| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | """
 | 
					
						
							|  |  |  |  | Basic statistics module. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | This module provides functions for calculating statistics of data, including | 
					
						
							|  |  |  |  | averages, variance, and standard deviation. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Calculating averages | 
					
						
							|  |  |  |  | -------------------- | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ==================  ============================================= | 
					
						
							|  |  |  |  | Function            Description | 
					
						
							|  |  |  |  | ==================  ============================================= | 
					
						
							|  |  |  |  | mean                Arithmetic mean (average) of data. | 
					
						
							| 
									
										
										
										
											2019-04-07 09:20:03 -07:00
										 |  |  |  | geometric_mean      Geometric mean of data. | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |  | harmonic_mean       Harmonic mean of data. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | median              Median (middle value) of data. | 
					
						
							|  |  |  |  | median_low          Low median of data. | 
					
						
							|  |  |  |  | median_high         High median of data. | 
					
						
							|  |  |  |  | median_grouped      Median, or 50th percentile, of grouped data. | 
					
						
							|  |  |  |  | mode                Mode (most common value) of data. | 
					
						
							| 
									
										
										
										
											2019-04-07 09:20:03 -07:00
										 |  |  |  | multimode           List of modes (most common values of data). | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | ==================  ============================================= | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Calculate the arithmetic mean ("the average") of data: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | >>> mean([-1.0, 2.5, 3.25, 5.75]) | 
					
						
							|  |  |  |  | 2.625 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Calculate the standard median of discrete data: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | >>> median([2, 3, 4, 5]) | 
					
						
							|  |  |  |  | 3.5 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Calculate the median, or 50th percentile, of data grouped into class intervals | 
					
						
							|  |  |  |  | centred on the data values provided. E.g. if your data points are rounded to | 
					
						
							|  |  |  |  | the nearest whole number: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | >>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS | 
					
						
							|  |  |  |  | 2.8333333333... | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | This should be interpreted in this way: you have two data points in the class | 
					
						
							|  |  |  |  | interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in | 
					
						
							|  |  |  |  | the class interval 3.5-4.5. The median of these data points is 2.8333... | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Calculating variability or spread | 
					
						
							|  |  |  |  | --------------------------------- | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | ==================  ============================================= | 
					
						
							|  |  |  |  | Function            Description | 
					
						
							|  |  |  |  | ==================  ============================================= | 
					
						
							|  |  |  |  | pvariance           Population variance of data. | 
					
						
							|  |  |  |  | variance            Sample variance of data. | 
					
						
							|  |  |  |  | pstdev              Population standard deviation of data. | 
					
						
							|  |  |  |  | stdev               Sample standard deviation of data. | 
					
						
							|  |  |  |  | ==================  ============================================= | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Calculate the standard deviation of sample data: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS | 
					
						
							|  |  |  |  | 4.38961843444... | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | If you have previously calculated the mean, you can pass it as the optional | 
					
						
							|  |  |  |  | second argument to the four "spread" functions to avoid recalculating it: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | >>> data = [1, 2, 2, 4, 4, 4, 5, 6] | 
					
						
							|  |  |  |  | >>> mu = mean(data) | 
					
						
							|  |  |  |  | >>> pvariance(data, mu) | 
					
						
							|  |  |  |  | 2.5 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | Exceptions | 
					
						
							|  |  |  |  | ---------- | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | A single exception is defined: StatisticsError is a subclass of ValueError. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | """
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  | __all__ = [ 'StatisticsError', 'NormalDist', | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |             'pstdev', 'pvariance', 'stdev', 'variance', | 
					
						
							|  |  |  |  |             'median',  'median_low', 'median_high', 'median_grouped', | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |  |             'mean', 'mode', 'multimode', 'harmonic_mean', 'fmean', | 
					
						
							| 
									
										
										
