
 | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  |     for (i = 1; i < nargs; i++) { | 
					
						
							| 
									
										
										
										
											2020-05-28 10:33:45 +03:00
										 |  |  |  |         x = _PyNumber_Index(args[i]); | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  |         if (x == NULL) { | 
					
						
							|  |  |  |  |             Py_DECREF(res); | 
					
						
							|  |  |  |  |             return NULL; | 
					
						
							|  |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2021-05-27 00:51:07 +02:00
										 |  |  |  |         if (res == one) { | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  |             /* Fast path: just check arguments.
 | 
					
						
							|  |  |  |  |                It is okay to use identity comparison here. */ | 
					
						
							|  |  |  |  |             Py_DECREF(x); | 
					
						
							|  |  |  |  |             continue; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         Py_SETREF(res, _PyLong_GCD(res, x)); | 
					
						
							|  |  |  |  |         Py_DECREF(x); | 
					
						
							|  |  |  |  |         if (res == NULL) { | 
					
						
							|  |  |  |  |             return NULL; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return res; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | PyDoc_STRVAR(math_gcd_doc, | 
					
						
							|  |  |  |  | "gcd($module, *integers)\n" | 
					
						
							|  |  |  |  | "--\n" | 
					
						
							|  |  |  |  | "\n" | 
					
						
							|  |  |  |  | "Greatest Common Divisor."); | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-05-13 00:19:51 +03:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  | long_lcm(PyObject *a, PyObject *b) | 
					
						
							| 
									
										
										
										
											2015-05-13 00:19:51 +03:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  |     PyObject *g, *m, *f, *ab; | 
					
						
							| 
									
										
										
										
											2015-05-13 00:19:51 +03:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-22 14:49:51 +00:00
										 |  |  |  |     if (_PyLong_IsZero((PyLongObject *)a) || _PyLong_IsZero((PyLongObject *)b)) { | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  |         return PyLong_FromLong(0); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     g = _PyLong_GCD(a, b); | 
					
						
							|  |  |  |  |     if (g == NULL) { | 
					
						
							| 
									
										
										
										
											2015-05-13 00:19:51 +03:00
										 |  |  |  |         return NULL; | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  |     f = PyNumber_FloorDivide(a, g); | 
					
						
							|  |  |  |  |     Py_DECREF(g); | 
					
						
							|  |  |  |  |     if (f == NULL) { | 
					
						
							| 
									
										
										
										
											2015-05-13 00:19:51 +03:00
										 |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  |     m = PyNumber_Multiply(f, b); | 
					
						
							|  |  |  |  |     Py_DECREF(f); | 
					
						
							|  |  |  |  |     if (m == NULL) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     ab = PyNumber_Absolute(m); | 
					
						
							|  |  |  |  |     Py_DECREF(m); | 
					
						
							|  |  |  |  |     return ab; | 
					
						
							| 
									
										
										
										
											2015-05-13 00:19:51 +03:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_lcm(PyObject *module, PyObject * const *args, Py_ssize_t nargs) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     PyObject *res, *x; | 
					
						
							|  |  |  |  |     Py_ssize_t i; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (nargs == 0) { | 
					
						
							|  |  |  |  |         return PyLong_FromLong(1); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     res = PyNumber_Index(args[0]); | 
					
						
							|  |  |  |  |     if (res == NULL) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (nargs == 1) { | 
					
						
							|  |  |  |  |         Py_SETREF(res, PyNumber_Absolute(res)); | 
					
						
							|  |  |  |  |         return res; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-05-27 00:51:07 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     PyObject *zero = _PyLong_GetZero();  // borrowed ref
 | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  |     for (i = 1; i < nargs; i++) { | 
					
						
							|  |  |  |  |         x = PyNumber_Index(args[i]); | 
					
						
							|  |  |  |  |         if (x == NULL) { | 
					
						
							|  |  |  |  |             Py_DECREF(res); | 
					
						
							|  |  |  |  |             return NULL; | 
					
						
							|  |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2021-05-27 00:51:07 +02:00
										 |  |  |  |         if (res == zero) { | 
					
						
							| 
									
										
										
										
											2020-02-23 13:21:29 +02:00
										 |  |  |  |             /* Fast path: just check arguments.
 | 
					
						
							|  |  |  |  |                It is okay to use identity comparison here. */ | 
					
						
							|  |  |  |  |             Py_DECREF(x); | 
					
						
							|  |  |  |  |             continue; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         Py_SETREF(res, long_lcm(res, x)); | 
					
						
							|  |  |  |  |         Py_DECREF(x); | 
					
						
							|  |  |  |  |         if (res == NULL) { | 
					
						
							|  |  |  |  |             return NULL; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return res; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | PyDoc_STRVAR(math_lcm_doc, | 
					
						
							|  |  |  |  | "lcm($module, *integers)\n" | 
					
						
							|  |  |  |  | "--\n" | 
					
						
							|  |  |  |  | "\n" | 
					
						
							|  |  |  |  | "Least Common Multiple."); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | /* Call is_error when errno != 0, and where x is the result libm
 | 
					
						
							|  |  |  |  |  * returned.  is_error will usually set up an exception and return | 
					
						
							|  |  |  |  |  * true (1), but may return false (0) without setting up an exception. | 
					
						
							|  |  |  |  |  */ | 
					
						
							|  |  |  |  | static int | 
					
						
							|  |  |  |  | is_error(double x) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     int result = 1;     /* presumption of guilt */ | 
					
						
							|  |  |  |  |     assert(errno);      /* non-zero errno is a precondition for calling */ | 
					
						
							|  |  |  |  |     if (errno == EDOM) | 
					
						
							|  |  |  |  |         PyErr_SetString(PyExc_ValueError, "math domain error"); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     else if (errno == ERANGE) { | 
					
						
							|  |  |  |  |         /* ANSI C generally requires libm functions to set ERANGE
 | 
					
						
							|  |  |  |  |          * on overflow, but also generally *allows* them to set | 
					
						
							|  |  |  |  |          * ERANGE on underflow too.  There's no consistency about | 
					
						
							|  |  |  |  |          * the latter across platforms. | 
					
						
							|  |  |  |  |          * Alas, C99 never requires that errno be set. | 
					
						
							|  |  |  |  |          * Here we suppress the underflow errors (libm functions | 
					
						
							|  |  |  |  |          * should return a zero on underflow, and +- HUGE_VAL on | 
					
						
							|  |  |  |  |          * overflow, so testing the result for zero suffices to | 
					
						
							|  |  |  |  |          * distinguish the cases). | 
					
						
							|  |  |  |  |          * | 
					
						
							|  |  |  |  |          * On some platforms (Ubuntu/ia64) it seems that errno can be | 
					
						
							|  |  |  |  |          * set to ERANGE for subnormal results that do *not* underflow | 
					
						
							|  |  |  |  |          * to zero.  So to be safe, we'll ignore ERANGE whenever the | 
					
						
							| 
									
										
										
										
											2021-12-09 18:31:54 +00:00
										 |  |  |  |          * function result is less than 1.5 in absolute value. | 
					
						
							|  |  |  |  |          * | 
					
						
							|  |  |  |  |          * bpo-46018: Changed to 1.5 to ensure underflows in expm1() | 
					
						
							|  |  |  |  |          * are correctly detected, since the function may underflow | 
					
						
							|  |  |  |  |          * toward -1.0 rather than 0.0. | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |          */ | 
					
						
							| 
									
										
										
										
											2021-12-09 18:31:54 +00:00
										 |  |  |  |         if (fabs(x) < 1.5) | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |             result = 0; | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             PyErr_SetString(PyExc_OverflowError, | 
					
						
							|  |  |  |  |                             "math range error"); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else | 
					
						
							|  |  |  |  |         /* Unexpected math error */ | 
					
						
							|  |  |  |  |         PyErr_SetFromErrno(PyExc_ValueError); | 
					
						
							|  |  |  |  |     return result; | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | /*
 | 
					
						
							|  |  |  |  |    math_1 is used to wrap a libm function f that takes a double | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |    argument and returns a double. | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |    The error reporting follows these rules, which are designed to do | 
					
						
							|  |  |  |  |    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 | 
					
						
							|  |  |  |  |    platforms. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    - a NaN result from non-NaN inputs causes ValueError to be raised | 
					
						
							|  |  |  |  |    - an infinite result from finite inputs causes OverflowError to be | 
					
						
							|  |  |  |  |      raised if can_overflow is 1, or raises ValueError if can_overflow | 
					
						
							|  |  |  |  |      is 0. | 
					
						
							|  |  |  |  |    - if the result is finite and errno == EDOM then ValueError is | 
					
						
							|  |  |  |  |      raised | 
					
						
							|  |  |  |  |    - if the result is finite and nonzero and errno == ERANGE then | 
					
						
							|  |  |  |  |      OverflowError is raised | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    The last rule is used to catch overflow on platforms which follow | 
					
						
							|  |  |  |  |    C89 but for which HUGE_VAL is not an infinity. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    For the majority of one-argument functions these rules are enough | 
					
						
							|  |  |  |  |    to ensure that Python's functions behave as specified in 'Annex F' | 
					
						
							|  |  |  |  |    of the C99 standard, with the 'invalid' and 'divide-by-zero' | 
					
						
							|  |  |  |  |    floating-point exceptions mapping to Python's ValueError and the | 
					
						
							|  |  |  |  |    'overflow' floating-point exception mapping to OverflowError. | 
					
						
							|  |  |  |  |    math_1 only works for functions that don't have singularities *and* | 
					
						
							|  |  |  |  |    the possibility of overflow; fortunately, that covers everything we | 
					
						
							|  |  |  |  |    care about right now. | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-12-09 22:32:36 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2023-02-09 12:40:13 +03:00
										 |  |  |  | math_1(PyObject *arg, double (*func) (double), int can_overflow) | 
					
						
							| 
									
										
										
										
											1990-10-14 12:07:46 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     double x, r; | 
					
						
							|  |  |  |  |     x = PyFloat_AsDouble(arg); | 
					
						
							|  |  |  |  |     if (x == -1.0 && PyErr_Occurred()) | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     errno = 0; | 
					
						
							|  |  |  |  |     r = (*func)(x); | 
					
						
							|  |  |  |  |     if (Py_IS_NAN(r) && !Py_IS_NAN(x)) { | 
					
						
							|  |  |  |  |         PyErr_SetString(PyExc_ValueError, | 
					
						
							|  |  |  |  |                         "math domain error"); /* invalid arg */ | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) { | 
					
						
							| 
									
										
										
										
											2012-03-13 16:13:09 -05:00
										 |  |  |  |         if (can_overflow) | 
					
						
							|  |  |  |  |             PyErr_SetString(PyExc_OverflowError, | 
					
						
							|  |  |  |  |                             "math range error"); /* overflow */ | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             PyErr_SetString(PyExc_ValueError, | 
					
						
							|  |  |  |  |                             "math domain error"); /* singularity */ | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  |     if (Py_IS_FINITE(r) && errno && is_error(r)) | 
					
						
							|  |  |  |  |         /* this branch unnecessary on most platforms */ | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-02-09 12:40:13 +03:00
										 |  |  |  |     return PyFloat_FromDouble(r); | 
					
						
							| 
									
										
										
										
											2008-01-05 20:03:11 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | /* variant of math_1, to be used when the function being wrapped is known to
 | 
					
						
							|  |  |  |  |    set errno properly (that is, errno = EDOM for invalid or divide-by-zero, | 
					
						
							|  |  |  |  |    errno = ERANGE for overflow). */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_1a(PyObject *arg, double (*func) (double)) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     double x, r; | 
					
						
							|  |  |  |  |     x = PyFloat_AsDouble(arg); | 
					
						
							|  |  |  |  |     if (x == -1.0 && PyErr_Occurred()) | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     errno = 0; | 
					
						
							|  |  |  |  |     r = (*func)(x); | 
					
						
							|  |  |  |  |     if (errno && is_error(r)) | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     return PyFloat_FromDouble(r); | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | /*
 | 
					
						
							|  |  |  |  |    math_2 is used to wrap a libm function f that takes two double | 
					
						
							|  |  |  |  |    arguments and returns a double. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    The error reporting follows these rules, which are designed to do | 
					
						
							|  |  |  |  |    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 | 
					
						
							|  |  |  |  |    platforms. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    - a NaN result from non-NaN inputs causes ValueError to be raised | 
					
						
							|  |  |  |  |    - an infinite result from finite inputs causes OverflowError to be | 
					
						
							|  |  |  |  |      raised. | 
					
						
							|  |  |  |  |    - if the result is finite and errno == EDOM then ValueError is | 
					
						
							|  |  |  |  |      raised | 
					
						
							|  |  |  |  |    - if the result is finite and nonzero and errno == ERANGE then | 
					
						
							|  |  |  |  |      OverflowError is raised | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    The last rule is used to catch overflow on platforms which follow | 
					
						
							|  |  |  |  |    C89 but for which HUGE_VAL is not an infinity. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    For most two-argument functions (copysign, fmod, hypot, atan2) | 
					
						
							|  |  |  |  |    these rules are enough to ensure that Python's functions behave as | 
					
						
							|  |  |  |  |    specified in 'Annex F' of the C99 standard, with the 'invalid' and | 
					
						
							|  |  |  |  |    'divide-by-zero' floating-point exceptions mapping to Python's | 
					
						
							|  |  |  |  |    ValueError and the 'overflow' floating-point exception mapping to | 
					
						
							|  |  |  |  |    OverflowError. | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-12-09 22:32:36 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2019-01-12 08:26:34 +02:00
										 |  |  |  | math_2(PyObject *const *args, Py_ssize_t nargs, | 
					
						
							|  |  |  |  |        double (*func) (double, double), const char *funcname) | 
					
						
							| 
									
										
										
										
											1990-10-14 12:07:46 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     double x, y, r; | 
					
						
							| 
									
										
										
										
											2019-01-12 08:26:34 +02:00
										 |  |  |  |     if (!_PyArg_CheckPositional(funcname, nargs, 2, 2)) | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         return NULL; | 
					
						
							| 
									
										
										
										
											2019-01-12 08:26:34 +02:00
										 |  |  |  |     x = PyFloat_AsDouble(args[0]); | 
					
						
							| 
									
										
										
										
											2020-03-14 04:45:32 -06:00
										 |  |  |  |     if (x == -1.0 && PyErr_Occurred()) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-01-12 08:26:34 +02:00
										 |  |  |  |     y = PyFloat_AsDouble(args[1]); | 
					
						
							| 
									
										
										
										
											2020-03-14 04:45:32 -06:00
										 |  |  |  |     if (y == -1.0 && PyErr_Occurred()) { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         return NULL; | 
					
						
							| 
									
										
										
										
											2020-03-14 04:45:32 -06:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     errno = 0; | 
					
						
							|  |  |  |  |     r = (*func)(x, y); | 
					
						
							|  |  |  |  |     if (Py_IS_NAN(r)) { | 
					
						
							|  |  |  |  |         if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) | 
					
						
							|  |  |  |  |             errno = EDOM; | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             errno = 0; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else if (Py_IS_INFINITY(r)) { | 
					
						
							|  |  |  |  |         if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) | 
					
						
							|  |  |  |  |             errno = ERANGE; | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             errno = 0; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (errno && is_error(r)) | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     else | 
					
						
							|  |  |  |  |         return PyFloat_FromDouble(r); | 
					
						
							| 
									
										
										
										
											1990-10-14 12:07:46 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  | #define FUNC1(funcname, func, can_overflow, docstring)                  \
 | 
					
						
							|  |  |  |  |     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | 
					
						
							|  |  |  |  |         return math_1(args, func, can_overflow);                            \ | 
					
						
							|  |  |  |  |     }\ | 
					
						
							|  |  |  |  |     PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
					
						
							| 
									
										
										
										
											1990-10-14 12:07:46 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  | #define FUNC1A(funcname, func, docstring)                               \
 | 
					
						
							|  |  |  |  |     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ | 
					
						
							|  |  |  |  |         return math_1a(args, func);                                     \ | 
					
						
							|  |  |  |  |     }\ | 
					
						
							|  |  |  |  |     PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2000-07-03 18:11:56 +00:00
										 |  |  |  | #define FUNC2(funcname, func, docstring) \
 | 
					
						
							| 
									
										
										
										
											2019-01-12 08:26:34 +02:00
										 |  |  |  |     static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \ | 
					
						
							|  |  |  |  |         return math_2(args, nargs, func, #funcname); \ | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     }\ | 
					
						
							|  |  |  |  |     PyDoc_STRVAR(math_##funcname##_doc, docstring); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(acos, acos, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "acos($module, x, /)\n--\n\n" | 
					
						
							| 
									
										
										
										
											2019-07-13 09:59:55 -04:00
										 |  |  |  |       "Return the arc cosine (measured in radians) of x.\n\n" | 
					
						
							|  |  |  |  |       "The result is between 0 and pi.") | 
					
						
							| 
									
										
										
										
											2021-10-25 11:25:27 +03:00
										 |  |  |  | FUNC1(acosh, acosh, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "acosh($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the inverse hyperbolic cosine of x.") | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(asin, asin, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "asin($module, x, /)\n--\n\n" | 
					
						
							| 
									
										
										
										
											2019-07-13 09:59:55 -04:00
										 |  |  |  |       "Return the arc sine (measured in radians) of x.\n\n" | 
					
						
							|  |  |  |  |       "The result is between -pi/2 and pi/2.") | 
					
						
							| 
									
										
										
										
											2021-10-25 11:25:27 +03:00
										 |  |  |  | FUNC1(asinh, asinh, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "asinh($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the inverse hyperbolic sine of x.") | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(atan, atan, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "atan($module, x, /)\n--\n\n" | 
					
						
							| 
									
										
										
										
											2019-07-13 09:59:55 -04:00
										 |  |  |  |       "Return the arc tangent (measured in radians) of x.\n\n" | 
					
						
							|  |  |  |  |       "The result is between -pi/2 and pi/2.") | 
					
						
							| 
									
										
										
										
											2008-04-21 13:08:03 +00:00
										 |  |  |  | FUNC2(atan2, m_atan2, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "atan2($module, y, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the arc tangent (measured in radians) of y/x.\n\n" | 
					
						
							| 
									
										
										
										
											2001-08-07 22:10:00 +00:00
										 |  |  |  |       "Unlike atan(y/x), the signs of both x and y are considered.") | 
					
						
							| 
									
										
										
										
											2021-10-25 11:25:27 +03:00
										 |  |  |  | FUNC1(atanh, atanh, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "atanh($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the inverse hyperbolic tangent of x.") | 
					
						
							| 
									
										
										
										
											2021-06-10 22:12:09 +05:30
										 |  |  |  | FUNC1(cbrt, cbrt, 0, | 
					
						
							|  |  |  |  |       "cbrt($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the cube root of x.") | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.ceil | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x as number: object | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return the ceiling of x as an Integral. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | This is the smallest integer >= x. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
										
										
											2007-08-23 22:56:55 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_ceil(PyObject *module, PyObject *number) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/ | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2023-10-06 15:57:18 -07:00
										 |  |  |  |     double x; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-10-06 15:57:18 -07:00
										 |  |  |  |     if (PyFloat_CheckExact(number)) { | 
					
						
							|  |  |  |  |         x = PyFloat_AS_DOUBLE(number); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else { | 
					
						
							| 
									
										
										
										
											2022-06-12 18:45:02 +09:00
										 |  |  |  |         math_module_state *state = get_math_module_state(module); | 
					
						
							|  |  |  |  |         PyObject *method = _PyObject_LookupSpecial(number, state->str___ceil__); | 
					
						
							| 
									
										
										
										
											2019-11-16 18:00:57 +02:00
										 |  |  |  |         if (method != NULL) { | 
					
						
							| 
									
										
										
										
											2021-10-12 00:42:23 +02:00
										 |  |  |  |             PyObject *result = _PyObject_CallNoArgs(method); | 
					
						
							| 
									
										
										
										
											2019-11-16 18:00:57 +02:00
										 |  |  |  |             Py_DECREF(method); | 
					
						
							|  |  |  |  |             return result; | 
					
						
							|  |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2010-07-02 13:46:42 +00:00
										 |  |  |  |         if (PyErr_Occurred()) | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |             return NULL; | 
					
						
							| 
									
										
										
										
											2023-10-06 15:57:18 -07:00
										 |  |  |  |         x = PyFloat_AsDouble(number); | 
					
						
							|  |  |  |  |         if (x == -1.0 && PyErr_Occurred()) | 
					
						
							|  |  |  |  |             return NULL; | 
					
						
							| 
									
										
										
										
											2010-07-02 13:46:42 +00:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-11-16 18:00:57 +02:00
										 |  |  |  |     return PyLong_FromDouble(ceil(x)); | 
					
						
							| 
									
										
										
										
											2007-08-23 22:56:55 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC2(copysign, copysign, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "copysign($module, x, y, /)\n--\n\n" | 
					
						
							|  |  |  |  |        "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n" | 
					
						
							|  |  |  |  |       "On platforms that support signed zeros, copysign(1.0, -0.0)\n" | 
					
						
							|  |  |  |  |       "returns -1.0.\n") | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(cos, cos, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "cos($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the cosine of x (measured in radians).") | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(cosh, cosh, 1, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "cosh($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the hyperbolic cosine of x.") | 
					
						
							| 
									
										
										
										
											2023-02-09 11:40:52 +03:00
										 |  |  |  | FUNC1A(erf, erf, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |        "erf($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |        "Error function at x.") | 
					
						
							| 
									
										
										
										
											2023-02-09 11:40:52 +03:00
										 |  |  |  | FUNC1A(erfc, erfc, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |        "erfc($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |        "Complementary error function at x.") | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(exp, exp, 1, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "exp($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return e raised to the power of x.") | 
					
						
							| 
									
										
										
										
											2021-11-29 12:55:43 -06:00
										 |  |  |  | FUNC1(exp2, exp2, 1, | 
					
						
							|  |  |  |  |       "exp2($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return 2 raised to the power of x.") | 
					
						
							| 
									
										
										
										
											2021-10-25 11:25:27 +03:00
										 |  |  |  | FUNC1(expm1, expm1, 1, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "expm1($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return exp(x)-1.\n\n" | 
					
						
							| 
									
										
										
										
											2009-12-16 20:23:42 +00:00
										 |  |  |  |       "This function avoids the loss of precision involved in the direct " | 
					
						
							|  |  |  |  |       "evaluation of exp(x)-1 for small x.") | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(fabs, fabs, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "fabs($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the absolute value of the float x.") | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.floor | 
					
						
							| 
									
										
										
										
											2007-08-23 22:56:55 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     x as number: object | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return the floor of x as an Integral. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | This is the largest integer <= x. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_floor(PyObject *module, PyObject *number) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/ | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2020-06-23 11:45:25 -07:00
										 |  |  |  |     double x; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (PyFloat_CheckExact(number)) { | 
					
						
							|  |  |  |  |         x = PyFloat_AS_DOUBLE(number); | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2023-10-06 15:57:18 -07:00
										 |  |  |  |     else { | 
					
						
							| 
									
										
										
										
											2022-06-12 18:45:02 +09:00
										 |  |  |  |         math_module_state *state = get_math_module_state(module); | 
					
						
							|  |  |  |  |         PyObject *method = _PyObject_LookupSpecial(number, state->str___floor__); | 
					
						
							| 
									
										
										
										
											2019-11-16 18:00:57 +02:00
										 |  |  |  |         if (method != NULL) { | 
					
						
							| 
									
										
										
										
											2021-10-12 00:42:23 +02:00
										 |  |  |  |             PyObject *result = _PyObject_CallNoArgs(method); | 
					
						
							| 
									
										
										
										
											2019-11-16 18:00:57 +02:00
										 |  |  |  |             Py_DECREF(method); | 
					
						
							|  |  |  |  |             return result; | 
					
						
							|  |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2010-07-01 15:16:55 +00:00
										 |  |  |  |         if (PyErr_Occurred()) | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |             return NULL; | 
					
						
							| 
									
										
										
										
											2020-06-23 11:45:25 -07:00
										 |  |  |  |         x = PyFloat_AsDouble(number); | 
					
						
							|  |  |  |  |         if (x == -1.0 && PyErr_Occurred()) | 
					
						
							|  |  |  |  |             return NULL; | 
					
						
							| 
									
										
										
										
											2010-07-01 15:16:55 +00:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-11-16 18:00:57 +02:00
										 |  |  |  |     return PyLong_FromDouble(floor(x)); | 
					
						
							| 
									
										
										
										
											2007-08-23 22:56:55 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2009-09-28 19:21:11 +00:00
										 |  |  |  | FUNC1A(gamma, m_tgamma, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "gamma($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Gamma function at x.") | 
					
						
							| 
									
										
										
										
											2009-12-11 20:17:17 +00:00
										 |  |  |  | FUNC1A(lgamma, m_lgamma, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "lgamma($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Natural logarithm of absolute value of Gamma function at x.") | 
					
						
							| 
									
										
										
										
											2010-07-07 16:21:29 +00:00
										 |  |  |  | FUNC1(log1p, m_log1p, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "log1p($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the natural logarithm of 1+x (base e).\n\n" | 
					
						
							| 
									
										
											  
											
												Merged revisions 75149,75260-75263,75265-75267,75292,75300,75376,75405,75429-75433,75437,75445,75501,75551,75572,75589-75591,75657,75742,75868,75952-75957,76057,76105,76139,76143,76162,76223 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r75149 | gregory.p.smith | 2009-09-29 16:56:31 -0500 (Tue, 29 Sep 2009) | 3 lines
  Mention issue6972 in extractall docs about overwriting things outside of
  the supplied path.
........
  r75260 | andrew.kuchling | 2009-10-05 16:24:20 -0500 (Mon, 05 Oct 2009) | 1 line
  Wording fix
........
  r75261 | andrew.kuchling | 2009-10-05 16:24:35 -0500 (Mon, 05 Oct 2009) | 1 line
  Fix narkup
........
  r75262 | andrew.kuchling | 2009-10-05 16:25:03 -0500 (Mon, 05 Oct 2009) | 1 line
  Document 'skip' parameter to constructor
........
  r75263 | andrew.kuchling | 2009-10-05 16:25:35 -0500 (Mon, 05 Oct 2009) | 1 line
  Note side benefit of socket.create_connection()
........
  r75265 | andrew.kuchling | 2009-10-05 17:31:11 -0500 (Mon, 05 Oct 2009) | 1 line
  Reword sentence
........
  r75266 | andrew.kuchling | 2009-10-05 17:32:48 -0500 (Mon, 05 Oct 2009) | 1 line
  Use standard comma punctuation; reword some sentences in the docs
........
  r75267 | andrew.kuchling | 2009-10-05 17:42:56 -0500 (Mon, 05 Oct 2009) | 1 line
  Backport r73983: Document the thousands separator.
........
  r75292 | benjamin.peterson | 2009-10-08 22:11:36 -0500 (Thu, 08 Oct 2009) | 1 line
  death to old CVS keyword
........
  r75300 | benjamin.peterson | 2009-10-09 16:48:14 -0500 (Fri, 09 Oct 2009) | 1 line
  fix some coding style
........
  r75376 | benjamin.peterson | 2009-10-11 20:26:07 -0500 (Sun, 11 Oct 2009) | 1 line
  platform we don't care about
........
  r75405 | neil.schemenauer | 2009-10-14 12:17:14 -0500 (Wed, 14 Oct 2009) | 4 lines
  Issue #1754094: Improve the stack depth calculation in the compiler.
  There should be no other effect than a small decrease in memory use.
  Patch by Christopher Tur Lesniewski-Laas.
........
  r75429 | benjamin.peterson | 2009-10-14 20:47:28 -0500 (Wed, 14 Oct 2009) | 1 line
  pep8ify if blocks
........
  r75430 | benjamin.peterson | 2009-10-14 20:49:37 -0500 (Wed, 14 Oct 2009) | 1 line
  use floor division and add a test that exercises the tabsize codepath
........
  r75431 | benjamin.peterson | 2009-10-14 20:56:25 -0500 (Wed, 14 Oct 2009) | 1 line
  change test to what I intended
........
  r75432 | benjamin.peterson | 2009-10-14 22:05:39 -0500 (Wed, 14 Oct 2009) | 1 line
  some cleanups
........
  r75433 | benjamin.peterson | 2009-10-14 22:06:55 -0500 (Wed, 14 Oct 2009) | 1 line
  make inspect.isabstract() always return a boolean; add a test for it, too #7069
........
  r75437 | benjamin.peterson | 2009-10-15 10:44:46 -0500 (Thu, 15 Oct 2009) | 1 line
  only clear a module's __dict__ if the module is the only one with a reference to it #7140
........
  r75445 | vinay.sajip | 2009-10-16 09:06:44 -0500 (Fri, 16 Oct 2009) | 1 line
  Issue #7120: logging: Removed import of multiprocessing which is causing crash in GAE.
........
  r75501 | antoine.pitrou | 2009-10-18 13:37:11 -0500 (Sun, 18 Oct 2009) | 3 lines
  Add a comment about unreachable code, and fix a typo
........
  r75551 | benjamin.peterson | 2009-10-19 22:14:10 -0500 (Mon, 19 Oct 2009) | 1 line
  use property api
........
  r75572 | benjamin.peterson | 2009-10-20 16:55:17 -0500 (Tue, 20 Oct 2009) | 1 line
  clarify buffer arg #7178
........
  r75589 | benjamin.peterson | 2009-10-21 21:26:47 -0500 (Wed, 21 Oct 2009) | 1 line
  whitespace
........
  r75590 | benjamin.peterson | 2009-10-21 21:36:47 -0500 (Wed, 21 Oct 2009) | 1 line
  rewrite to be nice to other implementations
........
  r75591 | benjamin.peterson | 2009-10-21 21:50:38 -0500 (Wed, 21 Oct 2009) | 4 lines
  rewrite for style, clarify, and comments
  Also, use the hasattr() like scheme of allowing BaseException exceptions through.
........
  r75657 | antoine.pitrou | 2009-10-24 07:41:27 -0500 (Sat, 24 Oct 2009) | 3 lines
  Fix compilation error in debug mode.
........
  r75742 | benjamin.peterson | 2009-10-26 17:51:16 -0500 (Mon, 26 Oct 2009) | 1 line
  use 'is' instead of id()
........
  r75868 | benjamin.peterson | 2009-10-27 15:59:18 -0500 (Tue, 27 Oct 2009) | 1 line
  test expect base classes
........
  r75952 | georg.brandl | 2009-10-29 15:38:32 -0500 (Thu, 29 Oct 2009) | 1 line
  Use the correct function name in docstring.
........
  r75953 | georg.brandl | 2009-10-29 15:39:50 -0500 (Thu, 29 Oct 2009) | 1 line
  Remove mention of the old -X command line switch.
........
  r75954 | georg.brandl | 2009-10-29 15:53:00 -0500 (Thu, 29 Oct 2009) | 1 line
  Use constants instead of magic integers for test result.  Do not re-run with --verbose3 for environment changing tests.
........
  r75955 | georg.brandl | 2009-10-29 15:54:03 -0500 (Thu, 29 Oct 2009) | 1 line
  Use a single style for all the docstrings in the math module.
........
  r75956 | georg.brandl | 2009-10-29 16:16:34 -0500 (Thu, 29 Oct 2009) | 1 line
  I do not think the "railroad" program mentioned is still available.
........
  r75957 | georg.brandl | 2009-10-29 16:44:56 -0500 (Thu, 29 Oct 2009) | 1 line
  Fix constant name.
........
  r76057 | benjamin.peterson | 2009-11-02 09:06:45 -0600 (Mon, 02 Nov 2009) | 1 line
  prevent a rather unlikely segfault
........
  r76105 | georg.brandl | 2009-11-04 01:38:12 -0600 (Wed, 04 Nov 2009) | 1 line
  #7259: show correct equivalent for operator.i* operations in docstring; fix minor issues in operator docs.
........
  r76139 | benjamin.peterson | 2009-11-06 19:04:38 -0600 (Fri, 06 Nov 2009) | 1 line
  spelling
........
  r76143 | georg.brandl | 2009-11-07 02:26:07 -0600 (Sat, 07 Nov 2009) | 1 line
  #7271: fix typo.
........
  r76162 | benjamin.peterson | 2009-11-08 22:10:53 -0600 (Sun, 08 Nov 2009) | 1 line
  discuss how to use -p
........
  r76223 | georg.brandl | 2009-11-12 02:29:46 -0600 (Thu, 12 Nov 2009) | 1 line
  Give the profile module a module directive.
........
											