										
											2019-04-07 09:20:03 -07:00
										 |  |  |  |             'geometric_mean', | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |           ] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | import math | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |  | import numbers | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  | import random | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | from fractions import Fraction | 
					
						
							|  |  |  |  | from decimal import Decimal | 
					
						
							| 
									
										
										
										
											2017-03-27 16:05:26 +02:00
										 |  |  |  | from itertools import groupby | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |  | from bisect import bisect_left, bisect_right | 
					
						
							| 
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 |  |  |  | from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |  | from operator import itemgetter | 
					
						
							|  |  |  |  | from collections import Counter | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | # === Exceptions === | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | class StatisticsError(ValueError): | 
					
						
							|  |  |  |  |     pass | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | # === Private utilities === | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def _sum(data, start=0): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     """_sum(data [, start]) -> (type, sum, count)
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Return a high-precision sum of the given numeric data as a fraction, | 
					
						
							|  |  |  |  |     together with the type to be converted to and the count of items. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     If optional argument ``start`` is given, it is added to the total. | 
					
						
							|  |  |  |  |     If ``data`` is empty, ``start`` (defaulting to 0) is returned. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Examples | 
					
						
							|  |  |  |  |     -------- | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75) | 
					
						
							| 
									
										
										
										
											2016-07-13 21:13:29 -07:00
										 |  |  |  |     (<class 'float'>, Fraction(11, 1), 5) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     Some sources of round-off error will be avoided: | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |  |     # Built-in sum returns zero. | 
					
						
							|  |  |  |  |     >>> _sum([1e50, 1, -1e50] * 1000) | 
					
						
							| 
									
										
										
										
											2016-07-13 21:13:29 -07:00
										 |  |  |  |     (<class 'float'>, Fraction(1000, 1), 3000) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     Fractions and Decimals are also supported: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> from fractions import Fraction as F | 
					
						
							|  |  |  |  |     >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)]) | 
					
						
							| 
									
										
										
										
											2016-07-13 21:13:29 -07:00
										 |  |  |  |     (<class 'fractions.Fraction'>, Fraction(63, 20), 4) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> from decimal import Decimal as D | 
					
						
							|  |  |  |  |     >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")] | 
					
						
							|  |  |  |  |     >>> _sum(data) | 
					
						
							| 
									
										
										
										
											2016-07-13 21:13:29 -07:00
										 |  |  |  |     (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  |  |     Mixed types are currently treated as an error, except that int is | 
					
						
							|  |  |  |  |     allowed. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |     """
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     count = 0 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |     n, d = _exact_ratio(start) | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     partials = {d: n} | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |     partials_get = partials.get | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     T = _coerce(int, type(start)) | 
					
						
							|  |  |  |  |     for typ, values in groupby(data, type): | 
					
						
							|  |  |  |  |         T = _coerce(T, typ)  # or raise TypeError | 
					
						
							|  |  |  |  |         for n,d in map(_exact_ratio, values): | 
					
						
							|  |  |  |  |             count += 1 | 
					
						
							|  |  |  |  |             partials[d] = partials_get(d, 0) + n | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |     if None in partials: | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |         # The sum will be a NAN or INF. We can ignore all the finite | 
					
						
							|  |  |  |  |         # partials, and just look at this special one. | 
					
						
							|  |  |  |  |         total = partials[None] | 
					
						
							|  |  |  |  |         assert not _isfinite(total) | 
					
						
							|  |  |  |  |     else: | 
					
						
							|  |  |  |  |         # Sum all the partial sums using builtin sum. | 
					
						
							|  |  |  |  |         # FIXME is this faster if we sum them in order of the denominator? | 
					
						
							|  |  |  |  |         total = sum(Fraction(n, d) for d, n in sorted(partials.items())) | 
					
						
							|  |  |  |  |     return (T, total, count) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def _isfinite(x): | 
					
						
							|  |  |  |  |     try: | 
					
						
							|  |  |  |  |         return x.is_finite()  # Likely a Decimal. | 
					
						
							|  |  |  |  |     except AttributeError: | 
					
						
							|  |  |  |  |         return math.isfinite(x)  # Coerces to float first. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def _coerce(T, S): | 
					
						
							|  |  |  |  |     """Coerce types T and S to a common type, or raise TypeError.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Coercion rules are currently an implementation detail. See the CoerceTest | 
					
						
							|  |  |  |  |     test class in test_statistics for details. | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     # See http://bugs.python.org/issue24068. | 
					
						
							|  |  |  |  |     assert T is not bool, "initial type T is bool" | 
					
						
							|  |  |  |  |     # If the types are the same, no need to coerce anything. Put this | 
					
						
							|  |  |  |  |     # first, so that the usual case (no coercion needed) happens as soon | 
					
						
							|  |  |  |  |     # as possible. | 
					
						
							|  |  |  |  |     if T is S:  return T | 
					
						
							|  |  |  |  |     # Mixed int & other coerce to the other type. | 
					
						
							|  |  |  |  |     if S is int or S is bool:  return T | 
					
						
							|  |  |  |  |     if T is int:  return S | 
					
						
							|  |  |  |  |     # If one is a (strict) subclass of the other, coerce to the subclass. | 
					
						
							|  |  |  |  |     if issubclass(S, T):  return S | 
					
						
							|  |  |  |  |     if issubclass(T, S):  return T | 
					
						
							|  |  |  |  |     # Ints coerce to the other type. | 
					
						
							|  |  |  |  |     if issubclass(T, int):  return S | 
					
						
							|  |  |  |  |     if issubclass(S, int):  return T | 
					
						
							|  |  |  |  |     # Mixed fraction & float coerces to float (or float subclass). | 
					
						
							|  |  |  |  |     if issubclass(T, Fraction) and issubclass(S, float): | 
					
						
							|  |  |  |  |         return S | 
					
						
							|  |  |  |  |     if issubclass(T, float) and issubclass(S, Fraction): | 
					
						
							|  |  |  |  |         return T | 
					
						
							|  |  |  |  |     # Any other combination is disallowed. | 
					
						
							|  |  |  |  |     msg = "don't know how to coerce %s and %s" | 
					
						
							|  |  |  |  |     raise TypeError(msg % (T.__name__, S.__name__)) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | def _exact_ratio(x): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     """Return Real number x to exact (numerator, denominator) pair.
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> _exact_ratio(0.25) | 
					
						
							|  |  |  |  |     (1, 4) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     x is expected to be an int, Fraction, Decimal or float. | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     try: | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |         # Optimise the common case of floats. We expect that the most often | 
					
						
							|  |  |  |  |         # used numeric type will be builtin floats, so try to make this as | 
					
						
							|  |  |  |  |         # fast as possible. | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |  |         if type(x) is float or type(x) is Decimal: | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |             return x.as_integer_ratio() | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |         try: | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |             # x may be an int, Fraction, or Integral ABC. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |             return (x.numerator, x.denominator) | 
					
						
							|  |  |  |  |         except AttributeError: | 
					
						
							|  |  |  |  |             try: | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |  |                 # x may be a float or Decimal subclass. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |                 return x.as_integer_ratio() | 
					
						
							|  |  |  |  |             except AttributeError: | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |  |                 # Just give up? | 
					
						
							|  |  |  |  |                 pass | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |     except (OverflowError, ValueError): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |         # float NAN or INF. | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |  |         assert not _isfinite(x) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |         return (x, None) | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     msg = "can't convert type '{}' to numerator/denominator" | 
					
						
							|  |  |  |  |     raise TypeError(msg.format(type(x).__name__)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  | def _convert(value, T): | 
					
						
							|  |  |  |  |     """Convert value to given numeric type T.""" | 
					
						
							|  |  |  |  |     if type(value) is T: | 
					
						
							|  |  |  |  |         # This covers the cases where T is Fraction, or where value is | 
					