										 
											2009-11-13 02:25:08 +00:00
										 |  |  |  |       "The result is computed in a way which is accurate for x near zero.") | 
					
						
							| 
									
										
										
										
											2017-04-05 18:34:27 +01:00
										 |  |  |  | FUNC2(remainder, m_remainder, | 
					
						
							|  |  |  |  |       "remainder($module, x, y, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Difference between x and the closest integer multiple of y.\n\n" | 
					
						
							|  |  |  |  |       "Return x - n*y where n*y is the closest integer multiple of y.\n" | 
					
						
							|  |  |  |  |       "In the case where x is exactly halfway between two multiples of\n" | 
					
						
							|  |  |  |  |       "y, the nearest even value of n is used. The result is always exact.") | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(sin, sin, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "sin($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the sine of x (measured in radians).") | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(sinh, sinh, 1, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "sinh($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the hyperbolic sine of x.") | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(sqrt, sqrt, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "sqrt($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the square root of x.") | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(tan, tan, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "tan($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the tangent of x (measured in radians).") | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | FUNC1(tanh, tanh, 0, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |       "tanh($module, x, /)\n--\n\n" | 
					
						
							|  |  |  |  |       "Return the hyperbolic tangent of x.") | 
					
						
							| 
									
										
										
										
											1990-10-14 12:07:46 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												Merged revisions 63542-63544,63546,63553,63563-63564,63567,63569,63576 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines
  Issue #2819: Add math.sum, a function that sums a sequence of floats
  efficiently but with no intermediate loss of precision.  Based on
  Raymond Hettinger's ASPN recipe.  Thanks Jean Brouwers for the patch.
........
  r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines
  Add tests for math.sum (Issue #2819)
........
  r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines
  Better error reporting in test_math.py
........
  r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line
  Tweak the comments and formatting.
........
  r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines
  Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms
  that exhibit the problem described in issue #2937.
........
  r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines
  Issue #1390: Raise ValueError in toxml when an invalid comment would
  otherwise be produced.
........
  r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line
  Issue 2909: show how to name unpacked fields.
........
  r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line
  Fix typo
........
  r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines
  Mention that the leaking of variables from list comprehensions
  is fixed in 3.0.
........
  r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines
  Don't try to get the window size if it was never set before.
  Fixes the test failure on Solaris.
........
											
										 
											2008-05-26 17:36:47 +00:00
										 |  |  |  | /* Precision summation function as msum() by Raymond Hettinger in
 | 
					
						
							|  |  |  |  |    <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
 | 
					
						
							|  |  |  |  |    enhanced with the exact partials sum and roundoff from Mark | 
					
						
							|  |  |  |  |    Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
 | 
					
						
							|  |  |  |  |    See those links for more details, proofs and other references. | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-08 19:40:15 +00:00
										 |  |  |  |    Note 1: IEEE 754 floating-point semantics with a rounding mode of | 
					
						
							|  |  |  |  |    roundTiesToEven are assumed. | 
					
						
							| 
									
										
											  
											
												Merged revisions 63542-63544,63546,63553,63563-63564,63567,63569,63576 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines
  Issue #2819: Add math.sum, a function that sums a sequence of floats
  efficiently but with no intermediate loss of precision.  Based on
  Raymond Hettinger's ASPN recipe.  Thanks Jean Brouwers for the patch.
........
  r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines
  Add tests for math.sum (Issue #2819)
........
  r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines
  Better error reporting in test_math.py
........
  r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line
  Tweak the comments and formatting.
........
  r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines
  Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms
  that exhibit the problem described in issue #2937.
........
  r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines
  Issue #1390: Raise ValueError in toxml when an invalid comment would
  otherwise be produced.
........
  r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line
  Issue 2909: show how to name unpacked fields.
........
  r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line
  Fix typo
........
  r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines
  Mention that the leaking of variables from list comprehensions
  is fixed in 3.0.
........
  r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines
  Don't try to get the window size if it was never set before.
  Fixes the test failure on Solaris.
........
											
										 
											2008-05-26 17:36:47 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-08 19:40:15 +00:00
										 |  |  |  |    Note 2: No provision is made for intermediate overflow handling; | 
					
						
							|  |  |  |  |    therefore, fsum([1e+308, -1e+308, 1e+308]) returns 1e+308 while | 
					
						
							|  |  |  |  |    fsum([1e+308, 1e+308, -1e+308]) raises an OverflowError due to the | 
					
						
							| 
									
										
											  
											
												Merged revisions 63542-63544,63546,63553,63563-63564,63567,63569,63576 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines
  Issue #2819: Add math.sum, a function that sums a sequence of floats
  efficiently but with no intermediate loss of precision.  Based on
  Raymond Hettinger's ASPN recipe.  Thanks Jean Brouwers for the patch.
........
  r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines
  Add tests for math.sum (Issue #2819)
........
  r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines
  Better error reporting in test_math.py
........
  r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line
  Tweak the comments and formatting.
........
  r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines
  Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms
  that exhibit the problem described in issue #2937.
........
  r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines
  Issue #1390: Raise ValueError in toxml when an invalid comment would
  otherwise be produced.
........
  r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line
  Issue 2909: show how to name unpacked fields.
........
  r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line
  Fix typo
........
  r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines
  Mention that the leaking of variables from list comprehensions
  is fixed in 3.0.
........
  r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines
  Don't try to get the window size if it was never set before.
  Fixes the test failure on Solaris.
........
											
										 
											2008-05-26 17:36:47 +00:00
										 |  |  |  |    overflow of the first partial sum. | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-08 19:40:15 +00:00
										 |  |  |  |    Note 3: The algorithm has two potential sources of fragility. First, C | 
					
						
							|  |  |  |  |    permits arithmetic operations on `double`s to be performed in an | 
					
						
							|  |  |  |  |    intermediate format whose range and precision may be greater than those of | 
					
						
							|  |  |  |  |    `double` (see for example C99 §5.2.4.2.2, paragraph 8). This can happen for | 
					
						
							|  |  |  |  |    example on machines using the now largely historical x87 FPUs. In this case, | 
					
						
							|  |  |  |  |    `fsum` can produce incorrect results. If `FLT_EVAL_METHOD` is `0` or `1`, or | 
					
						
							|  |  |  |  |    `FLT_EVAL_METHOD` is `2` and `long double` is identical to `double`, then we | 
					
						
							|  |  |  |  |    should be safe from this source of errors. Second, an aggressively | 
					
						
							|  |  |  |  |    optimizing compiler can re-associate operations so that (for example) the | 
					
						
							|  |  |  |  |    statement `yr = hi - x;` is treated as `yr = (x + y) - x` and then | 
					
						
							|  |  |  |  |    re-associated as `yr = y + (x - x)`, giving `y = yr` and `lo = 0.0`. That | 
					
						
							|  |  |  |  |    re-association would be in violation of the C standard, and should not occur | 
					
						
							|  |  |  |  |    except possibly in the presence of unsafe optimizations (e.g., -ffast-math, | 
					
						
							|  |  |  |  |    -fassociative-math). Such optimizations should be avoided for this module. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    Note 4: The signature of math.fsum() differs from builtins.sum() | 
					
						
							| 
									
										
											  
											
												Merged revisions 63542-63544,63546,63553,63563-63564,63567,63569,63576 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines
  Issue #2819: Add math.sum, a function that sums a sequence of floats
  efficiently but with no intermediate loss of precision.  Based on
  Raymond Hettinger's ASPN recipe.  Thanks Jean Brouwers for the patch.
........
  r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines
  Add tests for math.sum (Issue #2819)
........
  r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines
  Better error reporting in test_math.py
........
  r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line
  Tweak the comments and formatting.
........
  r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines
  Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms
  that exhibit the problem described in issue #2937.
........
  r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines
  Issue #1390: Raise ValueError in toxml when an invalid comment would
  otherwise be produced.
........
  r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line
  Issue 2909: show how to name unpacked fields.
........
  r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line
  Fix typo
........
  r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines
  Mention that the leaking of variables from list comprehensions
  is fixed in 3.0.
........
  r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines
  Don't try to get the window size if it was never set before.
  Fixes the test failure on Solaris.
........
											
										 
											2008-05-26 17:36:47 +00:00
										 |  |  |  |    because the start argument doesn't make sense in the context of | 
					
						
							|  |  |  |  |    accurate summation.  Since the partials table is collapsed before | 
					
						
							|  |  |  |  |    returning a result, sum(seq2, start=sum(seq1)) may not equal the | 
					
						
							|  |  |  |  |    accurate result returned by sum(itertools.chain(seq1, seq2)). | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | #define NUM_PARTIALS  32  /* initial partials array size, on stack */
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /* Extend the partials array p[] by doubling its size. */ | 
					
						
							|  |  |  |  | static int                          /* non-zero on error */ | 
					
						
							| 
									
										
											  
											
												Merged revisions 65258,65292,65299,65308-65309,65315,65326 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r65258 | mark.dickinson | 2008-07-27 08:15:29 +0100 (Sun, 27 Jul 2008) | 4 lines
  Remove math.sum tests related to overflow, special values, and behaviour
  near the extremes of the floating-point range.  (The behaviour of math.sum
  should be regarded as undefined in these cases.)
........
  r65292 | mark.dickinson | 2008-07-29 19:45:38 +0100 (Tue, 29 Jul 2008) | 4 lines
  More modifications to tests for math.sum:  replace the Python
  version of msum by a version using a different algorithm, and
  use the new float.fromhex method to specify test results exactly.
........
  r65299 | mark.dickinson | 2008-07-30 13:01:41 +0100 (Wed, 30 Jul 2008) | 5 lines
  Fix special-value handling for math.sum.
  Also minor cleanups to the code: fix tabbing, remove
  trailing whitespace, and reformat to fit into 80
  columns.
........
  r65308 | mark.dickinson | 2008-07-30 17:20:10 +0100 (Wed, 30 Jul 2008) | 2 lines
  Rename math.sum to math.fsum
........
  r65309 | mark.dickinson | 2008-07-30 17:25:16 +0100 (Wed, 30 Jul 2008) | 3 lines
  Replace math.sum with math.fsum in a couple of comments
  that were missed by r65308
........
  r65315 | mark.dickinson | 2008-07-30 21:23:15 +0100 (Wed, 30 Jul 2008) | 2 lines
  Add note about problems with math.fsum on x86 hardware.
........
  r65326 | mark.dickinson | 2008-07-31 15:48:32 +0100 (Thu, 31 Jul 2008) | 2 lines
  Rename testSum to testFsum and move it to proper place in test_math.py
........
											
										 
											2008-08-01 08:16:13 +00:00
										 |  |  |  | _fsum_realloc(double **p_ptr, Py_ssize_t  n, | 
					
						
							| 
									
										
											  
											
												Merged revisions 63542-63544,63546,63553,63563-63564,63567,63569,63576 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines
  Issue #2819: Add math.sum, a function that sums a sequence of floats
  efficiently but with no intermediate loss of precision.  Based on
  Raymond Hettinger's ASPN recipe.  Thanks Jean Brouwers for the patch.
........
  r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines
  Add tests for math.sum (Issue #2819)
........
  r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines
  Better error reporting in test_math.py
........
  r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line
  Tweak the comments and formatting.
........
  r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines
  Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms
  that exhibit the problem described in issue #2937.
........
  r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines
  Issue #1390: Raise ValueError in toxml when an invalid comment would
  otherwise be produced.
........
  r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line
  Issue 2909: show how to name unpacked fields.
........
  r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line
  Fix typo
........
  r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines
  Mention that the leaking of variables from list comprehensions
  is fixed in 3.0.
........
  r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines
  Don't try to get the window size if it was never set before.
  Fixes the test failure on Solaris.
........
											
										 
											2008-05-26 17:36:47 +00:00
										 |  |  |  |              double  *ps,    Py_ssize_t *m_ptr) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     void *v = NULL; | 
					
						
							|  |  |  |  |     Py_ssize_t m = *m_ptr; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     m += m;  /* double */ | 
					
						
							| 
									
										
										
										
											2014-08-17 22:20:00 +02:00
										 |  |  |  |     if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         double *p = *p_ptr; | 
					
						
							|  |  |  |  |         if (p == ps) { | 
					
						
							|  |  |  |  |             v = PyMem_Malloc(sizeof(double) * m); | 
					
						
							|  |  |  |  |             if (v != NULL) | 
					
						
							|  |  |  |  |                 memcpy(v, ps, sizeof(double) * n); | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             v = PyMem_Realloc(p, sizeof(double) * m); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (v == NULL) {        /* size overflow or no memory */ | 
					
						
							|  |  |  |  |         PyErr_SetString(PyExc_MemoryError, "math.fsum partials"); | 
					
						
							|  |  |  |  |         return 1; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     *p_ptr = (double*) v; | 
					
						
							|  |  |  |  |     *m_ptr = m; | 
					
						
							|  |  |  |  |     return 0; | 
					
						
							| 
									
										
											  
											
												Merged revisions 63542-63544,63546,63553,63563-63564,63567,63569,63576 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines
  Issue #2819: Add math.sum, a function that sums a sequence of floats
  efficiently but with no intermediate loss of precision.  Based on
  Raymond Hettinger's ASPN recipe.  Thanks Jean Brouwers for the patch.
........
  r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines
  Add tests for math.sum (Issue #2819)
........
  r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines
  Better error reporting in test_math.py
........
  r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line
  Tweak the comments and formatting.
........
  r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines
  Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms
  that exhibit the problem described in issue #2937.
........
  r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines
  Issue #1390: Raise ValueError in toxml when an invalid comment would
  otherwise be produced.
........
  r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line
  Issue 2909: show how to name unpacked fields.
........
  r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line
  Fix typo
........
  r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines
  Mention that the leaking of variables from list comprehensions
  is fixed in 3.0.
........
  r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines
  Don't try to get the window size if it was never set before.
  Fixes the test failure on Solaris.
........
											
										 
											2008-05-26 17:36:47 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /* Full precision summation of a sequence of floats.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    def msum(iterable): | 
					
						
							|  |  |  |  |        partials = []  # sorted, non-overlapping partial sums | 
					
						
							|  |  |  |  |        for x in iterable: | 
					
						
							| 
									
										
										
										
											2010-06-25 20:22:24 +00:00
										 |  |  |  |            i = 0 | 
					
						
							|  |  |  |  |            for y in partials: | 
					
						
							|  |  |  |  |                if abs(x) < abs(y): | 
					
						
							|  |  |  |  |                    x, y = y, x | 
					
						
							|  |  |  |  |                hi = x + y | 
					
						
							|  |  |  |  |                lo = y - (hi - x) | 
					
						
							|  |  |  |  |                if lo: | 
					
						
							|  |  |  |  |                    partials[i] = lo | 
					
						
							|  |  |  |  |                    i += 1 | 
					
						
							|  |  |  |  |                x = hi | 
					
						
							|  |  |  |  |            partials[i:] = [x] | 
					
						
							| 
									
										
											  
											
												Merged revisions 63542-63544,63546,63553,63563-63564,63567,63569,63576 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines
  Issue #2819: Add math.sum, a function that sums a sequence of floats
  efficiently but with no intermediate loss of precision.  Based on
  Raymond Hettinger's ASPN recipe.  Thanks Jean Brouwers for the patch.
........
  r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines
  Add tests for math.sum (Issue #2819)
........
  r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines
  Better error reporting in test_math.py
........
  r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line
  Tweak the comments and formatting.
........
  r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines
  Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms
  that exhibit the problem described in issue #2937.
........
  r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines
  Issue #1390: Raise ValueError in toxml when an invalid comment would
  otherwise be produced.
........
  r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line
  Issue 2909: show how to name unpacked fields.
........
  r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line
  Fix typo
........
  r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines
  Mention that the leaking of variables from list comprehensions
  is fixed in 3.0.
........
  r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines
  Don't try to get the window size if it was never set before.
  Fixes the test failure on Solaris.
........
											
										 
											2008-05-26 17:36:47 +00:00
										 |  |  |  |        return sum_exact(partials) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo | 
					
						
							|  |  |  |  |    are exactly equal to x+y.  The inner loop applies hi/lo summation to each | 
					
						
							|  |  |  |  |    partial so that the list of partial sums remains exact. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    Sum_exact() adds the partial sums exactly and correctly rounds the final | 
					
						
							|  |  |  |  |    result (using the round-half-to-even rule).  The items in partials remain | 
					
						
							|  |  |  |  |    non-zero, non-special, non-overlapping and strictly increasing in | 
					
						
							|  |  |  |  |    magnitude, but possibly not all having the same sign. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    Depends on IEEE 754 arithmetic guarantees and half-even rounding. | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.fsum | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     seq: object | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return an accurate floating point sum of values in the iterable seq. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Assumes IEEE-754 floating point arithmetic. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_fsum(PyObject *module, PyObject *seq) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/ | 
					
						
							| 
									
										
											  
											
												Merged revisions 63542-63544,63546,63553,63563-63564,63567,63569,63576 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines
  Issue #2819: Add math.sum, a function that sums a sequence of floats
  efficiently but with no intermediate loss of precision.  Based on
  Raymond Hettinger's ASPN recipe.  Thanks Jean Brouwers for the patch.
........
  r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines
  Add tests for math.sum (Issue #2819)
........
  r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines
  Better error reporting in test_math.py
........
  r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line
  Tweak the comments and formatting.
........
  r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines
  Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms
  that exhibit the problem described in issue #2937.
........
  r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines
  Issue #1390: Raise ValueError in toxml when an invalid comment would
  otherwise be produced.
........
  r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line
  Issue 2909: show how to name unpacked fields.
........
  r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line
  Fix typo
........
  r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines
  Mention that the leaking of variables from list comprehensions
  is fixed in 3.0.
........
  r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines
  Don't try to get the window size if it was never set before.
  Fixes the test failure on Solaris.
........
											
										 
											2008-05-26 17:36:47 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     PyObject *item, *iter, *sum = NULL; | 
					
						
							|  |  |  |  |     Py_ssize_t i, j, n = 0, m = NUM_PARTIALS; | 
					
						
							|  |  |  |  |     double x, y, t, ps[NUM_PARTIALS], *p = ps; | 
					
						
							|  |  |  |  |     double xsave, special_sum = 0.0, inf_sum = 0.0; | 
					
						
							| 
									
										
										
										
											2023-01-09 18:51:24 +03:00
										 |  |  |  |     double hi, yr, lo = 0.0; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     iter = PyObject_GetIter(seq); | 
					
						
							|  |  |  |  |     if (iter == NULL) | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     for(;;) {           /* for x in iterable */ | 
					
						
							|  |  |  |  |         assert(0 <= n && n <= m); | 
					
						
							|  |  |  |  |         assert((m == NUM_PARTIALS && p == ps) || | 
					
						
							|  |  |  |  |                (m >  NUM_PARTIALS && p != NULL)); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         item = PyIter_Next(iter); | 
					
						
							|  |  |  |  |         if (item == NULL) { | 
					
						
							|  |  |  |  |             if (PyErr_Occurred()) | 
					
						
							|  |  |  |  |                 goto _fsum_error; | 
					
						
							|  |  |  |  |             break; | 
					
						
							|  |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2019-01-29 20:39:53 -08:00
										 |  |  |  |         ASSIGN_DOUBLE(x, item, error_with_item); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         Py_DECREF(item); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         xsave = x; | 
					
						
							|  |  |  |  |         for (i = j = 0; j < n; j++) {       /* for y in partials */ | 
					
						
							|  |  |  |  |             y = p[j]; | 
					
						
							|  |  |  |  |             if (fabs(x) < fabs(y)) { | 
					
						
							|  |  |  |  |                 t = x; x = y; y = t; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             hi = x + y; | 
					
						
							|  |  |  |  |             yr = hi - x; | 
					
						
							|  |  |  |  |             lo = y - yr; | 
					
						
							|  |  |  |  |             if (lo != 0.0) | 
					
						
							|  |  |  |  |                 p[i++] = lo; | 
					
						
							|  |  |  |  |             x = hi; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         n = i;                              /* ps[i:] = [x] */ | 
					
						
							|  |  |  |  |         if (x != 0.0) { | 
					
						
							|  |  |  |  |             if (! Py_IS_FINITE(x)) { | 
					
						
							|  |  |  |  |                 /* a nonfinite x could arise either as
 | 
					
						
							|  |  |  |  |                    a result of intermediate overflow, or | 
					
						
							|  |  |  |  |                    as a result of a nan or inf in the | 
					
						
							|  |  |  |  |                    summands */ | 
					
						
							|  |  |  |  |                 if (Py_IS_FINITE(xsave)) { | 
					
						
							|  |  |  |  |                     PyErr_SetString(PyExc_OverflowError, | 
					
						
							|  |  |  |  |                           "intermediate overflow in fsum"); | 
					
						
							|  |  |  |  |                     goto _fsum_error; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 if (Py_IS_INFINITY(xsave)) | 
					
						
							|  |  |  |  |                     inf_sum += xsave; | 
					
						
							|  |  |  |  |                 special_sum += xsave; | 
					
						
							|  |  |  |  |                 /* reset partials */ | 
					
						
							|  |  |  |  |                 n = 0; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             else if (n >= m && _fsum_realloc(&p, n, ps, &m)) | 
					
						
							|  |  |  |  |                 goto _fsum_error; | 
					
						
							|  |  |  |  |             else | 
					
						
							|  |  |  |  |                 p[n++] = x; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (special_sum != 0.0) { | 
					
						
							|  |  |  |  |         if (Py_IS_NAN(inf_sum)) | 
					
						
							|  |  |  |  |             PyErr_SetString(PyExc_ValueError, | 
					
						
							|  |  |  |  |                             "-inf + inf in fsum"); | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             sum = PyFloat_FromDouble(special_sum); | 
					
						
							|  |  |  |  |         goto _fsum_error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     hi = 0.0; | 
					
						
							|  |  |  |  |     if (n > 0) { | 
					
						
							|  |  |  |  |         hi = p[--n]; | 
					
						
							|  |  |  |  |         /* sum_exact(ps, hi) from the top, stop when the sum becomes
 | 
					
						
							|  |  |  |  |            inexact. */ | 
					
						
							|  |  |  |  |         while (n > 0) { | 
					
						
							|  |  |  |  |             x = hi; | 
					
						
							|  |  |  |  |             y = p[--n]; | 
					
						
							|  |  |  |  |             assert(fabs(y) < fabs(x)); | 
					
						
							|  |  |  |  |             hi = x + y; | 
					
						
							|  |  |  |  |             yr = hi - x; | 
					
						
							|  |  |  |  |             lo = y - yr; | 
					
						
							|  |  |  |  |             if (lo != 0.0) | 
					
						
							|  |  |  |  |                 break; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         /* Make half-even rounding work across multiple partials.
 | 
					
						
							|  |  |  |  |            Needed so that sum([1e-16, 1, 1e16]) will round-up the last | 
					
						
							|  |  |  |  |            digit to two instead of down to zero (the 1e-16 makes the 1 | 
					
						
							|  |  |  |  |            slightly closer to two).  With a potential 1 ULP rounding | 
					
						
							|  |  |  |  |            error fixed-up, math.fsum() can guarantee commutativity. */ | 
					
						
							|  |  |  |  |         if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) || | 
					
						
							|  |  |  |  |                       (lo > 0.0 && p[n-1] > 0.0))) { | 
					
						
							|  |  |  |  |             y = lo * 2.0; | 
					
						
							|  |  |  |  |             x = hi + y; | 
					
						
							|  |  |  |  |             yr = x - hi; | 
					
						
							|  |  |  |  |             if (y == yr) | 
					
						
							|  |  |  |  |                 hi = x; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     sum = PyFloat_FromDouble(hi); | 
					
						
							| 
									
										
											  
											
												Merged revisions 63542-63544,63546,63553,63563-63564,63567,63569,63576 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines
  Issue #2819: Add math.sum, a function that sums a sequence of floats
  efficiently but with no intermediate loss of precision.  Based on
  Raymond Hettinger's ASPN recipe.  Thanks Jean Brouwers for the patch.
........
  r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines
  Add tests for math.sum (Issue #2819)
........
  r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines
  Better error reporting in test_math.py
........
  r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line
  Tweak the comments and formatting.
........
  r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines
  Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms
  that exhibit the problem described in issue #2937.
........
  r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines
  Issue #1390: Raise ValueError in toxml when an invalid comment would
  otherwise be produced.
........
  r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line
  Issue 2909: show how to name unpacked fields.
........
  r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line
  Fix typo
........
  r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines
  Mention that the leaking of variables from list comprehensions
  is fixed in 3.0.
........
  r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines
  Don't try to get the window size if it was never set before.
  Fixes the test failure on Solaris.
........
											
										 
											2008-05-26 17:36:47 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-01-29 20:39:53 -08:00
										 |  |  |  |   _fsum_error: | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     Py_DECREF(iter); | 
					
						
							|  |  |  |  |     if (p != ps) | 
					
						
							|  |  |  |  |         PyMem_Free(p); | 
					
						
							|  |  |  |  |     return sum; | 
					
						
							| 
									
										
										
										
											2019-01-29 20:39:53 -08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |   error_with_item: | 
					
						
							|  |  |  |  |     Py_DECREF(item); | 
					
						
							|  |  |  |  |     goto _fsum_error; | 
					
						
							| 
									
										
											  
											
												Merged revisions 63542-63544,63546,63553,63563-63564,63567,63569,63576 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r63542 | mark.dickinson | 2008-05-22 20:35:30 -0500 (Thu, 22 May 2008) | 5 lines
  Issue #2819: Add math.sum, a function that sums a sequence of floats
  efficiently but with no intermediate loss of precision.  Based on
  Raymond Hettinger's ASPN recipe.  Thanks Jean Brouwers for the patch.
........
  r63543 | mark.dickinson | 2008-05-22 21:36:48 -0500 (Thu, 22 May 2008) | 2 lines
  Add tests for math.sum (Issue #2819)
........
  r63544 | mark.dickinson | 2008-05-22 22:30:01 -0500 (Thu, 22 May 2008) | 2 lines
  Better error reporting in test_math.py
........
  r63546 | raymond.hettinger | 2008-05-22 23:32:43 -0500 (Thu, 22 May 2008) | 1 line
  Tweak the comments and formatting.
........
  r63553 | mark.dickinson | 2008-05-23 07:07:36 -0500 (Fri, 23 May 2008) | 3 lines
  Skip math.sum tests on non IEEE 754 platforms, and on IEEE 754 platforms
  that exhibit the problem described in issue #2937.
........
  r63563 | martin.v.loewis | 2008-05-23 10:18:28 -0500 (Fri, 23 May 2008) | 3 lines
  Issue #1390: Raise ValueError in toxml when an invalid comment would
  otherwise be produced.
........
  r63564 | raymond.hettinger | 2008-05-23 12:21:44 -0500 (Fri, 23 May 2008) | 1 line
  Issue 2909: show how to name unpacked fields.
........
  r63567 | raymond.hettinger | 2008-05-23 12:34:34 -0500 (Fri, 23 May 2008) | 1 line
  Fix typo
........
  r63569 | martin.v.loewis | 2008-05-23 14:33:13 -0500 (Fri, 23 May 2008) | 3 lines
  Mention that the leaking of variables from list comprehensions
  is fixed in 3.0.
........
  r63576 | martin.v.loewis | 2008-05-24 04:36:45 -0500 (Sat, 24 May 2008) | 3 lines
  Don't try to get the window size if it was never set before.
  Fixes the test failure on Solaris.
........
											