						
							|  |  |  |  |         # a NAN or INF (Decimal or float). | 
					
						
							|  |  |  |  |         return value | 
					
						
							|  |  |  |  |     if issubclass(T, int) and value.denominator != 1: | 
					
						
							|  |  |  |  |         T = float | 
					
						
							|  |  |  |  |     try: | 
					
						
							|  |  |  |  |         # FIXME: what do we do if this overflows? | 
					
						
							|  |  |  |  |         return T(value) | 
					
						
							|  |  |  |  |     except TypeError: | 
					
						
							|  |  |  |  |         if issubclass(T, Decimal): | 
					
						
							|  |  |  |  |             return T(value.numerator)/T(value.denominator) | 
					
						
							|  |  |  |  |         else: | 
					
						
							|  |  |  |  |             raise | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |  | def _find_lteq(a, x): | 
					
						
							|  |  |  |  |     'Locate the leftmost value exactly equal to x' | 
					
						
							|  |  |  |  |     i = bisect_left(a, x) | 
					
						
							|  |  |  |  |     if i != len(a) and a[i] == x: | 
					
						
							|  |  |  |  |         return i | 
					
						
							|  |  |  |  |     raise ValueError | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def _find_rteq(a, l, x): | 
					
						
							|  |  |  |  |     'Locate the rightmost value exactly equal to x' | 
					
						
							|  |  |  |  |     i = bisect_right(a, x, lo=l) | 
					
						
							|  |  |  |  |     if i != (len(a)+1) and a[i-1] == x: | 
					
						
							|  |  |  |  |         return i-1 | 
					
						
							|  |  |  |  |     raise ValueError | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | def _fail_neg(values, errmsg='negative value'): | 
					
						
							|  |  |  |  |     """Iterate over values, failing if any are less than zero.""" | 
					
						
							|  |  |  |  |     for x in values: | 
					
						
							|  |  |  |  |         if x < 0: | 
					
						
							|  |  |  |  |             raise StatisticsError(errmsg) | 
					
						
							|  |  |  |  |         yield x | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | # === Measures of central tendency (averages) === | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def mean(data): | 
					
						
							|  |  |  |  |     """Return the sample arithmetic mean of data.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> mean([1, 2, 3, 4, 4]) | 
					
						
							|  |  |  |  |     2.8 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> from fractions import Fraction as F | 
					
						
							|  |  |  |  |     >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)]) | 
					
						
							|  |  |  |  |     Fraction(13, 21) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> from decimal import Decimal as D | 
					
						
							|  |  |  |  |     >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")]) | 
					
						
							|  |  |  |  |     Decimal('0.5625') | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     If ``data`` is empty, StatisticsError will be raised. | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     if iter(data) is data: | 
					
						
							|  |  |  |  |         data = list(data) | 
					
						
							|  |  |  |  |     n = len(data) | 
					
						
							|  |  |  |  |     if n < 1: | 
					
						
							|  |  |  |  |         raise StatisticsError('mean requires at least one data point') | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     T, total, count = _sum(data) | 
					
						
							|  |  |  |  |     assert count == n | 
					
						
							|  |  |  |  |     return _convert(total/n, T) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-21 15:06:29 -08:00
										 |  |  |  | def fmean(data): | 
					
						
							|  |  |  |  |     """ Convert data to floats and compute the arithmetic mean.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     This runs faster than the mean() function and it always returns a float. | 
					
						
							|  |  |  |  |     The result is highly accurate but not as perfect as mean(). | 
					
						
							|  |  |  |  |     If the input dataset is empty, it raises a StatisticsError. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> fmean([3.5, 4.0, 5.25]) | 
					
						
							|  |  |  |  |     4.25 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     try: | 
					
						
							|  |  |  |  |         n = len(data) | 
					
						
							|  |  |  |  |     except TypeError: | 
					
						
							|  |  |  |  |         # Handle iterators that do not define __len__(). | 
					
						
							|  |  |  |  |         n = 0 | 
					
						
							|  |  |  |  |         def count(x): | 
					
						
							|  |  |  |  |             nonlocal n | 
					
						
							|  |  |  |  |             n += 1 | 
					
						
							|  |  |  |  |             return x | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |  |         total = fsum(map(count, data)) | 
					
						
							| 
									
										
										
										
											2019-02-21 15:06:29 -08:00
										 |  |  |  |     else: | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |  |         total = fsum(data) | 
					
						
							| 
									
										
										
										
											2019-02-21 15:06:29 -08:00
										 |  |  |  |     try: | 
					
						
							|  |  |  |  |         return total / n | 
					
						
							|  |  |  |  |     except ZeroDivisionError: | 
					
						
							|  |  |  |  |         raise StatisticsError('fmean requires at least one data point') from None | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-07 09:20:03 -07:00
										 |  |  |  | def geometric_mean(data): | 
					
						
							|  |  |  |  |     """Convert data to floats and compute the geometric mean.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Raises a StatisticsError if the input dataset is empty, | 
					
						
							|  |  |  |  |     if it contains a zero, or if it contains a negative value. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     No special efforts are made to achieve exact results. | 
					
						
							|  |  |  |  |     (However, this may change in the future.) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> round(geometric_mean([54, 24, 36]), 9) | 
					
						
							|  |  |  |  |     36.0 | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     try: | 
					
						
							|  |  |  |  |         return exp(fmean(map(log, data))) | 
					
						
							|  |  |  |  |     except ValueError: | 
					
						
							|  |  |  |  |         raise StatisticsError('geometric mean requires a non-empty dataset ' | 
					
						
							|  |  |  |  |                               ' containing positive numbers') from None | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |  | def harmonic_mean(data): | 
					
						
							|  |  |  |  |     """Return the harmonic mean of data.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     The harmonic mean, sometimes called the subcontrary mean, is the | 
					
						
							|  |  |  |  |     reciprocal of the arithmetic mean of the reciprocals of the data, | 
					
						
							|  |  |  |  |     and is often appropriate when averaging quantities which are rates | 
					
						
							|  |  |  |  |     or ratios, for example speeds. Example: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Suppose an investor purchases an equal value of shares in each of | 
					
						
							|  |  |  |  |     three companies, with P/E (price/earning) ratios of 2.5, 3 and 10. | 
					
						
							|  |  |  |  |     What is the average P/E ratio for the investor's portfolio? | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> harmonic_mean([2.5, 3, 10])  # For an equal investment portfolio. | 
					
						
							|  |  |  |  |     3.6 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Using the arithmetic mean would give an average of about 5.167, which | 
					
						
							|  |  |  |  |     is too high. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     If ``data`` is empty, or any element is less than zero, | 
					
						
							|  |  |  |  |     ``harmonic_mean`` will raise ``StatisticsError``. | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     # For a justification for using harmonic mean for P/E ratios, see | 
					
						
							|  |  |  |  |     # http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/ | 
					
						
							|  |  |  |  |     # http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087 | 
					
						
							|  |  |  |  |     if iter(data) is data: | 
					
						
							|  |  |  |  |         data = list(data) | 
					
						
							|  |  |  |  |     errmsg = 'harmonic mean does not support negative values' | 
					
						
							|  |  |  |  |     n = len(data) | 
					
						
							|  |  |  |  |     if n < 1: | 
					
						
							|  |  |  |  |         raise StatisticsError('harmonic_mean requires at least one data point') | 
					
						
							|  |  |  |  |     elif n == 1: | 
					
						
							|  |  |  |  |         x = data[0] | 
					
						
							|  |  |  |  |         if isinstance(x, (numbers.Real, Decimal)): | 
					
						
							|  |  |  |  |             if x < 0: | 
					
						
							|  |  |  |  |                 raise StatisticsError(errmsg) | 
					
						
							|  |  |  |  |             return x | 
					
						
							|  |  |  |  |         else: | 
					
						
							|  |  |  |  |             raise TypeError('unsupported type') | 
					
						
							|  |  |  |  |     try: | 
					
						
							|  |  |  |  |         T, total, count = _sum(1/x for x in _fail_neg(data, errmsg)) | 
					