										 
											2008-05-26 17:36:47 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | #undef NUM_PARTIALS
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  | static unsigned long | 
					
						
							|  |  |  |  | count_set_bits(unsigned long n) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     unsigned long count = 0; | 
					
						
							|  |  |  |  |     while (n != 0) { | 
					
						
							|  |  |  |  |         ++count; | 
					
						
							|  |  |  |  |         n &= n - 1; /* clear least significant bit */ | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return count; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  | /* Integer square root
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Given a nonnegative integer `n`, we want to compute the largest integer | 
					
						
							|  |  |  |  | `a` for which `a * a <= n`, or equivalently the integer part of the exact | 
					
						
							|  |  |  |  | square root of `n`. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | We use an adaptive-precision pure-integer version of Newton's iteration. Given | 
					
						
							|  |  |  |  | a positive integer `n`, the algorithm produces at each iteration an integer | 
					
						
							|  |  |  |  | approximation `a` to the square root of `n >> s` for some even integer `s`, | 
					
						
							|  |  |  |  | with `s` decreasing as the iterations progress. On the final iteration, `s` is | 
					
						
							|  |  |  |  | zero and we have an approximation to the square root of `n` itself. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | At every step, the approximation `a` is strictly within 1.0 of the true square | 
					
						
							|  |  |  |  | root, so we have | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (a - 1)**2 < (n >> s) < (a + 1)**2 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | After the final iteration, a check-and-correct step is needed to determine | 
					
						
							|  |  |  |  | whether `a` or `a - 1` gives the desired integer square root of `n`. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | The algorithm is remarkable in its simplicity. There's no need for a | 
					
						
							|  |  |  |  | per-iteration check-and-correct step, and termination is straightforward: the | 
					
						
							|  |  |  |  | number of iterations is known in advance (it's exactly `floor(log2(log2(n)))` | 
					
						
							|  |  |  |  | for `n > 1`). The only tricky part of the correctness proof is in establishing | 
					
						
							|  |  |  |  | that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one | 
					
						
							|  |  |  |  | iteration to the next. A sketch of the proof of this is given below. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | In addition to the proof sketch, a formal, computer-verified proof | 
					
						
							|  |  |  |  | of correctness (using Lean) of an equivalent recursive algorithm can be found | 
					
						
							|  |  |  |  | here: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Here's Python code equivalent to the C implementation below: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def isqrt(n): | 
					
						
							|  |  |  |  |         """ | 
					
						
							|  |  |  |  |         Return the integer part of the square root of the input. | 
					
						
							|  |  |  |  |         """ | 
					
						
							|  |  |  |  |         n = operator.index(n) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         if n < 0: | 
					
						
							|  |  |  |  |             raise ValueError("isqrt() argument must be nonnegative") | 
					
						
							|  |  |  |  |         if n == 0: | 
					
						
							|  |  |  |  |             return 0 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         c = (n.bit_length() - 1) // 2
 | 
					
						
							|  |  |  |  |         a = 1 | 
					
						
							|  |  |  |  |         d = 0 | 
					
						
							|  |  |  |  |         for s in reversed(range(c.bit_length())): | 
					
						
							| 
									
										
										
										
											2019-06-16 17:53:21 +01:00
										 |  |  |  |             # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2
 | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |             e = d | 
					
						
							|  |  |  |  |             d = c >> s | 
					
						
							|  |  |  |  |             a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         return a - (a*a > n) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Sketch of proof of correctness | 
					
						
							|  |  |  |  | ------------------------------ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | The delicate part of the correctness proof is showing that the loop invariant | 
					
						
							|  |  |  |  | is preserved from one iteration to the next. That is, just before the line | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | is executed in the above code, we know that | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (1)  (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | (since `e` is always the value of `d` from the previous iteration). We must | 
					
						
							|  |  |  |  | prove that after that line is executed, we have | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-07-06 07:39:32 +10:00
										 |  |  |  | To facilitate the proof, we make some changes of notation. Write `m` for | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  | `n >> 2*(c-d)`, and write `b` for the new value of `a`, so | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | or equivalently: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (2)  b = (a << d - e - 1) + (m >> d - e + 1) // a
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Then we can rewrite (1) as: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (3)  (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | and we must show that (b - 1)**2 < m < (b + 1)**2. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | From this point on, we switch to mathematical notation, so `/` means exact | 
					
						
							|  |  |  |  | division rather than integer division and `^` is used for exponentiation. We | 
					
						
							|  |  |  |  | use the `√` symbol for the exact square root. In (3), we can remove the | 
					
						
							|  |  |  |  | implicit floor operation to give: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (4)  (a - 1)^2 < m / 4^(d - e) < (a + 1)^2 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (5)  0 <= | 2^(d-e)a - √m | < 2^(d-e) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Squaring and dividing through by `2^(d-e+1) a` gives | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (6)  0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the | 
					
						
							|  |  |  |  | right-hand side of (6) with `1`, and now replacing the central | 
					
						
							|  |  |  |  | term `m / (2^(d-e+1) a)` with its floor in (6) gives | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Or equivalently, from (2): | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (7) -1 < b - √m < 1 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed | 
					
						
							|  |  |  |  | to prove. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | We're not quite done: we still have to prove the inequality `2^(d - e - 1) <= | 
					
						
							|  |  |  |  | a` that was used to get line (7) above. From the definition of `c`, we have | 
					
						
							|  |  |  |  | `4^c <= n`, which implies | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (8)  4^d <= m | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows | 
					
						
							|  |  |  |  | that `2d - 2e - 1 <= d` and hence that | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (9)  4^(2d - 2e - 1) <= m | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Dividing both sides by `4^(d - e)` gives | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (10)  4^(d - e - 1) <= m / 4^(d - e) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     (11)  4^(d - e - 1) < (a + 1)^2 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Now taking square roots of both sides and observing that both `2^(d-e-1)` and | 
					
						
							|  |  |  |  | `a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This | 
					
						
							|  |  |  |  | completes the proof sketch. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-15 09:58:04 +00:00
										 |  |  |  | /*
 | 
					
						
							|  |  |  |  |     The _approximate_isqrt_tab table provides approximate square roots for | 
					
						
							|  |  |  |  |     16-bit integers. For any n in the range 2**14 <= n < 2**16, the value | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         a = _approximate_isqrt_tab[(n >> 8) - 64] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     is an approximate square root of n, satisfying (a - 1)**2 < n < (a + 1)**2. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     The table was computed in Python using the expression: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         [min(round(sqrt(256*n + 128)), 255) for n in range(64, 256)] | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static const uint8_t _approximate_isqrt_tab[192] = { | 
					
						
							|  |  |  |  |     128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, | 
					
						
							|  |  |  |  |     140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150, | 
					
						
							|  |  |  |  |     151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160, | 
					
						
							|  |  |  |  |     160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169, | 
					
						
							|  |  |  |  |     170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, | 
					
						
							|  |  |  |  |     179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186, | 
					
						
							|  |  |  |  |     187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194, | 
					
						
							|  |  |  |  |     195, 196, 196, 197, 198, 198, 199, 200, 200, 201, 201, 202, | 
					
						
							|  |  |  |  |     203, 203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 210, | 
					
						
							|  |  |  |  |     210, 211, 211, 212, 213, 213, 214, 214, 215, 216, 216, 217, | 
					
						
							|  |  |  |  |     217, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224, | 
					
						
							|  |  |  |  |     224, 225, 225, 226, 227, 227, 228, 228, 229, 229, 230, 230, | 
					
						
							|  |  |  |  |     231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 237, 237, | 
					
						
							|  |  |  |  |     238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243, | 
					
						
							|  |  |  |  |     244, 244, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, | 
					
						
							|  |  |  |  |     250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, 255, | 
					
						
							|  |  |  |  | }; | 
					
						
							| 
									
										
										
										
											2019-05-19 17:51:56 +01:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /* Approximate square root of a large 64-bit integer.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |    Given `n` satisfying `2**62 <= n < 2**64`, return `a` | 
					
						
							|  |  |  |  |    satisfying `(a - 1)**2 < n < (a + 1)**2`. */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-15 09:58:04 +00:00
										 |  |  |  | static inline uint32_t | 
					
						
							| 
									
										
										
										
											2019-05-19 17:51:56 +01:00
										 |  |  |  | _approximate_isqrt(uint64_t n) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2022-01-15 09:58:04 +00:00
										 |  |  |  |     uint32_t u = _approximate_isqrt_tab[(n >> 56) - 64]; | 
					
						
							|  |  |  |  |     u = (u << 7) + (uint32_t)(n >> 41) / u; | 
					
						
							|  |  |  |  |     return (u << 15) + (uint32_t)((n >> 17) / u); | 
					
						
							| 
									
										
										
										
											2019-05-19 17:51:56 +01:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.isqrt | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     n: object | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return the integer part of the square root of the input. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_isqrt(PyObject *module, PyObject *n) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/ | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2019-05-19 17:51:56 +01:00
										 |  |  |  |     int a_too_large, c_bit_length; | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |     size_t c, d; | 
					
						
							| 
									
										
										
										
											2022-01-15 09:58:04 +00:00
										 |  |  |  |     uint64_t m; | 
					
						
							|  |  |  |  |     uint32_t u; | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |     PyObject *a = NULL, *b; | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-28 10:33:45 +03:00
										 |  |  |  |     n = _PyNumber_Index(n); | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |     if (n == NULL) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-22 14:49:51 +00:00
										 |  |  |  |     if (_PyLong_IsNegative((PyLongObject *)n)) { | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |         PyErr_SetString( | 
					
						
							|  |  |  |  |             PyExc_ValueError, | 
					
						
							|  |  |  |  |             "isqrt() argument must be nonnegative"); | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2023-03-22 14:49:51 +00:00
										 |  |  |  |     if (_PyLong_IsZero((PyLongObject *)n)) { | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |         Py_DECREF(n); | 
					
						
							|  |  |  |  |         return PyLong_FromLong(0); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-19 17:51:56 +01:00
										 |  |  |  |     /* c = (n.bit_length() - 1) // 2 */ | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |     c = _PyLong_NumBits(n); | 
					
						
							|  |  |  |  |     if (c == (size_t)(-1)) { | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     c = (c - 1U) / 2U; | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-19 17:51:56 +01:00
										 |  |  |  |     /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
 | 
					
						
							| 
									
										
										
										
											2022-01-15 09:58:04 +00:00
										 |  |  |  |        fast, almost branch-free algorithm. */ | 
					
						
							| 
									
										
										
										
											2019-05-19 17:51:56 +01:00
										 |  |  |  |     if (c <= 31U) { | 
					
						
							| 
									
										
										
										
											2022-01-15 09:58:04 +00:00
										 |  |  |  |         int shift = 31 - (int)c; | 
					
						
							| 
									
										
										
										
											2019-05-19 17:51:56 +01:00
										 |  |  |  |         m = (uint64_t)PyLong_AsUnsignedLongLong(n); | 
					
						
							|  |  |  |  |         Py_DECREF(n); | 
					
						
							|  |  |  |  |         if (m == (uint64_t)(-1) && PyErr_Occurred()) { | 
					
						
							|  |  |  |  |             return NULL; | 
					
						
							|  |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2022-01-15 09:58:04 +00:00
										 |  |  |  |         u = _approximate_isqrt(m << 2*shift) >> shift; | 
					
						
							|  |  |  |  |         u -= (uint64_t)u * u > m; | 
					
						
							|  |  |  |  |         return PyLong_FromUnsignedLong(u); | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-19 17:51:56 +01:00
										 |  |  |  |     /* Slow path: n >= 2**64. We perform the first five iterations in C integer
 | 
					
						
							|  |  |  |  |        arithmetic, then switch to using Python long integers. */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* From n >= 2**64 it follows that c.bit_length() >= 6. */ | 
					
						
							|  |  |  |  |     c_bit_length = 6; | 
					
						
							|  |  |  |  |     while ((c >> c_bit_length) > 0U) { | 
					
						
							|  |  |  |  |         ++c_bit_length; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* Initialise d and a. */ | 
					
						
							|  |  |  |  |     d = c >> (c_bit_length - 5); | 
					
						
							|  |  |  |  |     b = _PyLong_Rshift(n, 2U*c - 62U); | 
					
						
							|  |  |  |  |     if (b == NULL) { | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     m = (uint64_t)PyLong_AsUnsignedLongLong(b); | 
					
						
							|  |  |  |  |     Py_DECREF(b); | 
					
						
							|  |  |  |  |     if (m == (uint64_t)(-1) && PyErr_Occurred()) { | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     u = _approximate_isqrt(m) >> (31U - d); | 
					
						
							| 
									
										
										
										
											2022-01-15 09:58:04 +00:00
										 |  |  |  |     a = PyLong_FromUnsignedLong(u); | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |     if (a == NULL) { | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-05-19 17:51:56 +01:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     for (int s = c_bit_length - 6; s >= 0; --s) { | 
					
						
							| 
									
										
										
										
											2019-05-19 14:14:38 +03:00
										 |  |  |  |         PyObject *q; | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |         size_t e = d; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         d = c >> s; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         /* q = (n >> 2*c - e - d + 1) // a */ | 
					
						
							| 
									
										
										
										
											2019-05-19 14:14:38 +03:00
										 |  |  |  |         q = _PyLong_Rshift(n, 2U*c - d - e + 1U); | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |         if (q == NULL) { | 
					
						
							|  |  |  |  |             goto error; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         Py_SETREF(q, PyNumber_FloorDivide(q, a)); | 
					
						
							|  |  |  |  |         if (q == NULL) { | 
					
						
							|  |  |  |  |             goto error; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         /* a = (a << d - 1 - e) + q */ | 
					
						
							| 
									
										
										
										
											2019-05-19 14:14:38 +03:00
										 |  |  |  |         Py_SETREF(a, _PyLong_Lshift(a, d - 1U - e)); | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |         if (a == NULL) { | 
					
						
							|  |  |  |  |             Py_DECREF(q); | 
					
						
							|  |  |  |  |             goto error; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         Py_SETREF(a, PyNumber_Add(a, q)); | 
					
						
							|  |  |  |  |         Py_DECREF(q); | 
					
						
							|  |  |  |  |         if (a == NULL) { | 
					
						
							|  |  |  |  |             goto error; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* The correct result is either a or a - 1. Figure out which, and
 | 
					
						
							|  |  |  |  |        decrement a if necessary. */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* a_too_large = n < a * a */ | 
					
						
							|  |  |  |  |     b = PyNumber_Multiply(a, a); | 
					
						
							|  |  |  |  |     if (b == NULL) { | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     a_too_large = PyObject_RichCompareBool(n, b, Py_LT); | 
					
						
							|  |  |  |  |     Py_DECREF(b); | 
					
						
							|  |  |  |  |     if (a_too_large == -1) { | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (a_too_large) { | 
					
						
							| 
									
										
										
										
											2020-10-27 17:12:53 +01:00
										 |  |  |  |         Py_SETREF(a, PyNumber_Subtract(a, _PyLong_GetOne())); | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  |     Py_DECREF(n); | 
					
						
							|  |  |  |  |     return a; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |   error: | 
					
						
							|  |  |  |  |     Py_XDECREF(a); | 
					
						
							|  |  |  |  |     Py_DECREF(n); | 
					
						
							|  |  |  |  |     return NULL; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  | /* Divide-and-conquer factorial algorithm
 | 
					
						
							|  |  |  |  |  * | 
					
						
							| 
									
										
										
										
											2016-08-30 10:47:49 -07:00
										 |  |  |  |  * Based on the formula and pseudo-code provided at: | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |  * http://www.luschny.de/math/factorial/binarysplitfact.html
 | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  * Faster algorithms exist, but they're more complicated and depend on | 
					
						
							| 
									
										
										
										
											2010-07-08 15:03:02 +00:00
										 |  |  |  |  * a fast prime factorization algorithm. | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |  * | 
					
						
							|  |  |  |  |  * Notes on the algorithm | 
					
						
							|  |  |  |  |  * ---------------------- | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  * factorial(n) is written in the form 2**k * m, with m odd.  k and m are | 
					
						
							|  |  |  |  |  * computed separately, and then combined using a left shift. | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  * The function factorial_odd_part computes the odd part m (i.e., the greatest | 
					
						
							|  |  |  |  |  * odd divisor) of factorial(n), using the formula: | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  *   factorial_odd_part(n) = | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  *        product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  * Example: factorial_odd_part(20) = | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  *        (1) * | 
					
						
							|  |  |  |  |  *        (1) * | 
					
						
							|  |  |  |  |  *        (1 * 3 * 5) * | 
					
						
							| 
									
										
										
										
											2021-03-03 16:59:52 +03:00
										 |  |  |  |  *        (1 * 3 * 5 * 7 * 9) * | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |  *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  * Here i goes from large to small: the first term corresponds to i=4 (any | 
					
						
							|  |  |  |  |  * larger i gives an empty product), and the last term corresponds to i=0. | 
					
						
							|  |  |  |  |  * Each term can be computed from the last by multiplying by the extra odd | 
					
						
							|  |  |  |  |  * numbers required: e.g., to get from the penultimate term to the last one, | 
					
						
							|  |  |  |  |  * we multiply by (11 * 13 * 15 * 17 * 19). | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  * To see a hint of why this formula works, here are the same numbers as above | 
					
						
							|  |  |  |  |  * but with the even parts (i.e., the appropriate powers of 2) included.  For | 
					
						
							|  |  |  |  |  * each subterm in the product for i, we multiply that subterm by 2**i: | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  *   factorial(20) = | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  *        (16) * | 
					
						
							|  |  |  |  |  *        (8) * | 
					
						
							|  |  |  |  |  *        (4 * 12 * 20) * | 
					
						
							|  |  |  |  |  *        (2 * 6 * 10 * 14 * 18) * | 
					
						
							|  |  |  |  |  *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19) | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  * The factorial_partial_product function computes the product of all odd j in | 
					
						
							|  |  |  |  |  * range(start, stop) for given start and stop.  It's used to compute the | 
					
						
							|  |  |  |  |  * partial products like (11 * 13 * 15 * 17 * 19) in the example above.  It | 
					
						
							|  |  |  |  |  * operates recursively, repeatedly splitting the range into two roughly equal | 
					
						
							|  |  |  |  |  * pieces until the subranges are small enough to be computed using only C | 
					
						
							|  |  |  |  |  * integer arithmetic. | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  * The two-valuation k (i.e., the exponent of the largest power of 2 dividing | 
					
						
							|  |  |  |  |  * the factorial) is computed independently in the main math_factorial | 
					
						
							|  |  |  |  |  * function.  By standard results, its value is: | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  *    two_valuation = n//2 + n//4 + n//8 + ....
 | 
					
						
							|  |  |  |  |  * | 
					
						
							|  |  |  |  |  * It can be shown (e.g., by complete induction on n) that two_valuation is | 
					
						
							|  |  |  |  |  * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of | 
					
						
							|  |  |  |  |  * '1'-bits in the binary expansion of n. | 
					
						
							|  |  |  |  |  */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /* factorial_partial_product: Compute product(range(start, stop, 2)) using
 | 
					
						
							|  |  |  |  |  * divide and conquer.  Assumes start and stop are odd and stop > start. | 
					
						
							|  |  |  |  |  * max_bits must be >= bit_length(stop - 2). */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | factorial_partial_product(unsigned long start, unsigned long stop, | 
					
						
							|  |  |  |  |                           unsigned long max_bits) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     unsigned long midpoint, num_operands; | 
					
						
							|  |  |  |  |     PyObject *left = NULL, *right = NULL, *result = NULL; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* If the return value will fit an unsigned long, then we can
 | 
					
						
							|  |  |  |  |      * multiply in a tight, fast loop where each multiply is O(1). | 
					
						
							|  |  |  |  |      * Compute an upper bound on the number of bits required to store | 
					
						
							|  |  |  |  |      * the answer. | 
					
						
							|  |  |  |  |      * | 
					
						
							|  |  |  |  |      * Storing some integer z requires floor(lg(z))+1 bits, which is | 
					
						
							|  |  |  |  |      * conveniently the value returned by bit_length(z).  The | 
					
						
							|  |  |  |  |      * product x*y will require at most | 
					
						
							|  |  |  |  |      * bit_length(x) + bit_length(y) bits to store, based | 
					
						
							|  |  |  |  |      * on the idea that lg product = lg x + lg y. | 
					
						
							|  |  |  |  |      * | 
					
						
							|  |  |  |  |      * We know that stop - 2 is the largest number to be multiplied.  From | 
					
						
							|  |  |  |  |      * there, we have: bit_length(answer) <= num_operands * | 
					
						
							|  |  |  |  |      * bit_length(stop - 2) | 
					
						
							|  |  |  |  |      */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     num_operands = (stop - start) / 2; | 
					
						
							|  |  |  |  |     /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
 | 
					
						
							|  |  |  |  |      * unlikely case of an overflow in num_operands * max_bits. */ | 
					
						
							|  |  |  |  |     if (num_operands <= 8 * SIZEOF_LONG && | 
					
						
							|  |  |  |  |         num_operands * max_bits <= 8 * SIZEOF_LONG) { | 
					
						
							|  |  |  |  |         unsigned long j, total; | 
					
						
							|  |  |  |  |         for (total = start, j = start + 2; j < stop; j += 2) | 
					
						
							|  |  |  |  |             total *= j; | 
					
						
							|  |  |  |  |         return PyLong_FromUnsignedLong(total); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* find midpoint of range(start, stop), rounded up to next odd number. */ | 
					
						
							|  |  |  |  |     midpoint = (start + num_operands) | 1; | 
					
						
							|  |  |  |  |     left = factorial_partial_product(start, midpoint, | 
					
						
							| 
									
										
										
										
											2020-01-16 15:09:19 +01:00
										 |  |  |  |                                      _Py_bit_length(midpoint - 2)); | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |     if (left == NULL) | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     right = factorial_partial_product(midpoint, stop, max_bits); | 
					
						
							|  |  |  |  |     if (right == NULL) | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     result = PyNumber_Multiply(left, right); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |   error: | 
					
						
							|  |  |  |  |     Py_XDECREF(left); | 
					
						
							|  |  |  |  |     Py_XDECREF(right); | 
					
						
							|  |  |  |  |     return result; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /* factorial_odd_part:  compute the odd part of factorial(n). */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | factorial_odd_part(unsigned long n) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     long i; | 
					
						
							|  |  |  |  |     unsigned long v, lower, upper; | 
					
						
							|  |  |  |  |     PyObject *partial, *tmp, *inner, *outer; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     inner = PyLong_FromLong(1); | 
					
						
							|  |  |  |  |     if (inner == NULL) | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							| 
									
										
										
										
											2022-11-14 16:21:23 +01:00
										 |  |  |  |     outer = Py_NewRef(inner); | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     upper = 3; | 
					
						
							| 
									
										
										
										
											2020-01-16 15:09:19 +01:00
										 |  |  |  |     for (i = _Py_bit_length(n) - 2; i >= 0; i--) { | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |         v = n >> i; | 
					
						
							|  |  |  |  |         if (v <= 2) | 
					
						
							|  |  |  |  |             continue; | 
					
						
							|  |  |  |  |         lower = upper; | 
					
						
							|  |  |  |  |         /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */ | 
					
						
							|  |  |  |  |         upper = (v + 1) | 1; | 
					
						
							|  |  |  |  |         /* Here inner is the product of all odd integers j in the range (0,
 | 
					
						
							|  |  |  |  |            n/2**(i+1)].  The factorial_partial_product call below gives the | 
					
						
							|  |  |  |  |            product of all odd integers j in the range (n/2**(i+1), n/2**i]. */ | 
					
						
							| 
									
										
										
										
											2020-01-16 15:09:19 +01:00
										 |  |  |  |         partial = factorial_partial_product(lower, upper, _Py_bit_length(upper-2)); | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |         /* inner *= partial */ | 
					
						
							|  |  |  |  |         if (partial == NULL) | 
					
						
							|  |  |  |  |             goto error; | 
					
						
							|  |  |  |  |         tmp = PyNumber_Multiply(inner, partial); | 
					
						
							|  |  |  |  |         Py_DECREF(partial); | 
					
						
							|  |  |  |  |         if (tmp == NULL) | 
					
						
							|  |  |  |  |             goto error; | 
					
						
							| 
									
										
										
										
											2022-11-22 14:22:22 +01:00
										 |  |  |  |         Py_SETREF(inner, tmp); | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |         /* Now inner is the product of all odd integers j in the range (0,
 | 
					
						
							|  |  |  |  |            n/2**i], giving the inner product in the formula above. */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         /* outer *= inner; */ | 
					
						
							|  |  |  |  |         tmp = PyNumber_Multiply(outer, inner); | 
					
						
							|  |  |  |  |         if (tmp == NULL) | 
					
						
							|  |  |  |  |             goto error; | 
					
						
							| 
									
										
										
										
											2022-11-22 14:22:22 +01:00
										 |  |  |  |         Py_SETREF(outer, tmp); | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2012-10-25 10:46:28 +01:00
										 |  |  |  |     Py_DECREF(inner); | 
					
						
							|  |  |  |  |     return outer; | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |   error: | 
					
						
							|  |  |  |  |     Py_DECREF(outer); | 
					
						
							|  |  |  |  |     Py_DECREF(inner); | 
					
						
							| 
									
										
										
										
											2012-10-25 10:46:28 +01:00
										 |  |  |  |     return NULL; | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  | /* Lookup table for small factorial values */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static const unsigned long SmallFactorials[] = { | 
					
						
							|  |  |  |  |     1, 1, 2, 6, 24, 120, 720, 5040, 40320, | 
					
						
							|  |  |  |  |     362880, 3628800, 39916800, 479001600, | 
					
						
							|  |  |  |  | #if SIZEOF_LONG >= 8
 | 
					
						
							|  |  |  |  |     6227020800, 87178291200, 1307674368000, | 
					
						
							|  |  |  |  |     20922789888000, 355687428096000, 6402373705728000, | 
					
						
							|  |  |  |  |     121645100408832000, 2432902008176640000 | 
					
						
							|  |  |  |  | #endif
 | 
					
						
							|  |  |  |  | }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.factorial | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-04-06 14:35:05 -05:00
										 |  |  |  |     n as arg: object | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-04-06 14:35:05 -05:00
										 |  |  |  | Find n!. | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | Raise a ValueError if x is negative or non-integral. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												Merged revisions 64002-64003,64012,64036-64037,64047,64050-64052,64054-64055,64066,64071 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r64002 | travis.oliphant | 2008-06-07 00:33:21 +0200 (Sat, 07 Jun 2008) | 1 line
  Add long double check support to configure test.
........
  r64003 | travis.oliphant | 2008-06-07 00:39:47 +0200 (Sat, 07 Jun 2008) | 1 line
  Remove locking part of new buffer protocol.
........
  r64012 | facundo.batista | 2008-06-07 15:36:36 +0200 (Sat, 07 Jun 2008) | 4 lines
  Finished bug #2451.  Fixed the retrying part to make it
  more robust.
........
  r64036 | georg.brandl | 2008-06-08 10:54:40 +0200 (Sun, 08 Jun 2008) | 2 lines
  #3028: tokenize passes the physical line.
........
  r64037 | georg.brandl | 2008-06-08 10:59:38 +0200 (Sun, 08 Jun 2008) | 2 lines
  Argh, I read it wrong. Reverted 64036 and added a clarifying remark.
........
  r64047 | raymond.hettinger | 2008-06-09 03:28:30 +0200 (Mon, 09 Jun 2008) | 1 line
  Issue3065:  Fixed pickling of named tuples.  Added tests.
........
  r64050 | raymond.hettinger | 2008-06-09 08:54:45 +0200 (Mon, 09 Jun 2008) | 1 line
  Issue #2138: Add math.factorial().
........
  r64051 | raymond.hettinger | 2008-06-09 10:33:37 +0200 (Mon, 09 Jun 2008) | 1 line
  Let set.union() and set.update() accept multiple inputs.
........
  r64052 | raymond.hettinger | 2008-06-09 11:29:17 +0200 (Mon, 09 Jun 2008) | 1 line
  Address double-rounding scenarios by setting all variables to long doubles.
........
  r64054 | raymond.hettinger | 2008-06-09 13:24:47 +0200 (Mon, 09 Jun 2008) | 1 line
  Unhappy buildbots.  Revert 64052.  Long doubles have unexpected effects on some builds.
........
  r64055 | raymond.hettinger | 2008-06-09 15:07:27 +0200 (Mon, 09 Jun 2008) | 1 line
  Let set.intersection() and set.intersection_update() take multiple input arguments.
........
  r64066 | robert.schuppenies | 2008-06-10 12:10:31 +0200 (Tue, 10 Jun 2008) | 2 lines
  Issue 3048: Fixed sys.getsizeof for unicode objects.
........
  r64071 | thomas.heller | 2008-06-10 16:07:12 +0200 (Tue, 10 Jun 2008) | 3 lines
  NEWS entry for:
  Add an optional 'offset' parameter to byref, defaulting to zero.
........
											
										 
											2008-06-10 19:20:26 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_factorial(PyObject *module, PyObject *arg) | 
					
						
							| 
									
										
										
										
											2022-04-06 14:35:05 -05:00
										 |  |  |  | /*[clinic end generated code: output=6686f26fae00e9ca input=713fb771677e8c31]*/ | 
					
						
							| 
									
										
											  
											
												Merged revisions 64002-64003,64012,64036-64037,64047,64050-64052,64054-64055,64066,64071 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r64002 | travis.oliphant | 2008-06-07 00:33:21 +0200 (Sat, 07 Jun 2008) | 1 line
  Add long double check support to configure test.
........
  r64003 | travis.oliphant | 2008-06-07 00:39:47 +0200 (Sat, 07 Jun 2008) | 1 line
  Remove locking part of new buffer protocol.
........
  r64012 | facundo.batista | 2008-06-07 15:36:36 +0200 (Sat, 07 Jun 2008) | 4 lines
  Finished bug #2451.  Fixed the retrying part to make it
  more robust.
........
  r64036 | georg.brandl | 2008-06-08 10:54:40 +0200 (Sun, 08 Jun 2008) | 2 lines
  #3028: tokenize passes the physical line.
........
  r64037 | georg.brandl | 2008-06-08 10:59:38 +0200 (Sun, 08 Jun 2008) | 2 lines
  Argh, I read it wrong. Reverted 64036 and added a clarifying remark.
........
  r64047 | raymond.hettinger | 2008-06-09 03:28:30 +0200 (Mon, 09 Jun 2008) | 1 line
  Issue3065:  Fixed pickling of named tuples.  Added tests.
........
  r64050 | raymond.hettinger | 2008-06-09 08:54:45 +0200 (Mon, 09 Jun 2008) | 1 line
  Issue #2138: Add math.factorial().
........
  r64051 | raymond.hettinger | 2008-06-09 10:33:37 +0200 (Mon, 09 Jun 2008) | 1 line
  Let set.union() and set.update() accept multiple inputs.
........
  r64052 | raymond.hettinger | 2008-06-09 11:29:17 +0200 (Mon, 09 Jun 2008) | 1 line
  Address double-rounding scenarios by setting all variables to long doubles.
........
  r64054 | raymond.hettinger | 2008-06-09 13:24:47 +0200 (Mon, 09 Jun 2008) | 1 line
  Unhappy buildbots.  Revert 64052.  Long doubles have unexpected effects on some builds.
........
  r64055 | raymond.hettinger | 2008-06-09 15:07:27 +0200 (Mon, 09 Jun 2008) | 1 line
  Let set.intersection() and set.intersection_update() take multiple input arguments.
........
  r64066 | robert.schuppenies | 2008-06-10 12:10:31 +0200 (Tue, 10 Jun 2008) | 2 lines
  Issue 3048: Fixed sys.getsizeof for unicode objects.
........
  r64071 | thomas.heller | 2008-06-10 16:07:12 +0200 (Tue, 10 Jun 2008) | 3 lines
  NEWS entry for:
  Add an optional 'offset' parameter to byref, defaulting to zero.
........
											