						
							|  |  |  |  |     except ZeroDivisionError: | 
					
						
							|  |  |  |  |         return 0 | 
					
						
							|  |  |  |  |     assert count == n | 
					
						
							|  |  |  |  |     return _convert(n/total, T) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | # FIXME: investigate ways to calculate medians without sorting? Quickselect? | 
					
						
							|  |  |  |  | def median(data): | 
					
						
							|  |  |  |  |     """Return the median (middle value) of numeric data.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     When the number of data points is odd, return the middle data point. | 
					
						
							|  |  |  |  |     When the number of data points is even, the median is interpolated by | 
					
						
							|  |  |  |  |     taking the average of the two middle values: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> median([1, 3, 5]) | 
					
						
							|  |  |  |  |     3 | 
					
						
							|  |  |  |  |     >>> median([1, 3, 5, 7]) | 
					
						
							|  |  |  |  |     4.0 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     data = sorted(data) | 
					
						
							|  |  |  |  |     n = len(data) | 
					
						
							|  |  |  |  |     if n == 0: | 
					
						
							|  |  |  |  |         raise StatisticsError("no median for empty data") | 
					
						
							|  |  |  |  |     if n%2 == 1: | 
					
						
							|  |  |  |  |         return data[n//2] | 
					
						
							|  |  |  |  |     else: | 
					
						
							|  |  |  |  |         i = n//2 | 
					
						
							|  |  |  |  |         return (data[i - 1] + data[i])/2 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def median_low(data): | 
					
						
							|  |  |  |  |     """Return the low median of numeric data.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     When the number of data points is odd, the middle value is returned. | 
					
						
							|  |  |  |  |     When it is even, the smaller of the two middle values is returned. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> median_low([1, 3, 5]) | 
					
						
							|  |  |  |  |     3 | 
					
						
							|  |  |  |  |     >>> median_low([1, 3, 5, 7]) | 
					
						
							|  |  |  |  |     3 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     data = sorted(data) | 
					
						
							|  |  |  |  |     n = len(data) | 
					
						
							|  |  |  |  |     if n == 0: | 
					
						
							|  |  |  |  |         raise StatisticsError("no median for empty data") | 
					
						
							|  |  |  |  |     if n%2 == 1: | 
					
						
							|  |  |  |  |         return data[n//2] | 
					
						
							|  |  |  |  |     else: | 
					
						
							|  |  |  |  |         return data[n//2 - 1] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def median_high(data): | 
					
						
							|  |  |  |  |     """Return the high median of data.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     When the number of data points is odd, the middle value is returned. | 
					
						
							|  |  |  |  |     When it is even, the larger of the two middle values is returned. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> median_high([1, 3, 5]) | 
					
						
							|  |  |  |  |     3 | 
					
						
							|  |  |  |  |     >>> median_high([1, 3, 5, 7]) | 
					
						
							|  |  |  |  |     5 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     data = sorted(data) | 
					
						
							|  |  |  |  |     n = len(data) | 
					
						
							|  |  |  |  |     if n == 0: | 
					
						
							|  |  |  |  |         raise StatisticsError("no median for empty data") | 
					
						
							|  |  |  |  |     return data[n//2] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def median_grouped(data, interval=1): | 
					
						
							| 
									
										
										
										
											2015-10-27 22:00:41 -05:00
										 |  |  |  |     """Return the 50th percentile (median) of grouped continuous data.
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5]) | 
					
						
							|  |  |  |  |     3.7 | 
					
						
							|  |  |  |  |     >>> median_grouped([52, 52, 53, 54]) | 
					
						
							|  |  |  |  |     52.5 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     This calculates the median as the 50th percentile, and should be | 
					
						
							|  |  |  |  |     used when your data is continuous and grouped. In the above example, | 
					
						
							|  |  |  |  |     the values 1, 2, 3, etc. actually represent the midpoint of classes | 
					
						
							|  |  |  |  |     0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in | 
					
						
							|  |  |  |  |     class 3.5-4.5, and interpolation is used to estimate it. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Optional argument ``interval`` represents the class interval, and | 
					
						
							|  |  |  |  |     defaults to 1. Changing the class interval naturally will change the | 
					
						
							|  |  |  |  |     interpolated 50th percentile value: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> median_grouped([1, 3, 3, 5, 7], interval=1) | 
					
						
							|  |  |  |  |     3.25 | 
					
						
							|  |  |  |  |     >>> median_grouped([1, 3, 3, 5, 7], interval=2) | 
					
						
							|  |  |  |  |     3.5 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     This function does not check whether the data points are at least | 
					
						
							|  |  |  |  |     ``interval`` apart. | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     data = sorted(data) | 
					
						
							|  |  |  |  |     n = len(data) | 
					
						
							|  |  |  |  |     if n == 0: | 
					
						
							|  |  |  |  |         raise StatisticsError("no median for empty data") | 
					
						
							|  |  |  |  |     elif n == 1: | 
					
						
							|  |  |  |  |         return data[0] | 
					
						
							|  |  |  |  |     # Find the value at the midpoint. Remember this corresponds to the | 
					
						
							|  |  |  |  |     # centre of the class interval. | 
					
						
							|  |  |  |  |     x = data[n//2] | 
					
						
							|  |  |  |  |     for obj in (x, interval): | 
					
						
							|  |  |  |  |         if isinstance(obj, (str, bytes)): | 
					
						
							|  |  |  |  |             raise TypeError('expected number but got %r' % obj) | 
					
						
							|  |  |  |  |     try: | 
					
						
							|  |  |  |  |         L = x - interval/2  # The lower limit of the median interval. | 
					
						
							|  |  |  |  |     except TypeError: | 
					
						
							|  |  |  |  |         # Mixed type. For now we just coerce to float. | 
					
						
							|  |  |  |  |         L = float(x) - float(interval)/2 | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     # Uses bisection search to search for x in data with log(n) time complexity | 
					
						
							| 
									
										
										
										
											2016-05-26 06:03:33 +00:00
										 |  |  |  |     # Find the position of leftmost occurrence of x in data | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |  |     l1 = _find_lteq(data, x) | 
					
						
							| 
									
										
										
										
											2016-05-26 06:03:33 +00:00
										 |  |  |  |     # Find the position of rightmost occurrence of x in data[l1...len(data)] | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |  |     # Assuming always l1 <= l2 | 
					
						
							|  |  |  |  |     l2 = _find_rteq(data, l1, x) | 
					
						
							|  |  |  |  |     cf = l1 | 
					
						
							|  |  |  |  |     f = l2 - l1 + 1 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |     return L + interval*(n/2 - cf)/f | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def mode(data): | 
					
						
							|  |  |  |  |     """Return the most common data point from discrete or nominal data.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     ``mode`` assumes discrete data, and returns a single value. This is the | 
					
						
							|  |  |  |  |     standard treatment of the mode as commonly taught in schools: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> mode([1, 1, 2, 3, 3, 3, 3, 4]) | 
					
						
							|  |  |  |  |     3 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     This also works with nominal (non-numeric) data: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> mode(["red", "blue", "blue", "red", "green", "red", "red"]) | 
					
						
							|  |  |  |  |     'red' | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |  |     If there are multiple modes, return the first one encountered. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         >>> mode(['red', 'red', 'green', 'blue', 'blue']) | 
					
						
							|  |  |  |  |         'red' | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     If *data* is empty, ``mode``, raises StatisticsError. | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |     """
 | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |  |     data = iter(data) | 
					