										 
											2008-06-10 19:20:26 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2019-05-19 14:14:38 +03:00
										 |  |  |  |     long x, two_valuation; | 
					
						
							| 
									
										
										
										
											2014-04-10 09:29:39 -04:00
										 |  |  |  |     int overflow; | 
					
						
							| 
									
										
										
										
											2020-05-26 18:43:38 +03:00
										 |  |  |  |     PyObject *result, *odd_part; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-26 18:43:38 +03:00
										 |  |  |  |     x = PyLong_AsLongAndOverflow(arg, &overflow); | 
					
						
							| 
									
										
										
										
											2014-04-10 09:29:39 -04:00
										 |  |  |  |     if (x == -1 && PyErr_Occurred()) { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         return NULL; | 
					
						
							| 
									
										
										
										
											2014-04-10 09:29:39 -04:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  |     else if (overflow == 1) { | 
					
						
							|  |  |  |  |         PyErr_Format(PyExc_OverflowError, | 
					
						
							|  |  |  |  |                      "factorial() argument should not exceed %ld", | 
					
						
							|  |  |  |  |                      LONG_MAX); | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else if (overflow == -1 || x < 0) { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         PyErr_SetString(PyExc_ValueError, | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |                         "factorial() not defined for negative values"); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |     /* use lookup table if x is small */ | 
					
						
							| 
									
										
										
										
											2011-09-29 00:42:28 +02:00
										 |  |  |  |     if (x < (long)Py_ARRAY_LENGTH(SmallFactorials)) | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |         return PyLong_FromUnsignedLong(SmallFactorials[x]); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* else express in the form odd_part * 2**two_valuation, and compute as
 | 
					
						
							|  |  |  |  |        odd_part << two_valuation. */ | 
					
						
							|  |  |  |  |     odd_part = factorial_odd_part(x); | 
					
						
							|  |  |  |  |     if (odd_part == NULL) | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							| 
									
										
										
										
											2019-05-19 14:14:38 +03:00
										 |  |  |  |     two_valuation = x - count_set_bits(x); | 
					
						
							|  |  |  |  |     result = _PyLong_Lshift(odd_part, two_valuation); | 
					
						
							| 
									
										
										
										
											2010-05-15 17:02:38 +00:00
										 |  |  |  |     Py_DECREF(odd_part); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     return result; | 
					
						
							| 
									
										
											  
											
												Merged revisions 64002-64003,64012,64036-64037,64047,64050-64052,64054-64055,64066,64071 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r64002 | travis.oliphant | 2008-06-07 00:33:21 +0200 (Sat, 07 Jun 2008) | 1 line
  Add long double check support to configure test.
........
  r64003 | travis.oliphant | 2008-06-07 00:39:47 +0200 (Sat, 07 Jun 2008) | 1 line
  Remove locking part of new buffer protocol.
........
  r64012 | facundo.batista | 2008-06-07 15:36:36 +0200 (Sat, 07 Jun 2008) | 4 lines
  Finished bug #2451.  Fixed the retrying part to make it
  more robust.
........
  r64036 | georg.brandl | 2008-06-08 10:54:40 +0200 (Sun, 08 Jun 2008) | 2 lines
  #3028: tokenize passes the physical line.
........
  r64037 | georg.brandl | 2008-06-08 10:59:38 +0200 (Sun, 08 Jun 2008) | 2 lines
  Argh, I read it wrong. Reverted 64036 and added a clarifying remark.
........
  r64047 | raymond.hettinger | 2008-06-09 03:28:30 +0200 (Mon, 09 Jun 2008) | 1 line
  Issue3065:  Fixed pickling of named tuples.  Added tests.
........
  r64050 | raymond.hettinger | 2008-06-09 08:54:45 +0200 (Mon, 09 Jun 2008) | 1 line
  Issue #2138: Add math.factorial().
........
  r64051 | raymond.hettinger | 2008-06-09 10:33:37 +0200 (Mon, 09 Jun 2008) | 1 line
  Let set.union() and set.update() accept multiple inputs.
........
  r64052 | raymond.hettinger | 2008-06-09 11:29:17 +0200 (Mon, 09 Jun 2008) | 1 line
  Address double-rounding scenarios by setting all variables to long doubles.
........
  r64054 | raymond.hettinger | 2008-06-09 13:24:47 +0200 (Mon, 09 Jun 2008) | 1 line
  Unhappy buildbots.  Revert 64052.  Long doubles have unexpected effects on some builds.
........
  r64055 | raymond.hettinger | 2008-06-09 15:07:27 +0200 (Mon, 09 Jun 2008) | 1 line
  Let set.intersection() and set.intersection_update() take multiple input arguments.
........
  r64066 | robert.schuppenies | 2008-06-10 12:10:31 +0200 (Tue, 10 Jun 2008) | 2 lines
  Issue 3048: Fixed sys.getsizeof for unicode objects.
........
  r64071 | thomas.heller | 2008-06-10 16:07:12 +0200 (Tue, 10 Jun 2008) | 3 lines
  NEWS entry for:
  Add an optional 'offset' parameter to byref, defaulting to zero.
........
											
										 
											2008-06-10 19:20:26 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.trunc | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: object | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Truncates the Real x to the nearest Integral toward 0. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Uses the __trunc__ magic method. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
											  
											
												Merged revisions 64002-64003,64012,64036-64037,64047,64050-64052,64054-64055,64066,64071 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r64002 | travis.oliphant | 2008-06-07 00:33:21 +0200 (Sat, 07 Jun 2008) | 1 line
  Add long double check support to configure test.
........
  r64003 | travis.oliphant | 2008-06-07 00:39:47 +0200 (Sat, 07 Jun 2008) | 1 line
  Remove locking part of new buffer protocol.
........
  r64012 | facundo.batista | 2008-06-07 15:36:36 +0200 (Sat, 07 Jun 2008) | 4 lines
  Finished bug #2451.  Fixed the retrying part to make it
  more robust.
........
  r64036 | georg.brandl | 2008-06-08 10:54:40 +0200 (Sun, 08 Jun 2008) | 2 lines
  #3028: tokenize passes the physical line.
........
  r64037 | georg.brandl | 2008-06-08 10:59:38 +0200 (Sun, 08 Jun 2008) | 2 lines
  Argh, I read it wrong. Reverted 64036 and added a clarifying remark.
........
  r64047 | raymond.hettinger | 2008-06-09 03:28:30 +0200 (Mon, 09 Jun 2008) | 1 line
  Issue3065:  Fixed pickling of named tuples.  Added tests.
........
  r64050 | raymond.hettinger | 2008-06-09 08:54:45 +0200 (Mon, 09 Jun 2008) | 1 line
  Issue #2138: Add math.factorial().
........
  r64051 | raymond.hettinger | 2008-06-09 10:33:37 +0200 (Mon, 09 Jun 2008) | 1 line
  Let set.union() and set.update() accept multiple inputs.
........
  r64052 | raymond.hettinger | 2008-06-09 11:29:17 +0200 (Mon, 09 Jun 2008) | 1 line
  Address double-rounding scenarios by setting all variables to long doubles.
........
  r64054 | raymond.hettinger | 2008-06-09 13:24:47 +0200 (Mon, 09 Jun 2008) | 1 line
  Unhappy buildbots.  Revert 64052.  Long doubles have unexpected effects on some builds.
........
  r64055 | raymond.hettinger | 2008-06-09 15:07:27 +0200 (Mon, 09 Jun 2008) | 1 line
  Let set.intersection() and set.intersection_update() take multiple input arguments.
........
  r64066 | robert.schuppenies | 2008-06-10 12:10:31 +0200 (Tue, 10 Jun 2008) | 2 lines
  Issue 3048: Fixed sys.getsizeof for unicode objects.
........
  r64071 | thomas.heller | 2008-06-10 16:07:12 +0200 (Tue, 10 Jun 2008) | 3 lines
  NEWS entry for:
  Add an optional 'offset' parameter to byref, defaulting to zero.
........
											
										 
											2008-06-10 19:20:26 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-02-01 08:12:03 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_trunc(PyObject *module, PyObject *x) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/ | 
					
						
							| 
									
										
										
										
											2008-02-01 08:12:03 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-07-02 13:35:17 +00:00
										 |  |  |  |     PyObject *trunc, *result; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-11-16 18:00:57 +02:00
										 |  |  |  |     if (PyFloat_CheckExact(x)) { | 
					
						
							|  |  |  |  |         return PyFloat_Type.tp_as_number->nb_int(x); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-06-08 04:46:00 +09:00
										 |  |  |  |     if (!_PyType_IsReady(Py_TYPE(x))) { | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |         if (PyType_Ready(Py_TYPE(x)) < 0) | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |             return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-06-12 18:45:02 +09:00
										 |  |  |  |     math_module_state *state = get_math_module_state(module); | 
					
						
							|  |  |  |  |     trunc = _PyObject_LookupSpecial(x, state->str___trunc__); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     if (trunc == NULL) { | 
					
						
							| 
									
										
										
										
											2010-07-01 15:16:55 +00:00
										 |  |  |  |         if (!PyErr_Occurred()) | 
					
						
							|  |  |  |  |             PyErr_Format(PyExc_TypeError, | 
					
						
							|  |  |  |  |                          "type %.100s doesn't define __trunc__ method", | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |                          Py_TYPE(x)->tp_name); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-10-12 00:42:23 +02:00
										 |  |  |  |     result = _PyObject_CallNoArgs(trunc); | 
					
						
							| 
									
										
										
										
											2010-07-02 13:35:17 +00:00
										 |  |  |  |     Py_DECREF(trunc); | 
					
						
							|  |  |  |  |     return result; | 
					
						
							| 
									
										
										
										
											2008-02-01 08:12:03 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.frexp | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return the mantissa and exponent of x, as pair (m, e). | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | m is a float and e is an int, such that x = m * 2.**e. | 
					
						
							|  |  |  |  | If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
										
										
											2008-02-01 08:12:03 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-12-09 22:32:36 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_frexp_impl(PyObject *module, double x) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/ | 
					
						
							| 
									
										
										
										
											1991-10-24 14:57:21 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     int i; | 
					
						
							|  |  |  |  |     /* deal with special cases directly, to sidestep platform
 | 
					
						
							|  |  |  |  |        differences */ | 
					
						
							|  |  |  |  |     if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { | 
					
						
							|  |  |  |  |         i = 0; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else { | 
					
						
							|  |  |  |  |         x = frexp(x, &i); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return Py_BuildValue("(di)", x, i); | 
					
						
							| 
									
										
										
										
											1991-10-24 14:57:21 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.ldexp | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     i: object | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return x * (2**i). | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | This is essentially the inverse of frexp(). | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-12-09 22:32:36 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_ldexp_impl(PyObject *module, double x, PyObject *i) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/ | 
					
						
							| 
									
										
										
										
											1991-10-24 14:57:21 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     double r; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     long exp; | 
					
						
							|  |  |  |  |     int overflow; | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     if (PyLong_Check(i)) { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         /* on overflow, replace exponent with either LONG_MAX
 | 
					
						
							|  |  |  |  |            or LONG_MIN, depending on the sign. */ | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |         exp = PyLong_AsLongAndOverflow(i, &overflow); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         if (exp == -1 && PyErr_Occurred()) | 
					
						
							|  |  |  |  |             return NULL; | 
					
						
							|  |  |  |  |         if (overflow) | 
					
						
							|  |  |  |  |             exp = overflow < 0 ? LONG_MIN : LONG_MAX; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else { | 
					
						
							|  |  |  |  |         PyErr_SetString(PyExc_TypeError, | 
					
						
							| 
									
										
										
										
											2013-08-27 19:40:23 +03:00
										 |  |  |  |                         "Expected an int as second argument to ldexp."); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (x == 0. || !Py_IS_FINITE(x)) { | 
					
						
							|  |  |  |  |         /* NaNs, zeros and infinities are returned unchanged */ | 
					
						
							|  |  |  |  |         r = x; | 
					
						
							|  |  |  |  |         errno = 0; | 
					
						
							|  |  |  |  |     } else if (exp > INT_MAX) { | 
					
						
							|  |  |  |  |         /* overflow */ | 
					
						
							|  |  |  |  |         r = copysign(Py_HUGE_VAL, x); | 
					
						
							|  |  |  |  |         errno = ERANGE; | 
					
						
							|  |  |  |  |     } else if (exp < INT_MIN) { | 
					
						
							|  |  |  |  |         /* underflow to +-0 */ | 
					
						
							|  |  |  |  |         r = copysign(0., x); | 
					
						
							|  |  |  |  |         errno = 0; | 
					
						
							|  |  |  |  |     } else { | 
					
						
							|  |  |  |  |         errno = 0; | 
					
						
							|  |  |  |  |         r = ldexp(x, (int)exp); | 
					
						
							|  |  |  |  |         if (Py_IS_INFINITY(r)) | 
					
						
							|  |  |  |  |             errno = ERANGE; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (errno && is_error(r)) | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     return PyFloat_FromDouble(r); | 
					
						
							| 
									
										
										
										
											1991-10-24 14:57:21 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.modf | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return the fractional and integer parts of x. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Both results carry the sign of x and are floats. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-12-09 22:32:36 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_modf_impl(PyObject *module, double x) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/ | 
					
						
							| 
									
										
										
										
											1991-10-24 14:57:21 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     double y; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     /* some platforms don't do the right thing for NaNs and
 | 
					
						
							|  |  |  |  |        infinities, so we take care of special cases directly. */ | 
					
						
							| 
									
										
										
											
												gh-102837: improve test coverage for math module (#102523)
- input checks for math_1(L989), math_1a(L1023), math_2(L1064,L1071), hypot(L2682), log(L2307), ldexp(L2168), ceil(L1165), floor(L1236,L1239) and dist(L2587,L2588,L2628).
- drop inaccessible "if" branch (L3518) in perm_comb_small()
- improve fsum coverage for exceptional cases (L1433,L1438,L1451,L1497), ditto fmod(L2378)
- rewrite modf to fix inaccessible case(L2229), ditto for pow(L2988)
    
(all line numbers are wrt the main branch at 5e6661bce9)
											
										 
											2023-09-03 11:48:47 +03:00
										 |  |  |  |     if (Py_IS_INFINITY(x)) | 
					
						
							|  |  |  |  |         return Py_BuildValue("(dd)", copysign(0., x), x); | 
					
						
							|  |  |  |  |     else if (Py_IS_NAN(x)) | 
					
						
							|  |  |  |  |         return Py_BuildValue("(dd)", x, x); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     errno = 0; | 
					
						
							|  |  |  |  |     x = modf(x, &y); | 
					
						
							|  |  |  |  |     return Py_BuildValue("(dd)", x, y); | 
					
						
							| 
									
										
										
										
											1991-10-24 14:57:21 +00:00
										 |  |  |  | } | 
					
						
							| 
									
										
										
										
											1990-10-14 12:07:46 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-27 19:40:23 +03:00
										 |  |  |  | /* A decent logarithm is easy to compute even for huge ints, but libm can't
 | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  |    do that by itself -- loghelper can.  func is log or log10, and name is | 
					
						
							| 
									
										
										
										
											2013-08-27 19:40:23 +03:00
										 |  |  |  |    "log" or "log10".  Note that overflow of the result isn't possible: an int | 
					
						
							| 
									
										
										
										
											2010-01-02 15:33:56 +00:00
										 |  |  |  |    can contain no more than INT_MAX * SHIFT bits, so has value certainly less | 
					
						
							|  |  |  |  |    than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  |    small enough to fit in an IEEE single.  log and log10 are even smaller. | 
					
						
							| 
									
										
										
										
											2013-08-27 19:40:23 +03:00
										 |  |  |  |    However, intermediate overflow is possible for an int if the number of bits | 
					
						
							|  |  |  |  |    in that int is larger than PY_SSIZE_T_MAX. */ | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject* | 
					
						
							| 
									
										
										
										
											2022-06-03 09:40:05 +02:00
										 |  |  |  | loghelper(PyObject* arg, double (*func)(double)) | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2013-08-27 19:40:23 +03:00
										 |  |  |  |     /* If it is int, do it ourselves. */ | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     if (PyLong_Check(arg)) { | 
					
						
							| 
									
										
										
										
											2010-09-29 19:06:36 +00:00
										 |  |  |  |         double x, result; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         Py_ssize_t e; | 
					
						
							| 
									
										
										
										
											2010-09-29 19:06:36 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |         /* Negative or zero inputs give a ValueError. */ | 
					
						
							| 
									
										
										
										
											2023-03-22 14:49:51 +00:00
										 |  |  |  |         if (!_PyLong_IsPositive((PyLongObject *)arg)) { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |             PyErr_SetString(PyExc_ValueError, | 
					
						
							|  |  |  |  |                             "math domain error"); | 
					
						
							|  |  |  |  |             return NULL; | 
					
						
							|  |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2010-09-29 19:06:36 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |         x = PyLong_AsDouble(arg); | 
					
						
							|  |  |  |  |         if (x == -1.0 && PyErr_Occurred()) { | 
					
						
							|  |  |  |  |             if (!PyErr_ExceptionMatches(PyExc_OverflowError)) | 
					
						
							|  |  |  |  |                 return NULL; | 
					
						
							|  |  |  |  |             /* Here the conversion to double overflowed, but it's possible
 | 
					
						
							|  |  |  |  |                to compute the log anyway.  Clear the exception and continue. */ | 
					
						
							|  |  |  |  |             PyErr_Clear(); | 
					
						
							|  |  |  |  |             x = _PyLong_Frexp((PyLongObject *)arg, &e); | 
					
						
							|  |  |  |  |             if (x == -1.0 && PyErr_Occurred()) | 
					
						
							|  |  |  |  |                 return NULL; | 
					
						
							|  |  |  |  |             /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */ | 
					
						
							|  |  |  |  |             result = func(x) + func(2.0) * e; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             /* Successfully converted x to a double. */ | 
					
						
							|  |  |  |  |             result = func(x); | 
					
						
							|  |  |  |  |         return PyFloat_FromDouble(result); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* Else let libm handle it by itself. */ | 
					
						
							|  |  |  |  |     return math_1(arg, func, 0); | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-22 02:48:19 +03:00
										 |  |  |  | /* AC: cannot convert yet, see gh-102839 and gh-89381, waiting
 | 
					
						
							|  |  |  |  |    for support of multiple signatures */ | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2023-03-22 02:48:19 +03:00
										 |  |  |  | math_log(PyObject *module, PyObject * const *args, Py_ssize_t nargs) | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     PyObject *num, *den; | 
					
						
							|  |  |  |  |     PyObject *ans; | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-22 02:48:19 +03:00
										 |  |  |  |     if (!_PyArg_CheckPositional("log", nargs, 1, 2)) | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     num = loghelper(args[0], m_log); | 
					
						
							|  |  |  |  |     if (num == NULL || nargs == 1) | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |         return num; | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-22 02:48:19 +03:00
										 |  |  |  |     den = loghelper(args[1], m_log); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     if (den == NULL) { | 
					
						
							|  |  |  |  |         Py_DECREF(num); | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     ans = PyNumber_TrueDivide(num, den); | 
					
						
							|  |  |  |  |     Py_DECREF(num); | 
					
						
							|  |  |  |  |     Py_DECREF(den); | 
					
						
							|  |  |  |  |     return ans; | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-22 02:48:19 +03:00
										 |  |  |  | PyDoc_STRVAR(math_log_doc, | 
					
						
							|  |  |  |  | "log(x, [base=math.e])\n\
 | 
					
						
							|  |  |  |  | Return the logarithm of x to the given base.\n\n\ | 
					
						
							| 
									
										
										
										
											2023-04-28 03:31:31 -04:00
										 |  |  |  | If the base is not specified, returns the natural logarithm (base e) of x."); | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.log2 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: object | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return the base 2 logarithm of x. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-05-09 01:01:09 +02:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_log2(PyObject *module, PyObject *x) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/ | 
					
						
							| 
									
										
										
										
											2011-05-09 01:01:09 +02:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2022-06-03 09:40:05 +02:00
										 |  |  |  |     return loghelper(x, m_log2); | 
					
						
							| 
									
										
										
										
											2011-05-09 01:01:09 +02:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.log10 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: object | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return the base 10 logarithm of x. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
										
										
											2011-05-09 01:01:09 +02:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_log10(PyObject *module, PyObject *x) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/ | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2022-06-03 09:40:05 +02:00
										 |  |  |  |     return loghelper(x, m_log10); | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.fmod | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     y: double | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return fmod(x, y), according to platform C. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | x % y may differ. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_fmod_impl(PyObject *module, double x, double y) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/ | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     double r; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     /* fmod(x, +/-Inf) returns x for finite x. */ | 
					
						
							|  |  |  |  |     if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) | 
					
						
							|  |  |  |  |         return PyFloat_FromDouble(x); | 
					
						
							|  |  |  |  |     errno = 0; | 
					
						
							|  |  |  |  |     r = fmod(x, y); | 
					
						
							|  |  |  |  |     if (Py_IS_NAN(r)) { | 
					
						
							|  |  |  |  |         if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) | 
					
						
							|  |  |  |  |             errno = EDOM; | 
					
						
							|  |  |  |  |         else | 
					
						
							|  |  |  |  |             errno = 0; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (errno && is_error(r)) | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     else | 
					
						
							|  |  |  |  |         return PyFloat_FromDouble(r); | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-08-11 11:26:36 -07:00
										 |  |  |  | /*
 | 
					
						
							| 
									
										
										
										
											2020-08-24 17:40:08 -07:00
										 |  |  |  | Given a *vec* of values, compute the vector norm: | 
					
						
							| 
									
										
										
										
											2018-08-11 11:26:36 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-08-24 17:40:08 -07:00
										 |  |  |  |     sqrt(sum(x ** 2 for x in vec)) | 
					
						
							| 
									
										
										
										
											2020-08-15 19:38:19 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-08-24 17:40:08 -07:00
										 |  |  |  | The *max* variable should be equal to the largest fabs(x). | 
					
						
							|  |  |  |  | The *n* variable is the length of *vec*. | 
					
						
							|  |  |  |  | If n==0, then *max* should be 0.0. | 
					
						
							| 
									
										
										
										
											2018-08-31 11:22:13 -07:00
										 |  |  |  | If an infinity is present in the vec, *max* should be INF. | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  | The *found_nan* variable indicates whether some member of | 
					
						
							|  |  |  |  | the *vec* is a NaN. | 
					
						
							| 
									
										
										
										
											2018-08-28 22:47:24 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-08-24 17:40:08 -07:00
										 |  |  |  | To avoid overflow/underflow and to achieve high accuracy giving results | 
					
						
							|  |  |  |  | that are almost always correctly rounded, four techniques are used: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | * lossless scaling using a power-of-two scaling factor | 
					
						
							| 
									
										
										
										
											2020-09-06 15:10:07 -07:00
										 |  |  |  | * accurate squaring using Veltkamp-Dekker splitting [1] | 
					
						
							| 
									
										
										
										
											2023-03-15 15:15:23 -05:00
										 |  |  |  |   or an equivalent with an fma() call | 
					
						
							| 
									
										
										
										
											2020-09-06 15:10:07 -07:00
										 |  |  |  | * compensated summation using a variant of the Neumaier algorithm [2] | 
					
						
							|  |  |  |  | * differential correction of the square root [3] | 
					
						
							| 
									
										
										
										
											2020-08-24 17:40:08 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | The usual presentation of the Neumaier summation algorithm has an | 
					
						
							|  |  |  |  | expensive branch depending on which operand has the larger | 
					
						
							|  |  |  |  | magnitude.  We avoid this cost by arranging the calculation so that | 
					
						
							|  |  |  |  | fabs(csum) is always as large as fabs(x). | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | To establish the invariant, *csum* is initialized to 1.0 which is | 
					
						
							| 
									
										
										
										
											2020-09-13 23:33:41 -07:00
										 |  |  |  | always larger than x**2 after scaling or after division by *max*. | 
					
						
							| 
									
										
										
										
											2020-08-24 17:40:08 -07:00
										 |  |  |  | After the loop is finished, the initial 1.0 is subtracted out for a | 
					
						
							|  |  |  |  | net zero effect on the final sum.  Since *csum* will be greater than | 
					
						
							|  |  |  |  | 1.0, the subtraction of 1.0 will not cause fractional digits to be | 
					
						
							|  |  |  |  | dropped from *csum*. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | To get the full benefit from compensated summation, the largest | 
					
						
							|  |  |  |  | addend should be in the range: 0.5 <= |x| <= 1.0.  Accordingly, | 
					
						
							|  |  |  |  | scaling or division by *max* should not be skipped even if not | 
					
						
							|  |  |  |  | otherwise needed to prevent overflow or loss of precision. | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-08-26 13:09:40 -07:00
										 |  |  |  | The assertion that hi*hi <= 1.0 is a bit subtle.  Each vector element | 
					
						
							| 
									
										
										
										
											2020-08-24 17:40:08 -07:00
										 |  |  |  | gets scaled to a magnitude below 1.0.  The Veltkamp-Dekker splitting | 
					
						
							|  |  |  |  | algorithm gives a *hi* value that is correctly rounded to half | 
					
						
							|  |  |  |  | precision.  When a value at or below 1.0 is correctly rounded, it | 
					
						
							|  |  |  |  | never goes above 1.0.  And when values at or below 1.0 are squared, | 
					
						
							|  |  |  |  | they remain at or below 1.0, thus preserving the summation invariant. | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-08-29 09:11:04 -07:00
										 |  |  |  | Another interesting assertion is that csum+lo*lo == csum. In the loop, | 
					
						
							|  |  |  |  | each scaled vector element has a magnitude less than 1.0.  After the | 
					
						
							|  |  |  |  | Veltkamp split, *lo* has a maximum value of 2**-27.  So the maximum | 
					
						
							|  |  |  |  | value of *lo* squared is 2**-54.  The value of ulp(1.0)/2.0 is 2**-53. | 
					
						
							|  |  |  |  | Given that csum >= 1.0, we have: | 
					
						
							|  |  |  |  |     lo**2 <= 2**-54 < 2**-53 == 1/2*ulp(1.0) <= ulp(csum)/2 | 
					
						
							|  |  |  |  | Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum. | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-08-30 10:00:11 -07:00
										 |  |  |  | To minimize loss of information during the accumulation of fractional | 
					
						
							| 
									
										
										
										
											2020-09-06 15:10:07 -07:00
										 |  |  |  | values, each term has a separate accumulator.  This also breaks up | 
					
						
							|  |  |  |  | sequential dependencies in the inner loop so the CPU can maximize | 
					
						
							| 
									
										
										
										
											2023-03-18 12:21:48 -05:00
										 |  |  |  | floating point throughput. [4]  On an Apple M1 Max, hypot(*vec) | 
					
						
							|  |  |  |  | takes only 3.33 µsec when len(vec) == 1000. | 
					
						
							| 
									
										
										
										
											2020-08-30 10:00:11 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-08-24 17:40:08 -07:00
										 |  |  |  | The square root differential correction is needed because a | 
					
						
							|  |  |  |  | correctly rounded square root of a correctly rounded sum of | 
					
						
							|  |  |  |  | squares can still be off by as much as one ulp. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | The differential correction starts with a value *x* that is | 
					
						
							|  |  |  |  | the difference between the square of *h*, the possibly inaccurately | 
					
						
							|  |  |  |  | rounded square root, and the accurately computed sum of squares. | 
					
						
							|  |  |  |  | The correction is the first order term of the Maclaurin series | 
					
						
							| 
									
										
										
										
											2020-09-13 23:33:41 -07:00
										 |  |  |  | expansion of sqrt(h**2 + x) == h + x/(2*h) + O(x**2). [5] | 
					
						
							| 
									
										
										
										
											2020-08-24 17:40:08 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | Essentially, this differential correction is equivalent to one | 
					
						
							| 
									
										
										
										
											2020-08-26 13:09:40 -07:00
										 |  |  |  | refinement step in Newton's divide-and-average square root | 
					
						
							| 
									
										
										
										
											2020-08-24 17:40:08 -07:00
										 |  |  |  | algorithm, effectively doubling the number of accurate bits. | 
					
						
							|  |  |  |  | This technique is used in Dekker's SQRT2 algorithm and again in | 
					
						
							|  |  |  |  | Borges' ALGORITHM 4 and 5. | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-15 15:15:23 -05:00
										 |  |  |  | The hypot() function is faithfully rounded (less than 1 ulp error) | 
					
						
							|  |  |  |  | and usually correctly rounded (within 1/2 ulp).  The squaring | 
					
						
							|  |  |  |  | step is exact.  The Neumaier summation computes as if in doubled | 
					
						
							|  |  |  |  | precision (106 bits) and has the advantage that its input squares | 
					
						
							|  |  |  |  | are non-negative so that the condition number of the sum is one. | 
					
						
							|  |  |  |  | The square root with a differential correction is likewise computed | 
					
						
							| 
									
										
										
										
											2023-03-18 12:21:48 -05:00
										 |  |  |  | as if in doubled precision. | 
					
						
							| 
									
										
										
										
											2023-03-15 15:15:23 -05:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | For n <= 1000, prior to the final addition that rounds the overall | 
					
						
							|  |  |  |  | result, the internal accuracy of "h" together with its correction of | 
					
						
							|  |  |  |  | "x / (2.0 * h)" is at least 100 bits. [6] Also, hypot() was tested | 
					
						
							|  |  |  |  | against a Decimal implementation with prec=300.  After 100 million | 
					
						
							|  |  |  |  | trials, no incorrectly rounded examples were found.  In addition, | 
					
						
							|  |  |  |  | perfect commutativity (all permutations are exactly equal) was | 
					
						
							|  |  |  |  | verified for 1 billion random inputs with n=5. [7] | 
					
						
							| 
									
										
										
										
											2020-09-06 15:10:07 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-08-24 17:40:08 -07:00
										 |  |  |  | References: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 1. Veltkamp-Dekker splitting: http://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
 | 
					
						
							|  |  |  |  | 2. Compensated summation:  http://www.ti3.tu-harburg.de/paper/rump/Ru08b.pdf
 | 
					
						
							| 
									
										
										
										
											2020-08-30 10:00:11 -07:00
										 |  |  |  | 3. Square root differential correction:  https://arxiv.org/pdf/1904.09481.pdf
 | 
					
						
							| 
									
										
										
										
											2020-09-13 23:33:41 -07:00
										 |  |  |  | 4. Data dependency graph:  https://bugs.python.org/file49439/hypot.png
 | 
					
						
							|  |  |  |  | 5. https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
 | 
					
						
							| 
									
										
										
										
											2020-10-01 19:30:54 -07:00
										 |  |  |  | 6. Analysis of internal accuracy:  https://bugs.python.org/file49484/best_frac.py
 | 
					
						
							| 
									
										
										
										
											2020-09-13 23:33:41 -07:00
										 |  |  |  | 7. Commutativity test:  https://bugs.python.org/file49448/test_hypot_commutativity.py
 | 
					
						
							| 
									
										
										
										
											2020-08-15 19:38:19 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-08-11 11:26:36 -07:00
										 |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static inline double | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  | vector_norm(Py_ssize_t n, double *vec, double max, int found_nan) | 
					
						
							| 
									
										
										
										
											2018-08-11 11:26:36 -07:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2023-03-17 14:06:52 -05:00
										 |  |  |  |     double x, h, scale, csum = 1.0, frac1 = 0.0, frac2 = 0.0; | 
					
						
							| 
									
										
										
										
											2023-03-15 15:15:23 -05:00
										 |  |  |  |     DoubleLength pr, sm; | 
					
						
							| 
									
										
										
										
											2020-08-15 19:38:19 -07:00
										 |  |  |  |     int max_e; | 
					
						
							| 
									
										
										
										
											2018-08-11 11:26:36 -07:00
										 |  |  |  |     Py_ssize_t i; | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  |     if (Py_IS_INFINITY(max)) { | 
					
						
							|  |  |  |  |         return max; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (found_nan) { | 
					
						
							|  |  |  |  |         return Py_NAN; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2018-09-02 13:34:21 -07:00
										 |  |  |  |     if (max == 0.0 || n <= 1) { | 
					
						
							| 
									
										
										
										
											2018-08-31 11:22:13 -07:00
										 |  |  |  |         return max; | 
					
						
							| 
									
										
										
										
											2018-08-11 11:26:36 -07:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2020-08-15 19:38:19 -07:00
										 |  |  |  |     frexp(max, &max_e); | 
					
						
							| 
									
										
										
										
											2023-03-17 14:06:52 -05:00
										 |  |  |  |     if (max_e < -1023) { | 
					
						
							| 
									
										
										
										
											2023-03-18 12:21:48 -05:00
										 |  |  |  |         /* When max_e < -1023, ldexp(1.0, -max_e) would overflow. */ | 
					
						
							| 
									
										
										
										
											2020-08-15 19:38:19 -07:00
										 |  |  |  |         for (i=0 ; i < n ; i++) { | 
					
						
							| 
									
										
										
										
											2023-03-18 12:21:48 -05:00
										 |  |  |  |             vec[i] /= DBL_MIN;          // convert subnormals to normals
 | 
					
						
							| 
									
										
										
										
											2023-03-17 14:06:52 -05:00
										 |  |  |  |         } | 
					
						
							|  |  |  |  |         return DBL_MIN * vector_norm(n, vec, max / DBL_MIN, found_nan); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     scale = ldexp(1.0, -max_e); | 
					
						
							|  |  |  |  |     assert(max * scale >= 0.5); | 
					
						
							|  |  |  |  |     assert(max * scale < 1.0); | 
					
						
							|  |  |  |  |     for (i=0 ; i < n ; i++) { | 
					
						
							|  |  |  |  |         x = vec[i]; | 
					
						
							|  |  |  |  |         assert(Py_IS_FINITE(x) && fabs(x) <= max); | 
					
						
							| 
									
										
										
										
											2023-03-18 12:21:48 -05:00
										 |  |  |  |         x *= scale;                     // lossless scaling
 | 
					
						
							| 
									
										
										
										
											2023-03-17 14:06:52 -05:00
										 |  |  |  |         assert(fabs(x) < 1.0); | 
					
						
							| 
									
										
										
										
											2023-03-18 12:21:48 -05:00
										 |  |  |  |         pr = dl_mul(x, x);              // lossless squaring
 | 
					
						
							| 
									
										
										
										
											2023-03-17 14:06:52 -05:00
										 |  |  |  |         assert(pr.hi <= 1.0); | 
					
						
							| 
									
										
										
										
											2023-03-18 12:21:48 -05:00
										 |  |  |  |         sm = dl_fast_sum(csum, pr.hi);  // lossless addition
 | 
					
						
							| 
									
										
										
										
											2023-03-15 15:15:23 -05:00
										 |  |  |  |         csum = sm.hi; | 
					
						
							| 
									
										
										
										
											2023-03-18 12:21:48 -05:00
										 |  |  |  |         frac1 += pr.lo;                 // lossy addition
 | 
					
						
							|  |  |  |  |         frac2 += sm.lo;                 // lossy addition
 | 
					
						
							| 
									
										
										
										
											2020-08-15 19:38:19 -07:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2023-03-17 14:06:52 -05:00
										 |  |  |  |     h = sqrt(csum - 1.0 + (frac1 + frac2)); | 
					
						
							|  |  |  |  |     pr = dl_mul(-h, h); | 
					
						
							|  |  |  |  |     sm = dl_fast_sum(csum, pr.hi); | 
					
						
							|  |  |  |  |     csum = sm.hi; | 
					
						
							|  |  |  |  |     frac1 += pr.lo; | 
					
						
							|  |  |  |  |     frac2 += sm.lo; | 
					
						
							|  |  |  |  |     x = csum - 1.0 + (frac1 + frac2); | 
					
						
							| 
									
										
										
										
											2023-03-18 12:21:48 -05:00
										 |  |  |  |     h +=  x / (2.0 * h);                 // differential correction
 | 
					
						
							|  |  |  |  |     return h / scale; | 
					
						
							| 
									
										
										
										
											2018-08-11 11:26:36 -07:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  | #define NUM_STACK_ELEMS 16
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.dist | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-07-27 14:04:29 -07:00
										 |  |  |  |     p: object | 
					
						
							|  |  |  |  |     q: object | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return the Euclidean distance between two points p and q. | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-07-27 14:04:29 -07:00
										 |  |  |  | The points should be specified as sequences (or iterables) of | 
					
						
							|  |  |  |  | coordinates.  Both inputs must have the same dimension. | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | Roughly equivalent to: | 
					
						
							|  |  |  |  |     sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q))) | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_dist_impl(PyObject *module, PyObject *p, PyObject *q) | 
					
						
							| 
									
										
										
										
											2019-07-27 14:04:29 -07:00
										 |  |  |  | /*[clinic end generated code: output=56bd9538d06bbcfe input=74e85e1b6092e68e]*/ | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  | { | 
					
						
							|  |  |  |  |     PyObject *item; | 
					
						
							|  |  |  |  |     double max = 0.0; | 
					
						
							|  |  |  |  |     double x, px, qx, result; | 
					
						
							|  |  |  |  |     Py_ssize_t i, m, n; | 
					
						
							| 
									
										
										
										
											2019-07-27 14:04:29 -07:00
										 |  |  |  |     int found_nan = 0, p_allocated = 0, q_allocated = 0; | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  |     double diffs_on_stack[NUM_STACK_ELEMS]; | 
					
						
							|  |  |  |  |     double *diffs = diffs_on_stack; | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-07-27 14:04:29 -07:00
										 |  |  |  |     if (!PyTuple_Check(p)) { | 
					
						
							|  |  |  |  |         p = PySequence_Tuple(p); | 
					
						
							|  |  |  |  |         if (p == NULL) { | 
					
						
							|  |  |  |  |             return NULL; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         p_allocated = 1; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (!PyTuple_Check(q)) { | 
					
						
							|  |  |  |  |         q = PySequence_Tuple(q); | 
					
						
							|  |  |  |  |         if (q == NULL) { | 
					
						
							|  |  |  |  |             if (p_allocated) { | 
					
						
							|  |  |  |  |                 Py_DECREF(p); | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             return NULL; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         q_allocated = 1; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  |     m = PyTuple_GET_SIZE(p); | 
					
						
							|  |  |  |  |     n = PyTuple_GET_SIZE(q); | 
					
						
							|  |  |  |  |     if (m != n) { | 
					
						
							|  |  |  |  |         PyErr_SetString(PyExc_ValueError, | 
					
						
							|  |  |  |  |                         "both points must have the same number of dimensions"); | 
					
						
							| 
									
										
										
										
											2022-11-01 07:48:32 +05:30
										 |  |  |  |         goto error_exit; | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  |     if (n > NUM_STACK_ELEMS) { | 
					
						
							|  |  |  |  |         diffs = (double *) PyObject_Malloc(n * sizeof(double)); | 
					
						
							|  |  |  |  |         if (diffs == NULL) { | 
					
						
							| 
									
										
										
										
											2022-11-01 07:48:32 +05:30
										 |  |  |  |             PyErr_NoMemory(); | 
					
						
							|  |  |  |  |             goto error_exit; | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  |     for (i=0 ; i<n ; i++) { | 
					
						
							|  |  |  |  |         item = PyTuple_GET_ITEM(p, i); | 
					
						
							| 
									
										
										
										
											2019-01-29 20:39:53 -08:00
										 |  |  |  |         ASSIGN_DOUBLE(px, item, error_exit); | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  |         item = PyTuple_GET_ITEM(q, i); | 
					
						
							| 
									
										
										
										
											2019-01-29 20:39:53 -08:00
										 |  |  |  |         ASSIGN_DOUBLE(qx, item, error_exit); | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  |         x = fabs(px - qx); | 
					
						
							|  |  |  |  |         diffs[i] = x; | 
					
						
							|  |  |  |  |         found_nan |= Py_IS_NAN(x); | 
					
						
							|  |  |  |  |         if (x > max) { | 
					
						
							|  |  |  |  |             max = x; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  |     result = vector_norm(n, diffs, max, found_nan); | 
					
						
							|  |  |  |  |     if (diffs != diffs_on_stack) { | 
					
						
							|  |  |  |  |         PyObject_Free(diffs); | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-07-27 14:04:29 -07:00
										 |  |  |  |     if (p_allocated) { | 
					
						
							|  |  |  |  |         Py_DECREF(p); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (q_allocated) { | 
					
						
							|  |  |  |  |         Py_DECREF(q); | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  |     return PyFloat_FromDouble(result); | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |   error_exit: | 
					
						
							|  |  |  |  |     if (diffs != diffs_on_stack) { | 
					
						
							|  |  |  |  |         PyObject_Free(diffs); | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-07-27 14:04:29 -07:00
										 |  |  |  |     if (p_allocated) { | 
					
						
							|  |  |  |  |         Py_DECREF(p); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (q_allocated) { | 
					
						
							|  |  |  |  |         Py_DECREF(q); | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  |     return NULL; | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-07-28 07:48:04 -07:00
										 |  |  |  | /* AC: cannot convert yet, waiting for *args support */ | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2019-01-12 08:26:34 +02:00
										 |  |  |  | math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs) | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2019-01-12 08:26:34 +02:00
										 |  |  |  |     Py_ssize_t i; | 
					
						
							| 
									
										
										
										
											2018-07-28 07:48:04 -07:00
										 |  |  |  |     PyObject *item; | 
					
						
							|  |  |  |  |     double max = 0.0; | 
					
						
							|  |  |  |  |     double x, result; | 
					
						
							|  |  |  |  |     int found_nan = 0; | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  |     double coord_on_stack[NUM_STACK_ELEMS]; | 
					
						
							|  |  |  |  |     double *coordinates = coord_on_stack; | 
					
						
							| 
									
										
										
										
											2018-07-28 07:48:04 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-01-12 08:26:34 +02:00
										 |  |  |  |     if (nargs > NUM_STACK_ELEMS) { | 
					
						
							|  |  |  |  |         coordinates = (double *) PyObject_Malloc(nargs * sizeof(double)); | 
					
						
							| 
									
										
										
										
											2018-12-07 03:11:30 -07:00
										 |  |  |  |         if (coordinates == NULL) { | 
					
						
							|  |  |  |  |             return PyErr_NoMemory(); | 
					
						
							|  |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-01-12 08:26:34 +02:00
										 |  |  |  |     for (i = 0; i < nargs; i++) { | 
					
						
							|  |  |  |  |         item = args[i]; | 
					
						
							| 
									
										
										
										
											2019-01-29 20:39:53 -08:00
										 |  |  |  |         ASSIGN_DOUBLE(x, item, error_exit); | 
					
						
							| 
									
										
										
										
											2018-07-28 07:48:04 -07:00
										 |  |  |  |         x = fabs(x); | 
					
						
							|  |  |  |  |         coordinates[i] = x; | 
					
						
							|  |  |  |  |         found_nan |= Py_IS_NAN(x); | 
					
						
							|  |  |  |  |         if (x > max) { | 
					
						
							|  |  |  |  |             max = x; | 
					
						
							|  |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-01-12 08:26:34 +02:00
										 |  |  |  |     result = vector_norm(nargs, coordinates, max, found_nan); | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  |     if (coordinates != coord_on_stack) { | 
					
						
							|  |  |  |  |         PyObject_Free(coordinates); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2018-07-28 07:48:04 -07:00
										 |  |  |  |     return PyFloat_FromDouble(result); | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |   error_exit: | 
					
						
							|  |  |  |  |     if (coordinates != coord_on_stack) { | 
					
						
							|  |  |  |  |         PyObject_Free(coordinates); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return NULL; | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-08-11 18:39:05 -07:00
										 |  |  |  | #undef NUM_STACK_ELEMS
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2018-07-28 07:48:04 -07:00
										 |  |  |  | PyDoc_STRVAR(math_hypot_doc, | 
					
						
							|  |  |  |  |              "hypot(*coordinates) -> value\n\n\
 | 
					
						
							|  |  |  |  | Multidimensional Euclidean distance from the origin to a point.\n\ | 
					
						
							|  |  |  |  | \n\ | 
					
						
							|  |  |  |  | Roughly equivalent to:\n\ | 
					
						
							|  |  |  |  |     sqrt(sum(x**2 for x in coordinates))\n\ | 
					
						
							|  |  |  |  | \n\ | 
					
						
							|  |  |  |  | For a two dimensional point (x, y), gives the hypotenuse\n\ | 
					
						
							|  |  |  |  | using the Pythagorean theorem:  sqrt(x*x + y*y).\n\ | 
					
						
							|  |  |  |  | \n\ | 
					
						
							|  |  |  |  | For example, the hypotenuse of a 3/4/5 right triangle is:\n\ | 
					
						
							|  |  |  |  | \n\ | 
					
						
							|  |  |  |  |     >>> hypot(3.0, 4.0)\n\ | 
					
						
							|  |  |  |  |     5.0\n\ | 
					
						
							|  |  |  |  | "); | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-01-07 12:46:35 -06:00
										 |  |  |  | /** sumprod() ***************************************************************/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /* Forward declaration */ | 
					
						
							|  |  |  |  | static inline int _check_long_mult_overflow(long a, long b); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static inline bool | 
					
						
							|  |  |  |  | long_add_would_overflow(long a, long b) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     return (a > 0) ? (b > LONG_MAX - a) : (b < LONG_MIN - a); | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.sumprod | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     p: object | 
					
						
							|  |  |  |  |     q: object | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return the sum of products of values from two iterables p and q. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Roughly equivalent to: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     sum(itertools.starmap(operator.mul, zip(p, q, strict=True))) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | For float and mixed int/float inputs, the intermediate products | 
					
						
							|  |  |  |  | and sums are computed with extended precision. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_sumprod_impl(PyObject *module, PyObject *p, PyObject *q) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=6722dbfe60664554 input=82be54fe26f87e30]*/ | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     PyObject *p_i = NULL, *q_i = NULL, *term_i = NULL, *new_total = NULL; | 
					
						
							|  |  |  |  |     PyObject *p_it, *q_it, *total; | 
					
						
							|  |  |  |  |     iternextfunc p_next, q_next; | 
					
						
							|  |  |  |  |     bool p_stopped = false, q_stopped = false; | 
					
						
							|  |  |  |  |     bool int_path_enabled = true, int_total_in_use = false; | 
					
						
							|  |  |  |  |     bool flt_path_enabled = true, flt_total_in_use = false; | 
					
						
							|  |  |  |  |     long int_total = 0; | 
					
						
							| 
									
										
										
										
											2023-01-08 13:38:24 -06:00
										 |  |  |  |     TripleLength flt_total = tl_zero; | 
					
						
							| 
									
										
										
										
											2023-01-07 12:46:35 -06:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     p_it = PyObject_GetIter(p); | 
					
						
							|  |  |  |  |     if (p_it == NULL) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     q_it = PyObject_GetIter(q); | 
					
						
							|  |  |  |  |     if (q_it == NULL) { | 
					
						
							|  |  |  |  |         Py_DECREF(p_it); | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     total = PyLong_FromLong(0); | 
					
						
							|  |  |  |  |     if (total == NULL) { | 
					
						
							|  |  |  |  |         Py_DECREF(p_it); | 
					
						
							|  |  |  |  |         Py_DECREF(q_it); | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     p_next = *Py_TYPE(p_it)->tp_iternext; | 
					
						
							|  |  |  |  |     q_next = *Py_TYPE(q_it)->tp_iternext; | 
					
						
							|  |  |  |  |     while (1) { | 
					
						
							|  |  |  |  |         bool finished; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         assert (p_i == NULL); | 
					
						
							|  |  |  |  |         assert (q_i == NULL); | 
					
						
							|  |  |  |  |         assert (term_i == NULL); | 
					
						
							|  |  |  |  |         assert (new_total == NULL); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         assert (p_it != NULL); | 
					
						
							|  |  |  |  |         assert (q_it != NULL); | 
					
						
							|  |  |  |  |         assert (total != NULL); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         p_i = p_next(p_it); | 
					
						
							|  |  |  |  |         if (p_i == NULL) { | 
					
						
							|  |  |  |  |             if (PyErr_Occurred()) { | 
					
						
							|  |  |  |  |                 if (!PyErr_ExceptionMatches(PyExc_StopIteration)) { | 
					
						
							|  |  |  |  |                     goto err_exit; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 PyErr_Clear(); | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             p_stopped = true; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         q_i = q_next(q_it); | 
					
						
							|  |  |  |  |         if (q_i == NULL) { | 
					
						
							|  |  |  |  |             if (PyErr_Occurred()) { | 
					
						
							|  |  |  |  |                 if (!PyErr_ExceptionMatches(PyExc_StopIteration)) { | 
					
						
							|  |  |  |  |                     goto err_exit; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 PyErr_Clear(); | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             q_stopped = true; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         if (p_stopped != q_stopped) { | 
					
						
							|  |  |  |  |             PyErr_Format(PyExc_ValueError, "Inputs are not the same length"); | 
					
						
							|  |  |  |  |             goto err_exit; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         finished = p_stopped & q_stopped; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         if (int_path_enabled) { | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |             if (!finished && PyLong_CheckExact(p_i) & PyLong_CheckExact(q_i)) { | 
					
						
							|  |  |  |  |                 int overflow; | 
					
						
							|  |  |  |  |                 long int_p, int_q, int_prod; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                 int_p = PyLong_AsLongAndOverflow(p_i, &overflow); | 
					
						
							|  |  |  |  |                 if (overflow) { | 
					
						
							|  |  |  |  |                     goto finalize_int_path; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 int_q = PyLong_AsLongAndOverflow(q_i, &overflow); | 
					
						
							|  |  |  |  |                 if (overflow) { | 
					
						
							|  |  |  |  |                     goto finalize_int_path; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 if (_check_long_mult_overflow(int_p, int_q)) { | 
					
						
							|  |  |  |  |                     goto finalize_int_path; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 int_prod = int_p * int_q; | 
					
						
							|  |  |  |  |                 if (long_add_would_overflow(int_total, int_prod)) { | 
					
						
							|  |  |  |  |                     goto finalize_int_path; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 int_total += int_prod; | 
					
						
							|  |  |  |  |                 int_total_in_use = true; | 
					
						
							|  |  |  |  |                 Py_CLEAR(p_i); | 
					
						
							|  |  |  |  |                 Py_CLEAR(q_i); | 
					
						
							|  |  |  |  |                 continue; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |           finalize_int_path: | 
					
						
							| 
									
										
										
										
											2023-01-22 17:07:52 -06:00
										 |  |  |  |             // We're finished, overflowed, or have a non-int
 | 
					
						
							| 
									
										
										
										
											2023-01-07 12:46:35 -06:00
										 |  |  |  |             int_path_enabled = false; | 
					
						
							|  |  |  |  |             if (int_total_in_use) { | 
					
						
							|  |  |  |  |                 term_i = PyLong_FromLong(int_total); | 
					
						
							|  |  |  |  |                 if (term_i == NULL) { | 
					
						
							|  |  |  |  |                     goto err_exit; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 new_total = PyNumber_Add(total, term_i); | 
					
						
							|  |  |  |  |                 if (new_total == NULL) { | 
					
						
							|  |  |  |  |                     goto err_exit; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 Py_SETREF(total, new_total); | 
					
						
							|  |  |  |  |                 new_total = NULL; | 
					
						
							|  |  |  |  |                 Py_CLEAR(term_i); | 
					
						
							|  |  |  |  |                 int_total = 0;   // An ounce of prevention, ...
 | 
					
						
							|  |  |  |  |                 int_total_in_use = false; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         if (flt_path_enabled) { | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |             if (!finished) { | 
					
						
							|  |  |  |  |                 double flt_p, flt_q; | 
					
						
							|  |  |  |  |                 bool p_type_float = PyFloat_CheckExact(p_i); | 
					
						
							|  |  |  |  |                 bool q_type_float = PyFloat_CheckExact(q_i); | 
					
						
							|  |  |  |  |                 if (p_type_float && q_type_float) { | 
					
						
							|  |  |  |  |                     flt_p = PyFloat_AS_DOUBLE(p_i); | 
					
						
							|  |  |  |  |                     flt_q = PyFloat_AS_DOUBLE(q_i); | 
					
						
							|  |  |  |  |                 } else if (p_type_float && (PyLong_CheckExact(q_i) || PyBool_Check(q_i))) { | 
					
						
							|  |  |  |  |                     /* We care about float/int pairs and int/float pairs because
 | 
					
						
							|  |  |  |  |                        they arise naturally in several use cases such as price | 
					
						
							|  |  |  |  |                        times quantity, measurements with integer weights, or | 
					
						
							|  |  |  |  |                        data selected by a vector of bools. */ | 
					
						
							|  |  |  |  |                     flt_p = PyFloat_AS_DOUBLE(p_i); | 
					
						
							|  |  |  |  |                     flt_q = PyLong_AsDouble(q_i); | 
					
						
							|  |  |  |  |                     if (flt_q == -1.0 && PyErr_Occurred()) { | 
					
						
							|  |  |  |  |                         PyErr_Clear(); | 
					
						
							|  |  |  |  |                         goto finalize_flt_path; | 
					
						
							|  |  |  |  |                     } | 
					
						
							| 
									
										
										
										
											2023-10-28 07:52:04 +03:00
										 |  |  |  |                 } else if (q_type_float && (PyLong_CheckExact(p_i) || PyBool_Check(p_i))) { | 
					
						
							| 
									
										
										
										
											2023-01-07 12:46:35 -06:00
										 |  |  |  |                     flt_q = PyFloat_AS_DOUBLE(q_i); | 
					
						
							|  |  |  |  |                     flt_p = PyLong_AsDouble(p_i); | 
					
						
							|  |  |  |  |                     if (flt_p == -1.0 && PyErr_Occurred()) { | 
					
						
							|  |  |  |  |                         PyErr_Clear(); | 
					
						
							|  |  |  |  |                         goto finalize_flt_path; | 
					
						
							|  |  |  |  |                     } | 
					
						
							|  |  |  |  |                 } else { | 
					
						
							|  |  |  |  |                     goto finalize_flt_path; | 
					
						
							|  |  |  |  |                 } | 
					
						
							| 
									
										
										
										
											2023-01-28 06:29:21 -06:00
										 |  |  |  |                 TripleLength new_flt_total = tl_fma(flt_p, flt_q, flt_total); | 
					
						
							| 
									
										
										
										
											2023-01-07 12:46:35 -06:00
										 |  |  |  |                 if (isfinite(new_flt_total.hi)) { | 
					
						
							|  |  |  |  |                     flt_total = new_flt_total; | 
					
						
							|  |  |  |  |                     flt_total_in_use = true; | 
					
						
							|  |  |  |  |                     Py_CLEAR(p_i); | 
					
						
							|  |  |  |  |                     Py_CLEAR(q_i); | 
					
						
							|  |  |  |  |                     continue; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |           finalize_flt_path: | 
					
						
							|  |  |  |  |             // We're finished, overflowed, have a non-float, or got a non-finite value
 | 
					
						
							|  |  |  |  |             flt_path_enabled = false; | 
					
						
							|  |  |  |  |             if (flt_total_in_use) { | 
					
						
							| 
									
										
										
										
											2023-01-08 13:38:24 -06:00
										 |  |  |  |                 term_i = PyFloat_FromDouble(tl_to_d(flt_total)); | 
					
						
							| 
									
										
										
										
											2023-01-07 12:46:35 -06:00
										 |  |  |  |                 if (term_i == NULL) { | 
					
						
							|  |  |  |  |                     goto err_exit; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 new_total = PyNumber_Add(total, term_i); | 
					
						
							|  |  |  |  |                 if (new_total == NULL) { | 
					
						
							|  |  |  |  |                     goto err_exit; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 Py_SETREF(total, new_total); | 
					
						
							|  |  |  |  |                 new_total = NULL; | 
					
						
							|  |  |  |  |                 Py_CLEAR(term_i); | 
					
						
							| 
									
										
										
										
											2023-01-08 13:38:24 -06:00
										 |  |  |  |                 flt_total = tl_zero; | 
					
						
							| 
									
										
										
										
											2023-01-07 12:46:35 -06:00
										 |  |  |  |                 flt_total_in_use = false; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         assert(!int_total_in_use); | 
					
						
							|  |  |  |  |         assert(!flt_total_in_use); | 
					
						
							|  |  |  |  |         if (finished) { | 
					
						
							|  |  |  |  |             goto normal_exit; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         term_i = PyNumber_Multiply(p_i, q_i); | 
					
						
							|  |  |  |  |         if (term_i == NULL) { | 
					
						
							|  |  |  |  |             goto err_exit; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         new_total = PyNumber_Add(total, term_i); | 
					
						
							|  |  |  |  |         if (new_total == NULL) { | 
					
						
							|  |  |  |  |             goto err_exit; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         Py_SETREF(total, new_total); | 
					
						
							|  |  |  |  |         new_total = NULL; | 
					
						
							|  |  |  |  |         Py_CLEAR(p_i); | 
					
						
							|  |  |  |  |         Py_CLEAR(q_i); | 
					
						
							|  |  |  |  |         Py_CLEAR(term_i); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  normal_exit: | 
					
						
							|  |  |  |  |     Py_DECREF(p_it); | 
					
						
							|  |  |  |  |     Py_DECREF(q_it); | 
					
						
							|  |  |  |  |     return total; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |  err_exit: | 
					
						
							|  |  |  |  |     Py_DECREF(p_it); | 
					
						
							|  |  |  |  |     Py_DECREF(q_it); | 
					
						
							|  |  |  |  |     Py_DECREF(total); | 
					
						
							|  |  |  |  |     Py_XDECREF(p_i); | 
					
						
							|  |  |  |  |     Py_XDECREF(q_i); | 
					
						
							|  |  |  |  |     Py_XDECREF(term_i); | 
					
						
							|  |  |  |  |     Py_XDECREF(new_total); | 
					
						
							|  |  |  |  |     return NULL; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | /* pow can't use math_2, but needs its own wrapper: the problem is
 | 
					
						
							|  |  |  |  |    that an infinite result can arise either as a result of overflow | 
					
						
							|  |  |  |  |    (in which case OverflowError should be raised) or as a result of | 
					
						
							|  |  |  |  |    e.g. 0.**-5. (for which ValueError needs to be raised.) | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.pow | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     y: double | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return x**y (x to the power of y). | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_pow_impl(PyObject *module, double x, double y) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/ | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     double r; | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     int odd_y; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* deal directly with IEEE specials, to cope with problems on various
 | 
					
						
							|  |  |  |  |        platforms whose semantics don't exactly match C99 */ | 
					
						
							|  |  |  |  |     r = 0.; /* silence compiler warning */ | 
					
						
							|  |  |  |  |     if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { | 
					
						
							|  |  |  |  |         errno = 0; | 
					
						
							|  |  |  |  |         if (Py_IS_NAN(x)) | 
					
						
							|  |  |  |  |             r = y == 0. ? 1. : x; /* NaN**0 = 1 */ | 
					
						
							|  |  |  |  |         else if (Py_IS_NAN(y)) | 
					
						
							|  |  |  |  |             r = x == 1. ? 1. : y; /* 1**NaN = 1 */ | 
					
						
							|  |  |  |  |         else if (Py_IS_INFINITY(x)) { | 
					
						
							|  |  |  |  |             odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; | 
					
						
							|  |  |  |  |             if (y > 0.) | 
					
						
							|  |  |  |  |                 r = odd_y ? x : fabs(x); | 
					
						
							|  |  |  |  |             else if (y == 0.) | 
					
						
							|  |  |  |  |                 r = 1.; | 
					
						
							|  |  |  |  |             else /* y < 0. */ | 
					
						
							|  |  |  |  |                 r = odd_y ? copysign(0., x) : 0.; | 
					
						
							|  |  |  |  |         } | 
					
						
							| 
									
										
										
											
												gh-102837: improve test coverage for math module (#102523)
- input checks for math_1(L989), math_1a(L1023), math_2(L1064,L1071), hypot(L2682), log(L2307), ldexp(L2168), ceil(L1165), floor(L1236,L1239) and dist(L2587,L2588,L2628).
- drop inaccessible "if" branch (L3518) in perm_comb_small()
- improve fsum coverage for exceptional cases (L1433,L1438,L1451,L1497), ditto fmod(L2378)
- rewrite modf to fix inaccessible case(L2229), ditto for pow(L2988)
    
(all line numbers are wrt the main branch at 5e6661bce9)
											
										 
											2023-09-03 11:48:47 +03:00
										 |  |  |  |         else { | 
					
						
							|  |  |  |  |             assert(Py_IS_INFINITY(y)); | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |             if (fabs(x) == 1.0) | 
					
						
							|  |  |  |  |                 r = 1.; | 
					
						
							|  |  |  |  |             else if (y > 0. && fabs(x) > 1.0) | 
					
						
							|  |  |  |  |                 r = y; | 
					
						
							|  |  |  |  |             else if (y < 0. && fabs(x) < 1.0) { | 
					
						
							|  |  |  |  |                 r = -y; /* result is +inf */ | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             else | 
					
						
							|  |  |  |  |                 r = 0.; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     else { | 
					
						
							|  |  |  |  |         /* let libm handle finite**finite */ | 
					
						
							|  |  |  |  |         errno = 0; | 
					
						
							|  |  |  |  |         r = pow(x, y); | 
					
						
							|  |  |  |  |         /* a NaN result should arise only from (-ve)**(finite
 | 
					
						
							|  |  |  |  |            non-integer); in this case we want to raise ValueError. */ | 
					
						
							|  |  |  |  |         if (!Py_IS_FINITE(r)) { | 
					
						
							|  |  |  |  |             if (Py_IS_NAN(r)) { | 
					
						
							|  |  |  |  |                 errno = EDOM; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             /*
 | 
					
						
							|  |  |  |  |                an infinite result here arises either from: | 
					
						
							|  |  |  |  |                (A) (+/-0.)**negative (-> divide-by-zero) | 
					
						
							|  |  |  |  |                (B) overflow of x**y with x and y finite | 
					
						
							|  |  |  |  |             */ | 
					
						
							|  |  |  |  |             else if (Py_IS_INFINITY(r)) { | 
					
						
							|  |  |  |  |                 if (x == 0.) | 
					
						
							|  |  |  |  |                     errno = EDOM; | 
					
						
							|  |  |  |  |                 else | 
					
						
							|  |  |  |  |                     errno = ERANGE; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (errno && is_error(r)) | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     else | 
					
						
							|  |  |  |  |         return PyFloat_FromDouble(r); | 
					
						
							| 
									
										
										
										
											2008-04-19 00:31:39 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												Merged revisions 59666-59679 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r59666 | christian.heimes | 2008-01-02 19:28:32 +0100 (Wed, 02 Jan 2008) | 1 line
  Made vs9to8 Unix compatible
........
  r59669 | guido.van.rossum | 2008-01-02 20:00:46 +0100 (Wed, 02 Jan 2008) | 2 lines
  Patch #1696.  Don't attempt to close None in dry-run mode.
........
  r59671 | jeffrey.yasskin | 2008-01-03 03:21:52 +0100 (Thu, 03 Jan 2008) | 6 lines
  Backport PEP 3141 from the py3k branch to the trunk. This includes r50877 (just
  the complex_pow part), r56649, r56652, r56715, r57296, r57302, r57359, r57361,
  r57372, r57738, r57739, r58017, r58039, r58040, and r59390, and new
  documentation. The only significant difference is that round(x) returns a float
  to preserve backward-compatibility. See http://bugs.python.org/issue1689.
........
  r59672 | christian.heimes | 2008-01-03 16:41:30 +0100 (Thu, 03 Jan 2008) | 1 line
  Issue #1726: Remove Python/atof.c from PCBuild/pythoncore.vcproj
........
  r59675 | guido.van.rossum | 2008-01-03 20:12:44 +0100 (Thu, 03 Jan 2008) | 4 lines
  Issue #1700, reported by Nguyen Quan Son, fix by Fredruk Lundh:
  Regular Expression inline flags not handled correctly for some unicode
  characters.  (Forward port from 2.5.2.)
........
  r59676 | christian.heimes | 2008-01-03 21:23:15 +0100 (Thu, 03 Jan 2008) | 1 line
  Added math.isinf() and math.isnan()
........
  r59677 | christian.heimes | 2008-01-03 22:14:48 +0100 (Thu, 03 Jan 2008) | 1 line
  Some build bots don't compile mathmodule. There is an issue with the long definition of pi and euler
........
  r59678 | christian.heimes | 2008-01-03 23:16:32 +0100 (Thu, 03 Jan 2008) | 2 lines
  Modified PyImport_Import and PyImport_ImportModule to always use absolute imports by calling __import__ with an explicit level of 0
  Added a new API function PyImport_ImportModuleNoBlock. It solves the problem with dead locks when mixing threads and imports
........
  r59679 | christian.heimes | 2008-01-03 23:32:26 +0100 (Thu, 03 Jan 2008) | 1 line
  Added copysign(x, y) function to the math module
........
											
										 
											2008-01-03 23:01:04 +00:00
										 |  |  |  | static const double degToRad = Py_MATH_PI / 180.0; | 
					
						
							|  |  |  |  | static const double radToDeg = 180.0 / Py_MATH_PI; | 
					
						
							| 
									
										
										
										
											2002-05-13 03:56:10 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.degrees | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Convert angle x from radians to degrees. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-05-13 03:56:10 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_degrees_impl(PyObject *module, double x) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/ | 
					
						
							| 
									
										
										
										
											2002-05-13 03:56:10 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     return PyFloat_FromDouble(x * radToDeg); | 
					
						
							| 
									
										
										
										
											2002-05-13 03:56:10 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.radians | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Convert angle x from degrees to radians. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
										
										
											2002-05-13 03:56:10 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_radians_impl(PyObject *module, double x) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/ | 
					
						
							| 
									
										
										
										
											2002-05-13 03:56:10 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     return PyFloat_FromDouble(x * degToRad); | 
					
						
							| 
									
										
										
										
											2002-05-13 03:56:10 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.isfinite | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return True if x is neither an infinity nor a NaN, and False otherwise. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
										
										
											2001-09-05 00:53:45 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-07-11 17:38:24 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_isfinite_impl(PyObject *module, double x) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/ | 
					
						
							| 
									
										
										
										
											2010-07-11 17:38:24 +00:00
										 |  |  |  | { | 
					
						
							|  |  |  |  |     return PyBool_FromLong((long)Py_IS_FINITE(x)); | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.isnan | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return True if x is a NaN (not a number), and False otherwise. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
										
										
											2010-07-11 17:38:24 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												Merged revisions 59666-59679 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r59666 | christian.heimes | 2008-01-02 19:28:32 +0100 (Wed, 02 Jan 2008) | 1 line
  Made vs9to8 Unix compatible
........
  r59669 | guido.van.rossum | 2008-01-02 20:00:46 +0100 (Wed, 02 Jan 2008) | 2 lines
  Patch #1696.  Don't attempt to close None in dry-run mode.
........
  r59671 | jeffrey.yasskin | 2008-01-03 03:21:52 +0100 (Thu, 03 Jan 2008) | 6 lines
  Backport PEP 3141 from the py3k branch to the trunk. This includes r50877 (just
  the complex_pow part), r56649, r56652, r56715, r57296, r57302, r57359, r57361,
  r57372, r57738, r57739, r58017, r58039, r58040, and r59390, and new
  documentation. The only significant difference is that round(x) returns a float
  to preserve backward-compatibility. See http://bugs.python.org/issue1689.
........
  r59672 | christian.heimes | 2008-01-03 16:41:30 +0100 (Thu, 03 Jan 2008) | 1 line
  Issue #1726: Remove Python/atof.c from PCBuild/pythoncore.vcproj
........
  r59675 | guido.van.rossum | 2008-01-03 20:12:44 +0100 (Thu, 03 Jan 2008) | 4 lines
  Issue #1700, reported by Nguyen Quan Son, fix by Fredruk Lundh:
  Regular Expression inline flags not handled correctly for some unicode
  characters.  (Forward port from 2.5.2.)
........
  r59676 | christian.heimes | 2008-01-03 21:23:15 +0100 (Thu, 03 Jan 2008) | 1 line
  Added math.isinf() and math.isnan()
........
  r59677 | christian.heimes | 2008-01-03 22:14:48 +0100 (Thu, 03 Jan 2008) | 1 line
  Some build bots don't compile mathmodule. There is an issue with the long definition of pi and euler
........
  r59678 | christian.heimes | 2008-01-03 23:16:32 +0100 (Thu, 03 Jan 2008) | 2 lines
  Modified PyImport_Import and PyImport_ImportModule to always use absolute imports by calling __import__ with an explicit level of 0
  Added a new API function PyImport_ImportModuleNoBlock. It solves the problem with dead locks when mixing threads and imports
........
  r59679 | christian.heimes | 2008-01-03 23:32:26 +0100 (Thu, 03 Jan 2008) | 1 line
  Added copysign(x, y) function to the math module
........
											
										 
											2008-01-03 23:01:04 +00:00
										 |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_isnan_impl(PyObject *module, double x) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/ | 
					
						
							| 
									
										
											  
											
												Merged revisions 59666-59679 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r59666 | christian.heimes | 2008-01-02 19:28:32 +0100 (Wed, 02 Jan 2008) | 1 line
  Made vs9to8 Unix compatible
........
  r59669 | guido.van.rossum | 2008-01-02 20:00:46 +0100 (Wed, 02 Jan 2008) | 2 lines
  Patch #1696.  Don't attempt to close None in dry-run mode.
........
  r59671 | jeffrey.yasskin | 2008-01-03 03:21:52 +0100 (Thu, 03 Jan 2008) | 6 lines
  Backport PEP 3141 from the py3k branch to the trunk. This includes r50877 (just
  the complex_pow part), r56649, r56652, r56715, r57296, r57302, r57359, r57361,
  r57372, r57738, r57739, r58017, r58039, r58040, and r59390, and new
  documentation. The only significant difference is that round(x) returns a float
  to preserve backward-compatibility. See http://bugs.python.org/issue1689.
........
  r59672 | christian.heimes | 2008-01-03 16:41:30 +0100 (Thu, 03 Jan 2008) | 1 line
  Issue #1726: Remove Python/atof.c from PCBuild/pythoncore.vcproj
........
  r59675 | guido.van.rossum | 2008-01-03 20:12:44 +0100 (Thu, 03 Jan 2008) | 4 lines
  Issue #1700, reported by Nguyen Quan Son, fix by Fredruk Lundh:
  Regular Expression inline flags not handled correctly for some unicode
  characters.  (Forward port from 2.5.2.)
........
  r59676 | christian.heimes | 2008-01-03 21:23:15 +0100 (Thu, 03 Jan 2008) | 1 line
  Added math.isinf() and math.isnan()
........
  r59677 | christian.heimes | 2008-01-03 22:14:48 +0100 (Thu, 03 Jan 2008) | 1 line
  Some build bots don't compile mathmodule. There is an issue with the long definition of pi and euler
........
  r59678 | christian.heimes | 2008-01-03 23:16:32 +0100 (Thu, 03 Jan 2008) | 2 lines
  Modified PyImport_Import and PyImport_ImportModule to always use absolute imports by calling __import__ with an explicit level of 0
  Added a new API function PyImport_ImportModuleNoBlock. It solves the problem with dead locks when mixing threads and imports
........
  r59679 | christian.heimes | 2008-01-03 23:32:26 +0100 (Thu, 03 Jan 2008) | 1 line
  Added copysign(x, y) function to the math module
........
											
										 
											2008-01-03 23:01:04 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     return PyBool_FromLong((long)Py_IS_NAN(x)); | 
					
						
							| 
									
										
											  
											
												Merged revisions 59666-59679 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r59666 | christian.heimes | 2008-01-02 19:28:32 +0100 (Wed, 02 Jan 2008) | 1 line
  Made vs9to8 Unix compatible
........
  r59669 | guido.van.rossum | 2008-01-02 20:00:46 +0100 (Wed, 02 Jan 2008) | 2 lines
  Patch #1696.  Don't attempt to close None in dry-run mode.
........
  r59671 | jeffrey.yasskin | 2008-01-03 03:21:52 +0100 (Thu, 03 Jan 2008) | 6 lines
  Backport PEP 3141 from the py3k branch to the trunk. This includes r50877 (just
  the complex_pow part), r56649, r56652, r56715, r57296, r57302, r57359, r57361,
  r57372, r57738, r57739, r58017, r58039, r58040, and r59390, and new
  documentation. The only significant difference is that round(x) returns a float
  to preserve backward-compatibility. See http://bugs.python.org/issue1689.
........
  r59672 | christian.heimes | 2008-01-03 16:41:30 +0100 (Thu, 03 Jan 2008) | 1 line
  Issue #1726: Remove Python/atof.c from PCBuild/pythoncore.vcproj
........
  r59675 | guido.van.rossum | 2008-01-03 20:12:44 +0100 (Thu, 03 Jan 2008) | 4 lines
  Issue #1700, reported by Nguyen Quan Son, fix by Fredruk Lundh:
  Regular Expression inline flags not handled correctly for some unicode
  characters.  (Forward port from 2.5.2.)
........
  r59676 | christian.heimes | 2008-01-03 21:23:15 +0100 (Thu, 03 Jan 2008) | 1 line
  Added math.isinf() and math.isnan()
........
  r59677 | christian.heimes | 2008-01-03 22:14:48 +0100 (Thu, 03 Jan 2008) | 1 line
  Some build bots don't compile mathmodule. There is an issue with the long definition of pi and euler
........
  r59678 | christian.heimes | 2008-01-03 23:16:32 +0100 (Thu, 03 Jan 2008) | 2 lines
  Modified PyImport_Import and PyImport_ImportModule to always use absolute imports by calling __import__ with an explicit level of 0
  Added a new API function PyImport_ImportModuleNoBlock. It solves the problem with dead locks when mixing threads and imports
........
  r59679 | christian.heimes | 2008-01-03 23:32:26 +0100 (Thu, 03 Jan 2008) | 1 line
  Added copysign(x, y) function to the math module
........
											
										 
											2008-01-03 23:01:04 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.isinf | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return True if x is a positive or negative infinity, and False otherwise. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							| 
									
										
											  
											
												Merged revisions 59666-59679 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r59666 | christian.heimes | 2008-01-02 19:28:32 +0100 (Wed, 02 Jan 2008) | 1 line
  Made vs9to8 Unix compatible
........
  r59669 | guido.van.rossum | 2008-01-02 20:00:46 +0100 (Wed, 02 Jan 2008) | 2 lines
  Patch #1696.  Don't attempt to close None in dry-run mode.
........
  r59671 | jeffrey.yasskin | 2008-01-03 03:21:52 +0100 (Thu, 03 Jan 2008) | 6 lines
  Backport PEP 3141 from the py3k branch to the trunk. This includes r50877 (just
  the complex_pow part), r56649, r56652, r56715, r57296, r57302, r57359, r57361,
  r57372, r57738, r57739, r58017, r58039, r58040, and r59390, and new
  documentation. The only significant difference is that round(x) returns a float
  to preserve backward-compatibility. See http://bugs.python.org/issue1689.
........
  r59672 | christian.heimes | 2008-01-03 16:41:30 +0100 (Thu, 03 Jan 2008) | 1 line
  Issue #1726: Remove Python/atof.c from PCBuild/pythoncore.vcproj
........
  r59675 | guido.van.rossum | 2008-01-03 20:12:44 +0100 (Thu, 03 Jan 2008) | 4 lines
  Issue #1700, reported by Nguyen Quan Son, fix by Fredruk Lundh:
  Regular Expression inline flags not handled correctly for some unicode
  characters.  (Forward port from 2.5.2.)
........
  r59676 | christian.heimes | 2008-01-03 21:23:15 +0100 (Thu, 03 Jan 2008) | 1 line
  Added math.isinf() and math.isnan()
........
  r59677 | christian.heimes | 2008-01-03 22:14:48 +0100 (Thu, 03 Jan 2008) | 1 line
  Some build bots don't compile mathmodule. There is an issue with the long definition of pi and euler
........
  r59678 | christian.heimes | 2008-01-03 23:16:32 +0100 (Thu, 03 Jan 2008) | 2 lines
  Modified PyImport_Import and PyImport_ImportModule to always use absolute imports by calling __import__ with an explicit level of 0
  Added a new API function PyImport_ImportModuleNoBlock. It solves the problem with dead locks when mixing threads and imports
........
  r59679 | christian.heimes | 2008-01-03 23:32:26 +0100 (Thu, 03 Jan 2008) | 1 line
  Added copysign(x, y) function to the math module
........
											
										 
											2008-01-03 23:01:04 +00:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | math_isinf_impl(PyObject *module, double x) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/ | 
					
						
							| 
									
										
											  
											
												Merged revisions 59666-59679 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r59666 | christian.heimes | 2008-01-02 19:28:32 +0100 (Wed, 02 Jan 2008) | 1 line
  Made vs9to8 Unix compatible
........
  r59669 | guido.van.rossum | 2008-01-02 20:00:46 +0100 (Wed, 02 Jan 2008) | 2 lines
  Patch #1696.  Don't attempt to close None in dry-run mode.
........
  r59671 | jeffrey.yasskin | 2008-01-03 03:21:52 +0100 (Thu, 03 Jan 2008) | 6 lines
  Backport PEP 3141 from the py3k branch to the trunk. This includes r50877 (just
  the complex_pow part), r56649, r56652, r56715, r57296, r57302, r57359, r57361,
  r57372, r57738, r57739, r58017, r58039, r58040, and r59390, and new
  documentation. The only significant difference is that round(x) returns a float
  to preserve backward-compatibility. See http://bugs.python.org/issue1689.
........
  r59672 | christian.heimes | 2008-01-03 16:41:30 +0100 (Thu, 03 Jan 2008) | 1 line
  Issue #1726: Remove Python/atof.c from PCBuild/pythoncore.vcproj
........
  r59675 | guido.van.rossum | 2008-01-03 20:12:44 +0100 (Thu, 03 Jan 2008) | 4 lines
  Issue #1700, reported by Nguyen Quan Son, fix by Fredruk Lundh:
  Regular Expression inline flags not handled correctly for some unicode
  characters.  (Forward port from 2.5.2.)
........
  r59676 | christian.heimes | 2008-01-03 21:23:15 +0100 (Thu, 03 Jan 2008) | 1 line
  Added math.isinf() and math.isnan()
........
  r59677 | christian.heimes | 2008-01-03 22:14:48 +0100 (Thu, 03 Jan 2008) | 1 line
  Some build bots don't compile mathmodule. There is an issue with the long definition of pi and euler
........
  r59678 | christian.heimes | 2008-01-03 23:16:32 +0100 (Thu, 03 Jan 2008) | 2 lines
  Modified PyImport_Import and PyImport_ImportModule to always use absolute imports by calling __import__ with an explicit level of 0
  Added a new API function PyImport_ImportModuleNoBlock. It solves the problem with dead locks when mixing threads and imports
........
  r59679 | christian.heimes | 2008-01-03 23:32:26 +0100 (Thu, 03 Jan 2008) | 1 line
  Added copysign(x, y) function to the math module
........
											
										 
											2008-01-03 23:01:04 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     return PyBool_FromLong((long)Py_IS_INFINITY(x)); | 
					
						
							| 
									
										
											  
											
												Merged revisions 59666-59679 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
  r59666 | christian.heimes | 2008-01-02 19:28:32 +0100 (Wed, 02 Jan 2008) | 1 line
  Made vs9to8 Unix compatible
........
  r59669 | guido.van.rossum | 2008-01-02 20:00:46 +0100 (Wed, 02 Jan 2008) | 2 lines
  Patch #1696.  Don't attempt to close None in dry-run mode.
........
  r59671 | jeffrey.yasskin | 2008-01-03 03:21:52 +0100 (Thu, 03 Jan 2008) | 6 lines
  Backport PEP 3141 from the py3k branch to the trunk. This includes r50877 (just
  the complex_pow part), r56649, r56652, r56715, r57296, r57302, r57359, r57361,
  r57372, r57738, r57739, r58017, r58039, r58040, and r59390, and new
  documentation. The only significant difference is that round(x) returns a float
  to preserve backward-compatibility. See http://bugs.python.org/issue1689.
........
  r59672 | christian.heimes | 2008-01-03 16:41:30 +0100 (Thu, 03 Jan 2008) | 1 line
  Issue #1726: Remove Python/atof.c from PCBuild/pythoncore.vcproj
........
  r59675 | guido.van.rossum | 2008-01-03 20:12:44 +0100 (Thu, 03 Jan 2008) | 4 lines
  Issue #1700, reported by Nguyen Quan Son, fix by Fredruk Lundh:
  Regular Expression inline flags not handled correctly for some unicode
  characters.  (Forward port from 2.5.2.)
........
  r59676 | christian.heimes | 2008-01-03 21:23:15 +0100 (Thu, 03 Jan 2008) | 1 line
  Added math.isinf() and math.isnan()
........
  r59677 | christian.heimes | 2008-01-03 22:14:48 +0100 (Thu, 03 Jan 2008) | 1 line
  Some build bots don't compile mathmodule. There is an issue with the long definition of pi and euler
........
  r59678 | christian.heimes | 2008-01-03 23:16:32 +0100 (Thu, 03 Jan 2008) | 2 lines
  Modified PyImport_Import and PyImport_ImportModule to always use absolute imports by calling __import__ with an explicit level of 0
  Added a new API function PyImport_ImportModuleNoBlock. It solves the problem with dead locks when mixing threads and imports
........
  r59679 | christian.heimes | 2008-01-03 23:32:26 +0100 (Thu, 03 Jan 2008) | 1 line
  Added copysign(x, y) function to the math module
........
											
										 
											2008-01-03 23:01:04 +00:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.isclose -> bool | 
					
						
							| 
									
										
										
										
											2015-05-31 22:05:00 +03:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     a: double | 
					
						
							|  |  |  |  |     b: double | 
					
						
							|  |  |  |  |     * | 
					
						
							|  |  |  |  |     rel_tol: double = 1e-09 | 
					
						
							|  |  |  |  |         maximum difference for being considered "close", relative to the | 
					
						
							|  |  |  |  |         magnitude of the input values | 
					
						
							|  |  |  |  |     abs_tol: double = 0.0 | 
					
						
							|  |  |  |  |         maximum difference for being considered "close", regardless of the | 
					
						
							|  |  |  |  |         magnitude of the input values | 
					
						
							| 
									
										
										
										
											2015-05-31 22:05:00 +03:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | Determine whether two floating point numbers are close in value. | 
					
						
							| 
									
										
										
										
											2015-05-31 22:05:00 +03:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  | Return True if a is close in value to b, and False otherwise. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | For the values to be considered close, the difference between them | 
					
						
							|  |  |  |  | must be smaller than at least one of the tolerances. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | -inf, inf and NaN behave similarly to the IEEE 754 Standard.  That | 
					
						
							|  |  |  |  | is, NaN is not close to anything, even itself.  inf and -inf are | 
					
						
							|  |  |  |  | only close to themselves. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static int | 
					
						
							|  |  |  |  | math_isclose_impl(PyObject *module, double a, double b, double rel_tol, | 
					
						
							|  |  |  |  |                   double abs_tol) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/ | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     double diff = 0.0; | 
					
						
							| 
									
										
										
										
											2015-05-31 22:05:00 +03:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* sanity check on the inputs */ | 
					
						
							|  |  |  |  |     if (rel_tol < 0.0 || abs_tol < 0.0 ) { | 
					
						
							|  |  |  |  |         PyErr_SetString(PyExc_ValueError, | 
					
						
							|  |  |  |  |                         "tolerances must be non-negative"); | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |         return -1; | 
					
						
							| 
									
										
										
										
											2015-05-31 22:05:00 +03:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if ( a == b ) { | 
					
						
							|  |  |  |  |         /* short circuit exact equality -- needed to catch two infinities of
 | 
					
						
							|  |  |  |  |            the same sign. And perhaps speeds things up a bit sometimes. | 
					
						
							|  |  |  |  |         */ | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |         return 1; | 
					
						
							| 
									
										
										
										
											2015-05-31 22:05:00 +03:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* This catches the case of two infinities of opposite sign, or
 | 
					
						
							|  |  |  |  |        one infinity and one finite number. Two infinities of opposite | 
					
						
							|  |  |  |  |        sign would otherwise have an infinite relative tolerance. | 
					
						
							|  |  |  |  |        Two infinities of the same sign are caught by the equality check | 
					
						
							|  |  |  |  |        above. | 
					
						
							|  |  |  |  |     */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) { | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |         return 0; | 
					
						
							| 
									
										
										
										
											2015-05-31 22:05:00 +03:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* now do the regular computation
 | 
					
						
							|  |  |  |  |        this is essentially the "weak" test from the Boost library | 
					
						
							|  |  |  |  |     */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     diff = fabs(b - a); | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     return (((diff <= fabs(rel_tol * b)) || | 
					
						
							|  |  |  |  |              (diff <= fabs(rel_tol * a))) || | 
					
						
							|  |  |  |  |             (diff <= abs_tol)); | 
					
						
							| 
									
										
										
										
											2015-05-31 22:05:00 +03:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-09 19:18:08 +00:00
										 |  |  |  | static inline int | 
					
						
							|  |  |  |  | _check_long_mult_overflow(long a, long b) { | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* From Python2's int_mul code:
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Integer overflow checking for * is painful:  Python tried a couple ways, but | 
					
						
							|  |  |  |  |     they didn't work on all platforms, or failed in endcases (a product of | 
					
						
							|  |  |  |  |     -sys.maxint-1 has been a particular pain). | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Here's another way: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     The native long product x*y is either exactly right or *way* off, being | 
					
						
							|  |  |  |  |     just the last n bits of the true product, where n is the number of bits | 
					
						
							|  |  |  |  |     in a long (the delivered product is the true product plus i*2**n for | 
					
						
							|  |  |  |  |     some integer i). | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     The native double product (double)x * (double)y is subject to three | 
					
						
							|  |  |  |  |     rounding errors:  on a sizeof(long)==8 box, each cast to double can lose | 
					
						
							|  |  |  |  |     info, and even on a sizeof(long)==4 box, the multiplication can lose info. | 
					
						
							|  |  |  |  |     But, unlike the native long product, it's not in *range* trouble:  even | 
					
						
							|  |  |  |  |     if sizeof(long)==32 (256-bit longs), the product easily fits in the | 
					
						
							|  |  |  |  |     dynamic range of a double.  So the leading 50 (or so) bits of the double | 
					
						
							|  |  |  |  |     product are correct. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     We check these two ways against each other, and declare victory if they're | 
					
						
							|  |  |  |  |     approximately the same.  Else, because the native long product is the only | 
					
						
							|  |  |  |  |     one that can lose catastrophic amounts of information, it's the native long | 
					
						
							|  |  |  |  |     product that must have overflowed. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     long longprod = (long)((unsigned long)a * b); | 
					
						
							|  |  |  |  |     double doubleprod = (double)a * (double)b; | 
					
						
							|  |  |  |  |     double doubled_longprod = (double)longprod; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (doubled_longprod == doubleprod) { | 
					
						
							|  |  |  |  |         return 0; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const double diff = doubled_longprod - doubleprod; | 
					
						
							|  |  |  |  |     const double absdiff = diff >= 0.0 ? diff : -diff; | 
					
						
							|  |  |  |  |     const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (32.0 * absdiff <= absprod) { | 
					
						
							|  |  |  |  |         return 0; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     return 1; | 
					
						
							|  |  |  |  | } | 
					
						
							| 
									
										
										
										
											2015-05-31 22:05:00 +03:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-07 07:04:02 +00:00
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.prod | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     iterable: object | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  |     * | 
					
						
							|  |  |  |  |     start: object(c_default="NULL") = 1 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Calculate the product of all the elements in the input iterable. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | The default start value for the product is 1. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | When the iterable is empty, return the start value.  This function is | 
					
						
							|  |  |  |  | intended specifically for use with numeric values and may reject | 
					
						
							|  |  |  |  | non-numeric types. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/ | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     PyObject *result = start; | 
					
						
							|  |  |  |  |     PyObject *temp, *item, *iter; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     iter = PyObject_GetIter(iterable); | 
					
						
							|  |  |  |  |     if (iter == NULL) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (result == NULL) { | 
					
						
							| 
									
										
										
										
											2021-09-28 13:32:43 +01:00
										 |  |  |  |         result = _PyLong_GetOne(); | 
					
						
							| 
									
										
										
										
											2019-02-07 07:04:02 +00:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-09-28 13:32:43 +01:00
										 |  |  |  |     Py_INCREF(result); | 
					
						
							| 
									
										
										
										
											2019-02-07 07:04:02 +00:00
										 |  |  |  | #ifndef SLOW_PROD
 | 
					
						
							|  |  |  |  |     /* Fast paths for integers keeping temporary products in C.
 | 
					
						
							|  |  |  |  |      * Assumes all inputs are the same type. | 
					
						
							|  |  |  |  |      * If the assumption fails, default to use PyObjects instead. | 
					
						
							|  |  |  |  |     */ | 
					
						
							|  |  |  |  |     if (PyLong_CheckExact(result)) { | 
					
						
							|  |  |  |  |         int overflow; | 
					
						
							|  |  |  |  |         long i_result = PyLong_AsLongAndOverflow(result, &overflow); | 
					
						
							|  |  |  |  |         /* If this already overflowed, don't even enter the loop. */ | 
					
						
							|  |  |  |  |         if (overflow == 0) { | 
					
						
							| 
									
										
										
										
											2022-11-23 14:57:50 +01:00
										 |  |  |  |             Py_SETREF(result, NULL); | 
					
						
							| 
									
										
										
										
											2019-02-07 07:04:02 +00:00
										 |  |  |  |         } | 
					
						
							|  |  |  |  |         /* Loop over all the items in the iterable until we finish, we overflow
 | 
					
						
							|  |  |  |  |          * or we found a non integer element */ | 
					
						
							| 
									
										
										
										
											2021-09-28 13:32:43 +01:00
										 |  |  |  |         while (result == NULL) { | 
					
						
							| 
									
										
										
										
											2019-02-07 07:04:02 +00:00
										 |  |  |  |             item = PyIter_Next(iter); | 
					
						
							|  |  |  |  |             if (item == NULL) { | 
					
						
							|  |  |  |  |                 Py_DECREF(iter); | 
					
						
							|  |  |  |  |                 if (PyErr_Occurred()) { | 
					
						
							|  |  |  |  |                     return NULL; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 return PyLong_FromLong(i_result); | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             if (PyLong_CheckExact(item)) { | 
					
						
							|  |  |  |  |                 long b = PyLong_AsLongAndOverflow(item, &overflow); | 
					
						
							| 
									
										
										
										
											2019-03-09 19:18:08 +00:00
										 |  |  |  |                 if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) { | 
					
						
							|  |  |  |  |                     long x = i_result * b; | 
					
						
							| 
									
										
										
										
											2019-02-07 07:04:02 +00:00
										 |  |  |  |                     i_result = x; | 
					
						
							|  |  |  |  |                     Py_DECREF(item); | 
					
						
							|  |  |  |  |                     continue; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             /* Either overflowed or is not an int.
 | 
					
						
							|  |  |  |  |              * Restore real objects and process normally */ | 
					
						
							|  |  |  |  |             result = PyLong_FromLong(i_result); | 
					
						
							|  |  |  |  |             if (result == NULL) { | 
					
						
							|  |  |  |  |                 Py_DECREF(item); | 
					
						
							|  |  |  |  |                 Py_DECREF(iter); | 
					
						
							|  |  |  |  |                 return NULL; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             temp = PyNumber_Multiply(result, item); | 
					
						
							|  |  |  |  |             Py_DECREF(result); | 
					
						
							|  |  |  |  |             Py_DECREF(item); | 
					
						
							|  |  |  |  |             result = temp; | 
					
						
							|  |  |  |  |             if (result == NULL) { | 
					
						
							|  |  |  |  |                 Py_DECREF(iter); | 
					
						
							|  |  |  |  |                 return NULL; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* Fast paths for floats keeping temporary products in C.
 | 
					
						
							|  |  |  |  |      * Assumes all inputs are the same type. | 
					
						
							|  |  |  |  |      * If the assumption fails, default to use PyObjects instead. | 
					
						
							|  |  |  |  |     */ | 
					
						
							|  |  |  |  |     if (PyFloat_CheckExact(result)) { | 
					
						
							|  |  |  |  |         double f_result = PyFloat_AS_DOUBLE(result); | 
					
						
							| 
									
										
										
										
											2022-11-23 14:57:50 +01:00
										 |  |  |  |         Py_SETREF(result, NULL); | 
					
						
							| 
									
										
										
										
											2019-02-07 07:04:02 +00:00
										 |  |  |  |         while(result == NULL) { | 
					
						
							|  |  |  |  |             item = PyIter_Next(iter); | 
					
						
							|  |  |  |  |             if (item == NULL) { | 
					
						
							|  |  |  |  |                 Py_DECREF(iter); | 
					
						
							|  |  |  |  |                 if (PyErr_Occurred()) { | 
					
						
							|  |  |  |  |                     return NULL; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |                 return PyFloat_FromDouble(f_result); | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             if (PyFloat_CheckExact(item)) { | 
					
						
							|  |  |  |  |                 f_result *= PyFloat_AS_DOUBLE(item); | 
					
						
							|  |  |  |  |                 Py_DECREF(item); | 
					
						
							|  |  |  |  |                 continue; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             if (PyLong_CheckExact(item)) { | 
					
						
							|  |  |  |  |                 long value; | 
					
						
							|  |  |  |  |                 int overflow; | 
					
						
							|  |  |  |  |                 value = PyLong_AsLongAndOverflow(item, &overflow); | 
					
						
							|  |  |  |  |                 if (!overflow) { | 
					
						
							|  |  |  |  |                     f_result *= (double)value; | 
					
						
							|  |  |  |  |                     Py_DECREF(item); | 
					
						
							|  |  |  |  |                     continue; | 
					
						
							|  |  |  |  |                 } | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             result = PyFloat_FromDouble(f_result); | 
					
						
							|  |  |  |  |             if (result == NULL) { | 
					
						
							|  |  |  |  |                 Py_DECREF(item); | 
					
						
							|  |  |  |  |                 Py_DECREF(iter); | 
					
						
							|  |  |  |  |                 return NULL; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             temp = PyNumber_Multiply(result, item); | 
					
						
							|  |  |  |  |             Py_DECREF(result); | 
					
						
							|  |  |  |  |             Py_DECREF(item); | 
					
						
							|  |  |  |  |             result = temp; | 
					
						
							|  |  |  |  |             if (result == NULL) { | 
					
						
							|  |  |  |  |                 Py_DECREF(iter); | 
					
						
							|  |  |  |  |                 return NULL; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | #endif
 | 
					
						
							|  |  |  |  |     /* Consume rest of the iterable (if any) that could not be handled
 | 
					
						
							|  |  |  |  |      * by specialized functions above.*/ | 
					
						
							|  |  |  |  |     for(;;) { | 
					
						
							|  |  |  |  |         item = PyIter_Next(iter); | 
					
						
							|  |  |  |  |         if (item == NULL) { | 
					
						
							|  |  |  |  |             /* error, or end-of-sequence */ | 
					
						
							|  |  |  |  |             if (PyErr_Occurred()) { | 
					
						
							| 
									
										
										
										
											2022-11-23 14:57:50 +01:00
										 |  |  |  |                 Py_SETREF(result, NULL); | 
					
						
							| 
									
										
										
										
											2019-02-07 07:04:02 +00:00
										 |  |  |  |             } | 
					
						
							|  |  |  |  |             break; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         temp = PyNumber_Multiply(result, item); | 
					
						
							|  |  |  |  |         Py_DECREF(result); | 
					
						
							|  |  |  |  |         Py_DECREF(item); | 
					
						
							|  |  |  |  |         result = temp; | 
					
						
							|  |  |  |  |         if (result == NULL) | 
					
						
							|  |  |  |  |             break; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     Py_DECREF(iter); | 
					
						
							|  |  |  |  |     return result; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-09 15:32:25 +02:00
										 |  |  |  | /* least significant 64 bits of the odd part of factorial(n), for n in range(128).
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Python code to generate the values: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     import math | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     for n in range(128): | 
					
						
							|  |  |  |  |         fac = math.factorial(n) | 
					
						
							|  |  |  |  |         fac_odd_part = fac // (fac & -fac)
 | 
					
						
							|  |  |  |  |         reduced_fac_odd_part = fac_odd_part % (2**64) | 
					
						
							|  |  |  |  |         print(f"{reduced_fac_odd_part:#018x}u") | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | static const uint64_t reduced_factorial_odd_part[] = { | 
					
						
							|  |  |  |  |     0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000003u, | 
					
						
							|  |  |  |  |     0x0000000000000003u, 0x000000000000000fu, 0x000000000000002du, 0x000000000000013bu, | 
					
						
							|  |  |  |  |     0x000000000000013bu, 0x0000000000000b13u, 0x000000000000375fu, 0x0000000000026115u, | 
					
						
							|  |  |  |  |     0x000000000007233fu, 0x00000000005cca33u, 0x0000000002898765u, 0x00000000260eeeebu, | 
					
						
							|  |  |  |  |     0x00000000260eeeebu, 0x0000000286fddd9bu, 0x00000016beecca73u, 0x000001b02b930689u, | 
					
						
							|  |  |  |  |     0x00000870d9df20adu, 0x0000b141df4dae31u, 0x00079dd498567c1bu, 0x00af2e19afc5266du, | 
					
						
							|  |  |  |  |     0x020d8a4d0f4f7347u, 0x335281867ec241efu, 0x9b3093d46fdd5923u, 0x5e1f9767cc5866b1u, | 
					
						
							|  |  |  |  |     0x92dd23d6966aced7u, 0xa30d0f4f0a196e5bu, 0x8dc3e5a1977d7755u, 0x2ab8ce915831734bu, | 
					
						
							|  |  |  |  |     0x2ab8ce915831734bu, 0x81d2a0bc5e5fdcabu, 0x9efcac82445da75bu, 0xbc8b95cf58cde171u, | 
					
						
							|  |  |  |  |     0xa0e8444a1f3cecf9u, 0x4191deb683ce3ffdu, 0xddd3878bc84ebfc7u, 0xcb39a64b83ff3751u, | 
					
						
							|  |  |  |  |     0xf8203f7993fc1495u, 0xbd2a2a78b35f4bddu, 0x84757be6b6d13921u, 0x3fbbcfc0b524988bu, | 
					
						
							|  |  |  |  |     0xbd11ed47c8928df9u, 0x3c26b59e41c2f4c5u, 0x677a5137e883fdb3u, 0xff74e943b03b93ddu, | 
					
						
							|  |  |  |  |     0xfe5ebbcb10b2bb97u, 0xb021f1de3235e7e7u, 0x33509eb2e743a58fu, 0x390f9da41279fb7du, | 
					
						
							|  |  |  |  |     0xe5cb0154f031c559u, 0x93074695ba4ddb6du, 0x81c471caa636247fu, 0xe1347289b5a1d749u, | 
					
						
							|  |  |  |  |     0x286f21c3f76ce2ffu, 0x00be84a2173e8ac7u, 0x1595065ca215b88bu, 0xf95877595b018809u, | 
					
						
							|  |  |  |  |     0x9c2efe3c5516f887u, 0x373294604679382bu, 0xaf1ff7a888adcd35u, 0x18ddf279a2c5800bu, | 
					
						
							|  |  |  |  |     0x18ddf279a2c5800bu, 0x505a90e2542582cbu, 0x5bacad2cd8d5dc2bu, 0xfe3152bcbff89f41u, | 
					
						
							|  |  |  |  |     0xe1467e88bf829351u, 0xb8001adb9e31b4d5u, 0x2803ac06a0cbb91fu, 0x1904b5d698805799u, | 
					
						
							|  |  |  |  |     0xe12a648b5c831461u, 0x3516abbd6160cfa9u, 0xac46d25f12fe036du, 0x78bfa1da906b00efu, | 
					
						
							|  |  |  |  |     0xf6390338b7f111bdu, 0x0f25f80f538255d9u, 0x4ec8ca55b8db140fu, 0x4ff670740b9b30a1u, | 
					
						
							|  |  |  |  |     0x8fd032443a07f325u, 0x80dfe7965c83eeb5u, 0xa3dc1714d1213afdu, 0x205b7bbfcdc62007u, | 
					
						
							|  |  |  |  |     0xa78126bbe140a093u, 0x9de1dc61ca7550cfu, 0x84f0046d01b492c5u, 0x2d91810b945de0f3u, | 
					
						
							|  |  |  |  |     0xf5408b7f6008aa71u, 0x43707f4863034149u, 0xdac65fb9679279d5u, 0xc48406e7d1114eb7u, | 
					
						
							|  |  |  |  |     0xa7dc9ed3c88e1271u, 0xfb25b2efdb9cb30du, 0x1bebda0951c4df63u, 0x5c85e975580ee5bdu, | 
					
						
							|  |  |  |  |     0x1591bc60082cb137u, 0x2c38606318ef25d7u, 0x76ca72f7c5c63e27u, 0xf04a75d17baa0915u, | 
					
						
							|  |  |  |  |     0x77458175139ae30du, 0x0e6c1330bc1b9421u, 0xdf87d2b5797e8293u, 0xefa5c703e1e68925u, | 
					
						
							|  |  |  |  |     0x2b6b1b3278b4f6e1u, 0xceee27b382394249u, 0xd74e3829f5dab91du, 0xfdb17989c26b5f1fu, | 
					
						
							|  |  |  |  |     0xc1b7d18781530845u, 0x7b4436b2105a8561u, 0x7ba7c0418372a7d7u, 0x9dbc5c67feb6c639u, | 
					
						
							|  |  |  |  |     0x502686d7f6ff6b8fu, 0x6101855406be7a1fu, 0x9956afb5806930e7u, 0xe1f0ee88af40f7c5u, | 
					
						
							|  |  |  |  |     0x984b057bda5c1151u, 0x9a49819acc13ea05u, 0x8ef0dead0896ef27u, 0x71f7826efe292b21u, | 
					
						
							|  |  |  |  |     0xad80a480e46986efu, 0x01cdc0ebf5e0c6f7u, 0x6e06f839968f68dbu, 0xdd5943ab56e76139u, | 
					
						
							|  |  |  |  |     0xcdcf31bf8604c5e7u, 0x7e2b4a847054a1cbu, 0x0ca75697a4d3d0f5u, 0x4703f53ac514a98bu, | 
					
						
							|  |  |  |  | }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /* inverses of reduced_factorial_odd_part values modulo 2**64.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Python code to generate the values: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     import math | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     for n in range(128): | 
					
						
							|  |  |  |  |         fac = math.factorial(n) | 
					
						
							|  |  |  |  |         fac_odd_part = fac // (fac & -fac)
 | 
					
						
							|  |  |  |  |         inverted_fac_odd_part = pow(fac_odd_part, -1, 2**64) | 
					
						
							|  |  |  |  |         print(f"{inverted_fac_odd_part:#018x}u") | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | static const uint64_t inverted_factorial_odd_part[] = { | 
					
						
							|  |  |  |  |     0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0xaaaaaaaaaaaaaaabu, | 
					
						
							|  |  |  |  |     0xaaaaaaaaaaaaaaabu, 0xeeeeeeeeeeeeeeefu, 0x4fa4fa4fa4fa4fa5u, 0x2ff2ff2ff2ff2ff3u, | 
					
						
							|  |  |  |  |     0x2ff2ff2ff2ff2ff3u, 0x938cc70553e3771bu, 0xb71c27cddd93e49fu, 0xb38e3229fcdee63du, | 
					
						
							|  |  |  |  |     0xe684bb63544a4cbfu, 0xc2f684917ca340fbu, 0xf747c9cba417526du, 0xbb26eb51d7bd49c3u, | 
					
						
							|  |  |  |  |     0xbb26eb51d7bd49c3u, 0xb0a7efb985294093u, 0xbe4b8c69f259eabbu, 0x6854d17ed6dc4fb9u, | 
					
						
							|  |  |  |  |     0xe1aa904c915f4325u, 0x3b8206df131cead1u, 0x79c6009fea76fe13u, 0xd8c5d381633cd365u, | 
					
						
							|  |  |  |  |     0x4841f12b21144677u, 0x4a91ff68200b0d0fu, 0x8f9513a58c4f9e8bu, 0x2b3e690621a42251u, | 
					
						
							|  |  |  |  |     0x4f520f00e03c04e7u, 0x2edf84ee600211d3u, 0xadcaa2764aaacdfdu, 0x161f4f9033f4fe63u, | 
					
						
							|  |  |  |  |     0x161f4f9033f4fe63u, 0xbada2932ea4d3e03u, 0xcec189f3efaa30d3u, 0xf7475bb68330bf91u, | 
					
						
							|  |  |  |  |     0x37eb7bf7d5b01549u, 0x46b35660a4e91555u, 0xa567c12d81f151f7u, 0x4c724007bb2071b1u, | 
					
						
							|  |  |  |  |     0x0f4a0cce58a016bdu, 0xfa21068e66106475u, 0x244ab72b5a318ae1u, 0x366ce67e080d0f23u, | 
					
						
							|  |  |  |  |     0xd666fdae5dd2a449u, 0xd740ddd0acc06a0du, 0xb050bbbb28e6f97bu, 0x70b003fe890a5c75u, | 
					
						
							|  |  |  |  |     0xd03aabff83037427u, 0x13ec4ca72c783bd7u, 0x90282c06afdbd96fu, 0x4414ddb9db4a95d5u, | 
					
						
							|  |  |  |  |     0xa2c68735ae6832e9u, 0xbf72d71455676665u, 0xa8469fab6b759b7fu, 0xc1e55b56e606caf9u, | 
					
						
							|  |  |  |  |     0x40455630fc4a1cffu, 0x0120a7b0046d16f7u, 0xa7c3553b08faef23u, 0x9f0bfd1b08d48639u, | 
					
						
							|  |  |  |  |     0xa433ffce9a304d37u, 0xa22ad1d53915c683u, 0xcb6cbc723ba5dd1du, 0x547fb1b8ab9d0ba3u, | 
					
						
							|  |  |  |  |     0x547fb1b8ab9d0ba3u, 0x8f15a826498852e3u, 0x32e1a03f38880283u, 0x3de4cce63283f0c1u, | 
					
						
							|  |  |  |  |     0x5dfe6667e4da95b1u, 0xfda6eeeef479e47du, 0xf14de991cc7882dfu, 0xe68db79247630ca9u, | 
					
						
							|  |  |  |  |     0xa7d6db8207ee8fa1u, 0x255e1f0fcf034499u, 0xc9a8990e43dd7e65u, 0x3279b6f289702e0fu, | 
					
						
							|  |  |  |  |     0xe7b5905d9b71b195u, 0x03025ba41ff0da69u, 0xb7df3d6d3be55aefu, 0xf89b212ebff2b361u, | 
					
						
							|  |  |  |  |     0xfe856d095996f0adu, 0xd6e533e9fdf20f9du, 0xf8c0e84a63da3255u, 0xa677876cd91b4db7u, | 
					
						
							|  |  |  |  |     0x07ed4f97780d7d9bu, 0x90a8705f258db62fu, 0xa41bbb2be31b1c0du, 0x6ec28690b038383bu, | 
					
						
							|  |  |  |  |     0xdb860c3bb2edd691u, 0x0838286838a980f9u, 0x558417a74b36f77du, 0x71779afc3646ef07u, | 
					
						
							|  |  |  |  |     0x743cda377ccb6e91u, 0x7fdf9f3fe89153c5u, 0xdc97d25df49b9a4bu, 0x76321a778eb37d95u, | 
					
						
							|  |  |  |  |     0x7cbb5e27da3bd487u, 0x9cff4ade1a009de7u, 0x70eb166d05c15197u, 0xdcf0460b71d5fe3du, | 
					
						
							|  |  |  |  |     0x5ac1ee5260b6a3c5u, 0xc922dedfdd78efe1u, 0xe5d381dc3b8eeb9bu, 0xd57e5347bafc6aadu, | 
					
						
							|  |  |  |  |     0x86939040983acd21u, 0x395b9d69740a4ff9u, 0x1467299c8e43d135u, 0x5fe440fcad975cdfu, | 
					
						
							|  |  |  |  |     0xcaa9a39794a6ca8du, 0xf61dbd640868dea1u, 0xac09d98d74843be7u, 0x2b103b9e1a6b4809u, | 
					
						
							|  |  |  |  |     0x2ab92d16960f536fu, 0x6653323d5e3681dfu, 0xefd48c1c0624e2d7u, 0xa496fefe04816f0du, | 
					
						
							|  |  |  |  |     0x1754a7b07bbdd7b1u, 0x23353c829a3852cdu, 0xbf831261abd59097u, 0x57a8e656df0618e1u, | 
					
						
							|  |  |  |  |     0x16e9206c3100680fu, 0xadad4c6ee921dac7u, 0x635f2b3860265353u, 0xdd6d0059f44b3d09u, | 
					
						
							|  |  |  |  |     0xac4dd6b894447dd7u, 0x42ea183eeaa87be3u, 0x15612d1550ee5b5du, 0x226fa19d656cb623u, | 
					
						
							|  |  |  |  | }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /* exponent of the largest power of 2 dividing factorial(n), for n in range(68)
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Python code to generate the values: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | import math | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | for n in range(128): | 
					
						
							|  |  |  |  |     fac = math.factorial(n) | 
					
						
							|  |  |  |  |     fac_trailing_zeros = (fac & -fac).bit_length() - 1 | 
					
						
							|  |  |  |  |     print(fac_trailing_zeros) | 
					
						
							|  |  |  |  | */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static const uint8_t factorial_trailing_zeros[] = { | 
					
						
							|  |  |  |  |      0,  0,  1,  1,  3,  3,  4,  4,  7,  7,  8,  8, 10, 10, 11, 11,  //  0-15
 | 
					
						
							|  |  |  |  |     15, 15, 16, 16, 18, 18, 19, 19, 22, 22, 23, 23, 25, 25, 26, 26,  // 16-31
 | 
					
						
							|  |  |  |  |     31, 31, 32, 32, 34, 34, 35, 35, 38, 38, 39, 39, 41, 41, 42, 42,  // 32-47
 | 
					
						
							|  |  |  |  |     46, 46, 47, 47, 49, 49, 50, 50, 53, 53, 54, 54, 56, 56, 57, 57,  // 48-63
 | 
					
						
							|  |  |  |  |     63, 63, 64, 64, 66, 66, 67, 67, 70, 70, 71, 71, 73, 73, 74, 74,  // 64-79
 | 
					
						
							|  |  |  |  |     78, 78, 79, 79, 81, 81, 82, 82, 85, 85, 86, 86, 88, 88, 89, 89,  // 80-95
 | 
					
						
							|  |  |  |  |     94, 94, 95, 95, 97, 97, 98, 98, 101, 101, 102, 102, 104, 104, 105, 105,  // 96-111
 | 
					
						
							|  |  |  |  |     109, 109, 110, 110, 112, 112, 113, 113, 116, 116, 117, 117, 119, 119, 120, 120,  // 112-127
 | 
					
						
							|  |  |  |  | }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  | /* Number of permutations and combinations.
 | 
					
						
							|  |  |  |  |  * P(n, k) = n! / (n-k)! | 
					
						
							|  |  |  |  |  * C(n, k) = P(n, k) / k! | 
					
						
							|  |  |  |  |  */ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /* Calculate C(n, k) for n in the 63-bit range. */ | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | perm_comb_small(unsigned long long n, unsigned long long k, int iscomb) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
											
												gh-102837: improve test coverage for math module (#102523)
- input checks for math_1(L989), math_1a(L1023), math_2(L1064,L1071), hypot(L2682), log(L2307), ldexp(L2168), ceil(L1165), floor(L1236,L1239) and dist(L2587,L2588,L2628).
- drop inaccessible "if" branch (L3518) in perm_comb_small()
- improve fsum coverage for exceptional cases (L1433,L1438,L1451,L1497), ditto fmod(L2378)
- rewrite modf to fix inaccessible case(L2229), ditto for pow(L2988)
    
(all line numbers are wrt the main branch at 5e6661bce9)
											
										 
											2023-09-03 11:48:47 +03:00
										 |  |  |  |     assert(k != 0); | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* For small enough n and k the result fits in the 64-bit range and can
 | 
					
						
							|  |  |  |  |      * be calculated without allocating intermediate PyLong objects. */ | 
					
						
							| 
									
										
										
										
											2022-01-09 15:32:25 +02:00
										 |  |  |  |     if (iscomb) { | 
					
						
							|  |  |  |  |         /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)
 | 
					
						
							|  |  |  |  |          * fits into a uint64_t.  Exclude k = 1, because the second fast | 
					
						
							|  |  |  |  |          * path is faster for this case.*/ | 
					
						
							|  |  |  |  |         static const unsigned char fast_comb_limits1[] = { | 
					
						
							|  |  |  |  |             0, 0, 127, 127, 127, 127, 127, 127,  // 0-7
 | 
					
						
							|  |  |  |  |             127, 127, 127, 127, 127, 127, 127, 127,  // 8-15
 | 
					
						
							|  |  |  |  |             116, 105, 97, 91, 86, 82, 78, 76,  // 16-23
 | 
					
						
							|  |  |  |  |             74, 72, 71, 70, 69, 68, 68, 67,  // 24-31
 | 
					
						
							|  |  |  |  |             67, 67, 67,  // 32-34
 | 
					
						
							|  |  |  |  |         }; | 
					
						
							|  |  |  |  |         if (k < Py_ARRAY_LENGTH(fast_comb_limits1) && n <= fast_comb_limits1[k]) { | 
					
						
							|  |  |  |  |             /*
 | 
					
						
							|  |  |  |  |                 comb(n, k) fits into a uint64_t. We compute it as | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                     comb_odd_part << shift | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |                 where 2**shift is the largest power of two dividing comb(n, k) | 
					
						
							|  |  |  |  |                 and comb_odd_part is comb(n, k) >> shift. comb_odd_part can be | 
					
						
							|  |  |  |  |                 calculated efficiently via arithmetic modulo 2**64, using three | 
					
						
							|  |  |  |  |                 lookups and two uint64_t multiplications. | 
					
						
							|  |  |  |  |             */ | 
					
						
							|  |  |  |  |             uint64_t comb_odd_part = reduced_factorial_odd_part[n] | 
					
						
							|  |  |  |  |                                    * inverted_factorial_odd_part[k] | 
					
						
							|  |  |  |  |                                    * inverted_factorial_odd_part[n - k]; | 
					
						
							|  |  |  |  |             int shift = factorial_trailing_zeros[n] | 
					
						
							|  |  |  |  |                       - factorial_trailing_zeros[k] | 
					
						
							|  |  |  |  |                       - factorial_trailing_zeros[n - k]; | 
					
						
							|  |  |  |  |             return PyLong_FromUnsignedLongLong(comb_odd_part << shift); | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)*k
 | 
					
						
							|  |  |  |  |          * fits into a long long (which is at least 64 bit).  Only contains | 
					
						
							|  |  |  |  |          * items larger than in fast_comb_limits1. */ | 
					
						
							|  |  |  |  |         static const unsigned long long fast_comb_limits2[] = { | 
					
						
							|  |  |  |  |             0, ULLONG_MAX, 4294967296ULL, 3329022, 102570, 13467, 3612, 1449,  // 0-7
 | 
					
						
							|  |  |  |  |             746, 453, 308, 227, 178, 147,  // 8-13
 | 
					
						
							|  |  |  |  |         }; | 
					
						
							|  |  |  |  |         if (k < Py_ARRAY_LENGTH(fast_comb_limits2) && n <= fast_comb_limits2[k]) { | 
					
						
							|  |  |  |  |             /* C(n, k) = C(n, k-1) * (n-k+1) / k */ | 
					
						
							|  |  |  |  |             unsigned long long result = n; | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |             for (unsigned long long i = 1; i < k;) { | 
					
						
							|  |  |  |  |                 result *= --n; | 
					
						
							|  |  |  |  |                 result /= ++i; | 
					
						
							|  |  |  |  |             } | 
					
						
							| 
									
										
										
										
											2022-01-09 15:32:25 +02:00
										 |  |  |  |             return PyLong_FromUnsignedLongLong(result); | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2022-01-09 15:32:25 +02:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  |     else { | 
					
						
							|  |  |  |  |         /* Maps k to the maximal n so that k <= n and P(n, k)
 | 
					
						
							|  |  |  |  |          * fits into a long long (which is at least 64 bit). */ | 
					
						
							|  |  |  |  |         static const unsigned long long fast_perm_limits[] = { | 
					
						
							|  |  |  |  |             0, ULLONG_MAX, 4294967296ULL, 2642246, 65537, 7133, 1627, 568,  // 0-7
 | 
					
						
							|  |  |  |  |             259, 142, 88, 61, 45, 36, 30, 26,  // 8-15
 | 
					
						
							|  |  |  |  |             24, 22, 21, 20, 20,  // 16-20
 | 
					
						
							|  |  |  |  |         }; | 
					
						
							|  |  |  |  |         if (k < Py_ARRAY_LENGTH(fast_perm_limits) && n <= fast_perm_limits[k]) { | 
					
						
							|  |  |  |  |             if (n <= 127) { | 
					
						
							|  |  |  |  |                 /* P(n, k) fits into a uint64_t. */ | 
					
						
							|  |  |  |  |                 uint64_t perm_odd_part = reduced_factorial_odd_part[n] | 
					
						
							|  |  |  |  |                                        * inverted_factorial_odd_part[n - k]; | 
					
						
							|  |  |  |  |                 int shift = factorial_trailing_zeros[n] | 
					
						
							|  |  |  |  |                           - factorial_trailing_zeros[n - k]; | 
					
						
							|  |  |  |  |                 return PyLong_FromUnsignedLongLong(perm_odd_part << shift); | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |             /* P(n, k) = P(n, k-1) * (n-k+1) */ | 
					
						
							|  |  |  |  |             unsigned long long result = n; | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |             for (unsigned long long i = 1; i < k;) { | 
					
						
							|  |  |  |  |                 result *= --n; | 
					
						
							|  |  |  |  |                 ++i; | 
					
						
							|  |  |  |  |             } | 
					
						
							| 
									
										
										
										
											2022-01-09 15:32:25 +02:00
										 |  |  |  |             return PyLong_FromUnsignedLongLong(result); | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-01-09 15:32:25 +02:00
										 |  |  |  |     /* For larger n use recursive formulas:
 | 
					
						
							|  |  |  |  |      * | 
					
						
							|  |  |  |  |      *   P(n, k) = P(n, j) * P(n-j, k-j) | 
					
						
							|  |  |  |  |      *   C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j)
 | 
					
						
							|  |  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     unsigned long long j = k / 2; | 
					
						
							|  |  |  |  |     PyObject *a, *b; | 
					
						
							|  |  |  |  |     a = perm_comb_small(n, j, iscomb); | 
					
						
							|  |  |  |  |     if (a == NULL) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     b = perm_comb_small(n - j, k - j, iscomb); | 
					
						
							|  |  |  |  |     if (b == NULL) { | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     Py_SETREF(a, PyNumber_Multiply(a, b)); | 
					
						
							|  |  |  |  |     Py_DECREF(b); | 
					
						
							|  |  |  |  |     if (iscomb && a != NULL) { | 
					
						
							|  |  |  |  |         b = perm_comb_small(k, j, 1); | 
					
						
							|  |  |  |  |         if (b == NULL) { | 
					
						
							|  |  |  |  |             goto error; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         Py_SETREF(a, PyNumber_FloorDivide(a, b)); | 
					
						
							|  |  |  |  |         Py_DECREF(b); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return a; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | error: | 
					
						
							|  |  |  |  |     Py_DECREF(a); | 
					
						
							|  |  |  |  |     return NULL; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | /* Calculate P(n, k) or C(n, k) using recursive formulas.
 | 
					
						
							|  |  |  |  |  * It is more efficient than sequential multiplication thanks to | 
					
						
							|  |  |  |  |  * Karatsuba multiplication. | 
					
						
							|  |  |  |  |  */ | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | perm_comb(PyObject *n, unsigned long long k, int iscomb) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     if (k == 0) { | 
					
						
							|  |  |  |  |         return PyLong_FromLong(1); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (k == 1) { | 
					
						
							| 
									
										
										
										
											2022-11-14 16:21:23 +01:00
										 |  |  |  |         return Py_NewRef(n); | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     /* P(n, k) = P(n, j) * P(n-j, k-j) */ | 
					
						
							|  |  |  |  |     /* C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) */ | 
					
						
							|  |  |  |  |     unsigned long long j = k / 2; | 
					
						
							|  |  |  |  |     PyObject *a, *b; | 
					
						
							|  |  |  |  |     a = perm_comb(n, j, iscomb); | 
					
						
							|  |  |  |  |     if (a == NULL) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     PyObject *t = PyLong_FromUnsignedLongLong(j); | 
					
						
							|  |  |  |  |     if (t == NULL) { | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     n = PyNumber_Subtract(n, t); | 
					
						
							|  |  |  |  |     Py_DECREF(t); | 
					
						
							|  |  |  |  |     if (n == NULL) { | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     b = perm_comb(n, k - j, iscomb); | 
					
						
							|  |  |  |  |     Py_DECREF(n); | 
					
						
							|  |  |  |  |     if (b == NULL) { | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     Py_SETREF(a, PyNumber_Multiply(a, b)); | 
					
						
							|  |  |  |  |     Py_DECREF(b); | 
					
						
							|  |  |  |  |     if (iscomb && a != NULL) { | 
					
						
							|  |  |  |  |         b = perm_comb_small(k, j, 1); | 
					
						
							|  |  |  |  |         if (b == NULL) { | 
					
						
							|  |  |  |  |             goto error; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         Py_SETREF(a, PyNumber_FloorDivide(a, b)); | 
					
						
							|  |  |  |  |         Py_DECREF(b); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return a; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | error: | 
					
						
							|  |  |  |  |     Py_DECREF(a); | 
					
						
							|  |  |  |  |     return NULL; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.perm | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     n: object | 
					
						
							| 
									
										
										
										
											2019-06-08 08:58:11 -07:00
										 |  |  |  |     k: object = None | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Number of ways to choose k items from n items without repetition and with order. | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-04 01:23:06 -07:00
										 |  |  |  | Evaluates to n! / (n - k)! when k <= n and evaluates | 
					
						
							|  |  |  |  | to zero when k > n. | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-08 08:58:11 -07:00
										 |  |  |  | If k is not specified or is None, then k defaults to n | 
					
						
							|  |  |  |  | and the function returns n!. | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-04 01:23:06 -07:00
										 |  |  |  | Raises TypeError if either of the arguments are not integers. | 
					
						
							|  |  |  |  | Raises ValueError if either of the arguments are negative. | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_perm_impl(PyObject *module, PyObject *n, PyObject *k) | 
					
						
							| 
									
										
										
										
											2019-06-08 08:58:11 -07:00
										 |  |  |  | /*[clinic end generated code: output=e021a25469653e23 input=5311c5a00f359b53]*/ | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     PyObject *result = NULL; | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  |     int overflow, cmp; | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     long long ki, ni; | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-08 08:58:11 -07:00
										 |  |  |  |     if (k == Py_None) { | 
					
						
							|  |  |  |  |         return math_factorial(module, n); | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  |     n = PyNumber_Index(n); | 
					
						
							|  |  |  |  |     if (n == NULL) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     k = PyNumber_Index(k); | 
					
						
							|  |  |  |  |     if (k == NULL) { | 
					
						
							|  |  |  |  |         Py_DECREF(n); | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     assert(PyLong_CheckExact(n) && PyLong_CheckExact(k)); | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-22 14:49:51 +00:00
										 |  |  |  |     if (_PyLong_IsNegative((PyLongObject *)n)) { | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  |         PyErr_SetString(PyExc_ValueError, | 
					
						
							|  |  |  |  |                         "n must be a non-negative integer"); | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2023-03-22 14:49:51 +00:00
										 |  |  |  |     if (_PyLong_IsNegative((PyLongObject *)k)) { | 
					
						
							| 
									
										
										
										
											2019-06-16 11:06:06 +01:00
										 |  |  |  |         PyErr_SetString(PyExc_ValueError, | 
					
						
							|  |  |  |  |                         "k must be a non-negative integer"); | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  |     cmp = PyObject_RichCompareBool(n, k, Py_LT); | 
					
						
							|  |  |  |  |     if (cmp != 0) { | 
					
						
							|  |  |  |  |         if (cmp > 0) { | 
					
						
							| 
									
										
										
										
											2019-06-04 01:23:06 -07:00
										 |  |  |  |             result = PyLong_FromLong(0); | 
					
						
							|  |  |  |  |             goto done; | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  |         } | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     ki = PyLong_AsLongLongAndOverflow(k, &overflow); | 
					
						
							|  |  |  |  |     assert(overflow >= 0 && !PyErr_Occurred()); | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  |     if (overflow > 0) { | 
					
						
							|  |  |  |  |         PyErr_Format(PyExc_OverflowError, | 
					
						
							|  |  |  |  |                      "k must not exceed %lld", | 
					
						
							|  |  |  |  |                      LLONG_MAX); | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     assert(ki >= 0); | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     ni = PyLong_AsLongLongAndOverflow(n, &overflow); | 
					
						
							|  |  |  |  |     assert(overflow >= 0 && !PyErr_Occurred()); | 
					
						
							|  |  |  |  |     if (!overflow && ki > 1) { | 
					
						
							|  |  |  |  |         assert(ni >= 0); | 
					
						
							|  |  |  |  |         result = perm_comb_small((unsigned long long)ni, | 
					
						
							|  |  |  |  |                                  (unsigned long long)ki, 0); | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     else { | 
					
						
							|  |  |  |  |         result = perm_comb(n, (unsigned long long)ki, 0); | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | done: | 
					
						
							|  |  |  |  |     Py_DECREF(n); | 
					
						
							|  |  |  |  |     Py_DECREF(k); | 
					
						
							|  |  |  |  |     return result; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | error: | 
					
						
							|  |  |  |  |     Py_DECREF(n); | 
					
						
							|  |  |  |  |     Py_DECREF(k); | 
					
						
							|  |  |  |  |     return NULL; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.comb | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-01 22:09:02 +03:00
										 |  |  |  |     n: object | 
					
						
							|  |  |  |  |     k: object | 
					
						
							|  |  |  |  |     / | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-01 22:09:02 +03:00
										 |  |  |  | Number of ways to choose k items from n items without repetition and without order. | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-04 01:23:06 -07:00
										 |  |  |  | Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates | 
					
						
							|  |  |  |  | to zero when k > n. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Also called the binomial coefficient because it is equivalent | 
					
						
							|  |  |  |  | to the coefficient of k-th term in polynomial expansion of the | 
					
						
							|  |  |  |  | expression (1 + x)**n. | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-04 01:23:06 -07:00
										 |  |  |  | Raises TypeError if either of the arguments are not integers. | 
					
						
							|  |  |  |  | Raises ValueError if either of the arguments are negative. | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							|  |  |  |  | math_comb_impl(PyObject *module, PyObject *n, PyObject *k) | 
					
						
							| 
									
										
										
										
											2019-06-04 01:23:06 -07:00
										 |  |  |  | /*[clinic end generated code: output=bd2cec8d854f3493 input=9a05315af2518709]*/ | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     PyObject *result = NULL, *temp; | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |     int overflow, cmp; | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     long long ki, ni; | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-01 22:09:02 +03:00
										 |  |  |  |     n = PyNumber_Index(n); | 
					
						
							|  |  |  |  |     if (n == NULL) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2019-06-01 22:09:02 +03:00
										 |  |  |  |     k = PyNumber_Index(k); | 
					
						
							|  |  |  |  |     if (k == NULL) { | 
					
						
							|  |  |  |  |         Py_DECREF(n); | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     assert(PyLong_CheckExact(n) && PyLong_CheckExact(k)); | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-22 14:49:51 +00:00
										 |  |  |  |     if (_PyLong_IsNegative((PyLongObject *)n)) { | 
					
						
							| 
									
										
										
										
											2019-06-01 22:09:02 +03:00
										 |  |  |  |         PyErr_SetString(PyExc_ValueError, | 
					
						
							|  |  |  |  |                         "n must be a non-negative integer"); | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2023-03-22 14:49:51 +00:00
										 |  |  |  |     if (_PyLong_IsNegative((PyLongObject *)k)) { | 
					
						
							| 
									
										
										
										
											2019-06-16 11:06:06 +01:00
										 |  |  |  |         PyErr_SetString(PyExc_ValueError, | 
					
						
							|  |  |  |  |                         "k must be a non-negative integer"); | 
					
						
							|  |  |  |  |         goto error; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |     ni = PyLong_AsLongLongAndOverflow(n, &overflow); | 
					
						
							|  |  |  |  |     assert(overflow >= 0 && !PyErr_Occurred()); | 
					
						
							|  |  |  |  |     if (!overflow) { | 
					
						
							|  |  |  |  |         assert(ni >= 0); | 
					
						
							|  |  |  |  |         ki = PyLong_AsLongLongAndOverflow(k, &overflow); | 
					
						
							|  |  |  |  |         assert(overflow >= 0 && !PyErr_Occurred()); | 
					
						
							|  |  |  |  |         if (overflow || ki > ni) { | 
					
						
							|  |  |  |  |             result = PyLong_FromLong(0); | 
					
						
							|  |  |  |  |             goto done; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         assert(ki >= 0); | 
					
						
							| 
									
										
										
										
											2021-12-28 12:26:40 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |         ki = Py_MIN(ki, ni - ki); | 
					
						
							|  |  |  |  |         if (ki > 1) { | 
					
						
							|  |  |  |  |             result = perm_comb_small((unsigned long long)ni, | 
					
						
							|  |  |  |  |                                      (unsigned long long)ki, 1); | 
					
						
							|  |  |  |  |             goto done; | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         /* For k == 1 just return the original n in perm_comb(). */ | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |     } | 
					
						
							|  |  |  |  |     else { | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |         /* k = min(k, n - k) */ | 
					
						
							|  |  |  |  |         temp = PyNumber_Subtract(n, k); | 
					
						
							|  |  |  |  |         if (temp == NULL) { | 
					
						
							| 
									
										
										
										
											2019-06-01 22:09:02 +03:00
										 |  |  |  |             goto error; | 
					
						
							|  |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2023-03-22 14:49:51 +00:00
										 |  |  |  |         assert(PyLong_Check(temp)); | 
					
						
							|  |  |  |  |         if (_PyLong_IsNegative((PyLongObject *)temp)) { | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |             Py_DECREF(temp); | 
					
						
							|  |  |  |  |             result = PyLong_FromLong(0); | 
					
						
							|  |  |  |  |             goto done; | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |         cmp = PyObject_RichCompareBool(temp, k, Py_LT); | 
					
						
							|  |  |  |  |         if (cmp > 0) { | 
					
						
							|  |  |  |  |             Py_SETREF(k, temp); | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |         else { | 
					
						
							|  |  |  |  |             Py_DECREF(temp); | 
					
						
							|  |  |  |  |             if (cmp < 0) { | 
					
						
							|  |  |  |  |                 goto error; | 
					
						
							|  |  |  |  |             } | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |         ki = PyLong_AsLongLongAndOverflow(k, &overflow); | 
					
						
							|  |  |  |  |         assert(overflow >= 0 && !PyErr_Occurred()); | 
					
						
							|  |  |  |  |         if (overflow) { | 
					
						
							|  |  |  |  |             PyErr_Format(PyExc_OverflowError, | 
					
						
							|  |  |  |  |                          "min(n - k, k) must not exceed %lld", | 
					
						
							|  |  |  |  |                          LLONG_MAX); | 
					
						
							| 
									
										
										
										
											2019-06-01 22:09:02 +03:00
										 |  |  |  |             goto error; | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |         } | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  |         assert(ki >= 0); | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-12-05 22:26:10 +02:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     result = perm_comb(n, (unsigned long long)ki, 1); | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-01 22:09:02 +03:00
										 |  |  |  | done: | 
					
						
							|  |  |  |  |     Py_DECREF(n); | 
					
						
							|  |  |  |  |     Py_DECREF(k); | 
					
						
							|  |  |  |  |     return result; | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-01 22:09:02 +03:00
										 |  |  |  | error: | 
					
						
							|  |  |  |  |     Py_DECREF(n); | 
					
						
							|  |  |  |  |     Py_DECREF(k); | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |     return NULL; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-01-12 02:15:42 +01:00
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.nextafter | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     y: double | 
					
						
							|  |  |  |  |     / | 
					
						
							| 
									
										
										
										
											2023-05-20 04:03:49 +08:00
										 |  |  |  |     * | 
					
						
							|  |  |  |  |     steps: object = None | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return the floating-point value the given number of steps after x towards y. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | If steps is not specified or is None, it defaults to 1. | 
					
						
							| 
									
										
										
										
											2020-01-12 02:15:42 +01:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-05-20 04:03:49 +08:00
										 |  |  |  | Raises a TypeError, if x or y is not a double, or if steps is not an integer. | 
					
						
							|  |  |  |  | Raises ValueError if steps is negative. | 
					
						
							| 
									
										
										
										
											2020-01-12 02:15:42 +01:00
										 |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static PyObject * | 
					
						
							| 
									
										
										
										
											2023-05-20 04:03:49 +08:00
										 |  |  |  | math_nextafter_impl(PyObject *module, double x, double y, PyObject *steps) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=cc6511f02afc099e input=7f2a5842112af2b4]*/ | 
					
						
							| 
									
										
										
										
											2020-01-12 02:15:42 +01:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2020-01-21 11:14:10 +01:00
										 |  |  |  | #if defined(_AIX)
 | 
					
						
							|  |  |  |  |     if (x == y) { | 
					
						
							|  |  |  |  |         /* On AIX 7.1, libm nextafter(-0.0, +0.0) returns -0.0.
 | 
					
						
							|  |  |  |  |            Bug fixed in bos.adt.libm 7.2.2.0 by APAR IV95512. */ | 
					
						
							|  |  |  |  |         return PyFloat_FromDouble(y); | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-01-20 15:20:13 +01:00
										 |  |  |  |     if (Py_IS_NAN(x)) { | 
					
						
							| 
									
										
										
										
											2021-01-29 23:04:50 +01:00
										 |  |  |  |         return PyFloat_FromDouble(x); | 
					
						
							| 
									
										
										
										
											2021-01-20 15:20:13 +01:00
										 |  |  |  |     } | 
					
						
							|  |  |  |  |     if (Py_IS_NAN(y)) { | 
					
						
							| 
									
										
										
										
											2021-01-29 23:04:50 +01:00
										 |  |  |  |         return PyFloat_FromDouble(y); | 
					
						
							| 
									
										
										
										
											2021-01-20 15:20:13 +01:00
										 |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2020-01-21 11:14:10 +01:00
										 |  |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2023-05-20 04:03:49 +08:00
										 |  |  |  |     if (steps == Py_None) { | 
					
						
							|  |  |  |  |         // fast path: we default to one step.
 | 
					
						
							|  |  |  |  |         return PyFloat_FromDouble(nextafter(x, y)); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     steps = PyNumber_Index(steps); | 
					
						
							|  |  |  |  |     if (steps == NULL) { | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     assert(PyLong_CheckExact(steps)); | 
					
						
							|  |  |  |  |     if (_PyLong_IsNegative((PyLongObject *)steps)) { | 
					
						
							|  |  |  |  |         PyErr_SetString(PyExc_ValueError, | 
					
						
							|  |  |  |  |                         "steps must be a non-negative integer"); | 
					
						
							|  |  |  |  |         Py_DECREF(steps); | 
					
						
							|  |  |  |  |         return NULL; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     unsigned long long usteps_ull = PyLong_AsUnsignedLongLong(steps); | 
					
						
							|  |  |  |  |     // Conveniently, uint64_t and double have the same number of bits
 | 
					
						
							|  |  |  |  |     // on all the platforms we care about.
 | 
					
						
							|  |  |  |  |     // So if an overflow occurs, we can just use UINT64_MAX.
 | 
					
						
							|  |  |  |  |     Py_DECREF(steps); | 
					
						
							|  |  |  |  |     if (usteps_ull >= UINT64_MAX) { | 
					
						
							|  |  |  |  |         // This branch includes the case where an error occurred, since
 | 
					
						
							|  |  |  |  |         // (unsigned long long)(-1) = ULLONG_MAX >= UINT64_MAX. Note that
 | 
					
						
							|  |  |  |  |         // usteps_ull can be strictly larger than UINT64_MAX on a machine
 | 
					
						
							|  |  |  |  |         // where unsigned long long has width > 64 bits.
 | 
					
						
							|  |  |  |  |         if (PyErr_Occurred()) { | 
					
						
							|  |  |  |  |             if (PyErr_ExceptionMatches(PyExc_OverflowError)) { | 
					
						
							|  |  |  |  |                 PyErr_Clear(); | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             else { | 
					
						
							|  |  |  |  |                 return NULL; | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |         usteps_ull = UINT64_MAX; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     assert(usteps_ull <= UINT64_MAX); | 
					
						
							|  |  |  |  |     uint64_t usteps = (uint64_t)usteps_ull; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (usteps == 0) { | 
					
						
							|  |  |  |  |         return PyFloat_FromDouble(x); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (Py_IS_NAN(x)) { | 
					
						
							|  |  |  |  |         return PyFloat_FromDouble(x); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if (Py_IS_NAN(y)) { | 
					
						
							|  |  |  |  |         return PyFloat_FromDouble(y); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     // We assume that double and uint64_t have the same endianness.
 | 
					
						
							|  |  |  |  |     // This is not guaranteed by the C-standard, but it is true for
 | 
					
						
							|  |  |  |  |     // all platforms we care about. (The most likely form of violation
 | 
					
						
							|  |  |  |  |     // would be a "mixed-endian" double.)
 | 
					
						
							|  |  |  |  |     union pun {double f; uint64_t i;}; | 
					
						
							|  |  |  |  |     union pun ux = {x}, uy = {y}; | 
					
						
							|  |  |  |  |     if (ux.i == uy.i) { | 
					
						
							|  |  |  |  |         return PyFloat_FromDouble(x); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const uint64_t sign_bit = 1ULL<<63; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     uint64_t ax = ux.i & ~sign_bit; | 
					
						
							|  |  |  |  |     uint64_t ay = uy.i & ~sign_bit; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     // opposite signs
 | 
					
						
							|  |  |  |  |     if (((ux.i ^ uy.i) & sign_bit)) { | 
					
						
							|  |  |  |  |         // NOTE: ax + ay can never overflow, because their most significant bit
 | 
					
						
							|  |  |  |  |         // ain't set.
 | 
					
						
							|  |  |  |  |         if (ax + ay <= usteps) { | 
					
						
							|  |  |  |  |             return PyFloat_FromDouble(uy.f); | 
					
						
							|  |  |  |  |         // This comparison has to use <, because <= would get +0.0 vs -0.0
 | 
					
						
							|  |  |  |  |         // wrong.
 | 
					
						
							|  |  |  |  |         } else if (ax < usteps) { | 
					
						
							|  |  |  |  |             union pun result = {.i = (uy.i & sign_bit) | (usteps - ax)}; | 
					
						
							|  |  |  |  |             return PyFloat_FromDouble(result.f); | 
					
						
							|  |  |  |  |         } else { | 
					
						
							|  |  |  |  |             ux.i -= usteps; | 
					
						
							|  |  |  |  |             return PyFloat_FromDouble(ux.f); | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     // same sign
 | 
					
						
							|  |  |  |  |     } else if (ax > ay) { | 
					
						
							|  |  |  |  |         if (ax - ay >= usteps) { | 
					
						
							|  |  |  |  |             ux.i -= usteps; | 
					
						
							|  |  |  |  |             return PyFloat_FromDouble(ux.f); | 
					
						
							|  |  |  |  |         } else { | 
					
						
							|  |  |  |  |             return PyFloat_FromDouble(uy.f); | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } else { | 
					
						
							|  |  |  |  |         if (ay - ax >= usteps) { | 
					
						
							|  |  |  |  |             ux.i += usteps; | 
					
						
							|  |  |  |  |             return PyFloat_FromDouble(ux.f); | 
					
						
							|  |  |  |  |         } else { | 
					
						
							|  |  |  |  |             return PyFloat_FromDouble(uy.f); | 
					
						
							|  |  |  |  |         } | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2020-01-12 02:15:42 +01:00
										 |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-01-13 12:44:35 +01:00
										 |  |  |  | /*[clinic input]
 | 
					
						
							|  |  |  |  | math.ulp -> double | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x: double | 
					
						
							|  |  |  |  |     / | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Return the value of the least significant bit of the float x. | 
					
						
							|  |  |  |  | [clinic start generated code]*/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static double | 
					
						
							|  |  |  |  | math_ulp_impl(PyObject *module, double x) | 
					
						
							|  |  |  |  | /*[clinic end generated code: output=f5207867a9384dd4 input=31f9bfbbe373fcaa]*/ | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     if (Py_IS_NAN(x)) { | 
					
						
							|  |  |  |  |         return x; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     x = fabs(x); | 
					
						
							|  |  |  |  |     if (Py_IS_INFINITY(x)) { | 
					
						
							|  |  |  |  |         return x; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2023-05-10 18:44:52 +02:00
										 |  |  |  |     double inf = Py_INFINITY; | 
					
						
							| 
									
										
										
										
											2020-01-13 12:44:35 +01:00
										 |  |  |  |     double x2 = nextafter(x, inf); | 
					
						
							|  |  |  |  |     if (Py_IS_INFINITY(x2)) { | 
					
						
							|  |  |  |  |         /* special case: x is the largest positive representable float */ | 
					
						
							|  |  |  |  |         x2 = nextafter(x, -inf); | 
					
						
							|  |  |  |  |         return x - x2; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return x2 - x; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-03-31 23:33:22 +09:00
										 |  |  |  | static int | 
					
						
							|  |  |  |  | math_exec(PyObject *module) | 
					
						
							|  |  |  |  | { | 
					
						
							| 
									
										
										
										
											2022-06-12 18:45:02 +09:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     math_module_state *state = get_math_module_state(module); | 
					
						
							|  |  |  |  |     state->str___ceil__ = PyUnicode_InternFromString("__ceil__"); | 
					
						
							|  |  |  |  |     if (state->str___ceil__ == NULL) { | 
					
						
							|  |  |  |  |         return -1; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     state->str___floor__ = PyUnicode_InternFromString("__floor__"); | 
					
						
							|  |  |  |  |     if (state->str___floor__ == NULL) { | 
					
						
							|  |  |  |  |         return -1; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     state->str___trunc__ = PyUnicode_InternFromString("__trunc__"); | 
					
						
							|  |  |  |  |     if (state->str___trunc__ == NULL) { | 
					
						
							|  |  |  |  |         return -1; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2023-07-18 10:50:47 +03:00
										 |  |  |  |     if (PyModule_Add(module, "pi", PyFloat_FromDouble(Py_MATH_PI)) < 0) { | 
					
						
							| 
									
										
										
										
											2020-03-31 23:33:22 +09:00
										 |  |  |  |         return -1; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2023-07-18 10:50:47 +03:00
										 |  |  |  |     if (PyModule_Add(module, "e", PyFloat_FromDouble(Py_MATH_E)) < 0) { | 
					
						
							| 
									
										
										
										
											2020-03-31 23:33:22 +09:00
										 |  |  |  |         return -1; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     // 2pi
 | 
					
						
							| 
									
										
										
										
											2023-07-18 10:50:47 +03:00
										 |  |  |  |     if (PyModule_Add(module, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) { | 
					
						
							| 
									
										
										
										
											2020-03-31 23:33:22 +09:00
										 |  |  |  |         return -1; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2023-07-18 10:50:47 +03:00
										 |  |  |  |     if (PyModule_Add(module, "inf", PyFloat_FromDouble(Py_INFINITY)) < 0) { | 
					
						
							| 
									
										
										
										
											2020-03-31 23:33:22 +09:00
										 |  |  |  |         return -1; | 
					
						
							|  |  |  |  |     } | 
					
						
							| 
									
										
										
										
											2023-07-18 10:50:47 +03:00
										 |  |  |  |     if (PyModule_Add(module, "nan", PyFloat_FromDouble(fabs(Py_NAN))) < 0) { | 
					
						
							| 
									
										
										
										
											2020-03-31 23:33:22 +09:00
										 |  |  |  |         return -1; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return 0; | 
					
						
							|  |  |  |  | } | 
					
						
							| 
									
										
										
										
											2020-01-13 12:44:35 +01:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-06-12 18:45:02 +09:00
										 |  |  |  | static int | 
					
						
							|  |  |  |  | math_clear(PyObject *module) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     math_module_state *state = get_math_module_state(module); | 
					
						
							|  |  |  |  |     Py_CLEAR(state->str___ceil__); | 
					
						
							|  |  |  |  |     Py_CLEAR(state->str___floor__); | 
					
						
							|  |  |  |  |     Py_CLEAR(state->str___trunc__); | 
					
						
							|  |  |  |  |     return 0; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | static void | 
					
						
							|  |  |  |  | math_free(void *module) | 
					
						
							|  |  |  |  | { | 
					
						
							|  |  |  |  |     math_clear((PyObject *)module); | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											1996-12-09 22:32:36 +00:00
										 |  |  |  | static PyMethodDef math_methods[] = { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     {"acos",            math_acos,      METH_O,         math_acos_doc}, | 
					
						
							|  |  |  |  |     {"acosh",           math_acosh,     METH_O,         math_acosh_doc}, | 
					
						
							|  |  |  |  |     {"asin",            math_asin,      METH_O,         math_asin_doc}, | 
					
						
							|  |  |  |  |     {"asinh",           math_asinh,     METH_O,         math_asinh_doc}, | 
					
						
							|  |  |  |  |     {"atan",            math_atan,      METH_O,         math_atan_doc}, | 
					
						
							| 
									
										
										
										
											2022-05-03 21:42:14 +02:00
										 |  |  |  |     {"atan2",           _PyCFunction_CAST(math_atan2),     METH_FASTCALL,  math_atan2_doc}, | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     {"atanh",           math_atanh,     METH_O,         math_atanh_doc}, | 
					
						
							| 
									
										
										
										
											2021-06-10 22:12:09 +05:30
										 |  |  |  |     {"cbrt",            math_cbrt,      METH_O,         math_cbrt_doc}, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     MATH_CEIL_METHODDEF | 
					
						
							| 
									
										
										
										
											2022-05-03 21:42:14 +02:00
										 |  |  |  |     {"copysign",        _PyCFunction_CAST(math_copysign),  METH_FASTCALL,  math_copysign_doc}, | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     {"cos",             math_cos,       METH_O,         math_cos_doc}, | 
					
						
							|  |  |  |  |     {"cosh",            math_cosh,      METH_O,         math_cosh_doc}, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     MATH_DEGREES_METHODDEF | 
					
						
							| 
									
										
										
										
											2018-07-31 00:45:49 -07:00
										 |  |  |  |     MATH_DIST_METHODDEF | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     {"erf",             math_erf,       METH_O,         math_erf_doc}, | 
					
						
							|  |  |  |  |     {"erfc",            math_erfc,      METH_O,         math_erfc_doc}, | 
					
						
							|  |  |  |  |     {"exp",             math_exp,       METH_O,         math_exp_doc}, | 
					
						
							| 
									
										
										
										
											2021-11-29 12:55:43 -06:00
										 |  |  |  |     {"exp2",            math_exp2,      METH_O,         math_exp2_doc}, | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     {"expm1",           math_expm1,     METH_O,         math_expm1_doc}, | 
					
						
							|  |  |  |  |     {"fabs",            math_fabs,      METH_O,         math_fabs_doc}, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     MATH_FACTORIAL_METHODDEF | 
					
						
							|  |  |  |  |     MATH_FLOOR_METHODDEF | 
					
						
							|  |  |  |  |     MATH_FMOD_METHODDEF | 
					
						
							|  |  |  |  |     MATH_FREXP_METHODDEF | 
					
						
							|  |  |  |  |     MATH_FSUM_METHODDEF | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     {"gamma",           math_gamma,     METH_O,         math_gamma_doc}, | 
					
						
							| 
									
										
										
										
											2022-05-03 21:42:14 +02:00
										 |  |  |  |     {"gcd",             _PyCFunction_CAST(math_gcd),       METH_FASTCALL,  math_gcd_doc}, | 
					
						
							|  |  |  |  |     {"hypot",           _PyCFunction_CAST(math_hypot),     METH_FASTCALL,  math_hypot_doc}, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     MATH_ISCLOSE_METHODDEF | 
					
						
							|  |  |  |  |     MATH_ISFINITE_METHODDEF | 
					
						
							|  |  |  |  |     MATH_ISINF_METHODDEF | 
					
						
							|  |  |  |  |     MATH_ISNAN_METHODDEF | 
					
						
							| 
									
										
										
										
											2019-05-18 12:29:50 +01:00
										 |  |  |  |     MATH_ISQRT_METHODDEF | 
					
						
							| 
									
										
										
										
											2022-05-03 21:42:14 +02:00
										 |  |  |  |     {"lcm",             _PyCFunction_CAST(math_lcm),       METH_FASTCALL,  math_lcm_doc}, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     MATH_LDEXP_METHODDEF | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     {"lgamma",          math_lgamma,    METH_O,         math_lgamma_doc}, | 
					
						
							| 
									
										
										
										
											2023-03-22 02:48:19 +03:00
										 |  |  |  |     {"log",             _PyCFunction_CAST(math_log),       METH_FASTCALL,  math_log_doc}, | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     {"log1p",           math_log1p,     METH_O,         math_log1p_doc}, | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     MATH_LOG10_METHODDEF | 
					
						
							|  |  |  |  |     MATH_LOG2_METHODDEF | 
					
						
							|  |  |  |  |     MATH_MODF_METHODDEF | 
					
						
							|  |  |  |  |     MATH_POW_METHODDEF | 
					
						
							|  |  |  |  |     MATH_RADIANS_METHODDEF | 
					
						
							| 
									
										
										
										
											2022-05-03 21:42:14 +02:00
										 |  |  |  |     {"remainder",       _PyCFunction_CAST(math_remainder), METH_FASTCALL,  math_remainder_doc}, | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     {"sin",             math_sin,       METH_O,         math_sin_doc}, | 
					
						
							|  |  |  |  |     {"sinh",            math_sinh,      METH_O,         math_sinh_doc}, | 
					
						
							|  |  |  |  |     {"sqrt",            math_sqrt,      METH_O,         math_sqrt_doc}, | 
					
						
							|  |  |  |  |     {"tan",             math_tan,       METH_O,         math_tan_doc}, | 
					
						
							|  |  |  |  |     {"tanh",            math_tanh,      METH_O,         math_tanh_doc}, | 
					
						
							| 
									
										
										
										
											2023-01-07 12:46:35 -06:00
										 |  |  |  |     MATH_SUMPROD_METHODDEF | 
					
						
							| 
									
										
										
										
											2017-01-19 18:13:09 +02:00
										 |  |  |  |     MATH_TRUNC_METHODDEF | 
					
						
							| 
									
										
										
										
											2019-02-07 07:04:02 +00:00
										 |  |  |  |     MATH_PROD_METHODDEF | 
					
						
							| 
									
										
										
										
											2019-06-02 11:16:49 +03:00
										 |  |  |  |     MATH_PERM_METHODDEF | 
					
						
							| 
									
										
										
										
											2019-06-01 12:51:27 +05:30
										 |  |  |  |     MATH_COMB_METHODDEF | 
					
						
							| 
									
										
										
										
											2020-01-12 02:15:42 +01:00
										 |  |  |  |     MATH_NEXTAFTER_METHODDEF | 
					
						
							| 
									
										
										
										
											2020-01-13 12:44:35 +01:00
										 |  |  |  |     MATH_ULP_METHODDEF | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     {NULL,              NULL}           /* sentinel */ | 
					
						
							| 
									
										
										
										
											1990-10-14 12:07:46 +00:00
										 |  |  |  | }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-03-31 23:33:22 +09:00
										 |  |  |  | static PyModuleDef_Slot math_slots[] = { | 
					
						
							|  |  |  |  |     {Py_mod_exec, math_exec}, | 
					
						
							| 
									
										
										
										
											2023-05-05 15:11:27 -06:00
										 |  |  |  |     {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED}, | 
					
						
							| 
									
										
										
										
											2020-03-31 23:33:22 +09:00
										 |  |  |  |     {0, NULL} | 
					
						
							|  |  |  |  | }; | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-06-13 20:33:02 +00:00
										 |  |  |  | PyDoc_STRVAR(module_doc, | 
					
						
							| 
									
										
										
										
											2019-05-17 05:59:14 -04:00
										 |  |  |  | "This module provides access to the mathematical functions\n" | 
					
						
							|  |  |  |  | "defined by the C standard."); | 
					
						
							| 
									
										
										
										
											1998-12-04 19:26:43 +00:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-06-11 05:26:20 +00:00
										 |  |  |  | static struct PyModuleDef mathmodule = { | 
					
						
							| 
									
										
										
										
											2010-05-09 15:52:27 +00:00
										 |  |  |  |     PyModuleDef_HEAD_INIT, | 
					
						
							| 
									
										
										
										
											2020-03-31 23:33:22 +09:00
										 |  |  |  |     .m_name = "math", | 
					
						
							|  |  |  |  |     .m_doc = module_doc, | 
					
						
							| 
									
										
										
										
											2022-06-12 18:45:02 +09:00
										 |  |  |  |     .m_size = sizeof(math_module_state), | 
					
						
							| 
									
										
										
										
											2020-03-31 23:33:22 +09:00
										 |  |  |  |     .m_methods = math_methods, | 
					
						
							|  |  |  |  |     .m_slots = math_slots, | 
					
						
							| 
									
										
										
										
											2022-06-12 18:45:02 +09:00
										 |  |  |  |     .m_clear = math_clear, | 
					
						
							|  |  |  |  |     .m_free = math_free, | 
					
						
							| 
									
										
										
										
											2008-06-11 05:26:20 +00:00
										 |  |  |  | }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2002-08-02 02:27:13 +00:00
										 |  |  |  | PyMODINIT_FUNC | 
					
						
							| 
									
										
										
										
											2008-06-11 05:26:20 +00:00
										 |  |  |  | PyInit_math(void) | 
					
						
							| 
									
										
										
										
											1990-10-14 12:07:46 +00:00
										 |  |  |  | { | 
					
						
							| 
									
										
										
										
											2020-03-31 23:33:22 +09:00
										 |  |  |  |     return PyModuleDef_Init(&mathmodule); | 
					
						
							| 
									
										
										
										
											1990-10-14 12:07:46 +00:00
										 |  |  |  | } |