						
							|  |  |  |  |     try: | 
					
						
							|  |  |  |  |         return Counter(data).most_common(1)[0][0] | 
					
						
							|  |  |  |  |     except IndexError: | 
					
						
							|  |  |  |  |         raise StatisticsError('no mode for empty data') from None | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def multimode(data): | 
					
						
							|  |  |  |  |     """ Return a list of the most frequently occurring values.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         Will return more than one result if there are multiple modes | 
					
						
							|  |  |  |  |         or an empty list if *data* is empty. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         >>> multimode('aabbbbbbbbcc') | 
					
						
							|  |  |  |  |         ['b'] | 
					
						
							|  |  |  |  |         >>> multimode('aabbbbccddddeeffffgg') | 
					
						
							|  |  |  |  |         ['b', 'd', 'f'] | 
					
						
							|  |  |  |  |         >>> multimode('') | 
					
						
							|  |  |  |  |         [] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     counts = Counter(iter(data)).most_common() | 
					
						
							|  |  |  |  |     maxcount, mode_items = next(groupby(counts, key=itemgetter(1)), (0, [])) | 
					
						
							|  |  |  |  |     return list(map(itemgetter(0), mode_items)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | # === Measures of spread === | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | # See http://mathworld.wolfram.com/Variance.html | 
					
						
							|  |  |  |  | #     http://mathworld.wolfram.com/SampleVariance.html | 
					
						
							|  |  |  |  | #     http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance | 
					
						
							|  |  |  |  | # | 
					
						
							|  |  |  |  | # Under no circumstances use the so-called "computational formula for | 
					
						
							|  |  |  |  | # variance", as that is only suitable for hand calculations with a small | 
					
						
							|  |  |  |  | # amount of low-precision data. It has terrible numeric properties. | 
					
						
							|  |  |  |  | # | 
					
						
							|  |  |  |  | # See a comparison of three computational methods here: | 
					
						
							|  |  |  |  | # http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def _ss(data, c=None): | 
					
						
							|  |  |  |  |     """Return sum of square deviations of sequence data.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     If ``c`` is None, the mean is calculated in one pass, and the deviations | 
					
						
							|  |  |  |  |     from the mean are calculated in a second pass. Otherwise, deviations are | 
					
						
							|  |  |  |  |     calculated from ``c`` as given. Use the second case with care, as it can | 
					
						
							|  |  |  |  |     lead to garbage results. | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     if c is None: | 
					
						
							|  |  |  |  |         c = mean(data) | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     T, total, count = _sum((x-c)**2 for x in data) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  |     # The following sum should mathematically equal zero, but due to rounding | 
					
						
							|  |  |  |  |     # error may not. | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     U, total2, count2 = _sum((x-c) for x in data) | 
					
						
							|  |  |  |  |     assert T == U and count == count2 | 
					
						
							|  |  |  |  |     total -=  total2**2/len(data) | 
					
						
							|  |  |  |  |     assert not total < 0, 'negative sum of square deviations: %f' % total | 
					
						
							|  |  |  |  |     return (T, total) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def variance(data, xbar=None): | 
					
						
							|  |  |  |  |     """Return the sample variance of data.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     data should be an iterable of Real-valued numbers, with at least two | 
					
						
							|  |  |  |  |     values. The optional argument xbar, if given, should be the mean of | 
					
						
							|  |  |  |  |     the data. If it is missing or None, the mean is automatically calculated. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Use this function when your data is a sample from a population. To | 
					
						
							|  |  |  |  |     calculate the variance from the entire population, see ``pvariance``. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Examples: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5] | 
					
						
							|  |  |  |  |     >>> variance(data) | 
					
						
							|  |  |  |  |     1.3720238095238095 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     If you have already calculated the mean of your data, you can pass it as | 
					
						
							|  |  |  |  |     the optional second argument ``xbar`` to avoid recalculating it: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> m = mean(data) | 
					
						
							|  |  |  |  |     >>> variance(data, m) | 
					
						
							|  |  |  |  |     1.3720238095238095 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     This function does not check that ``xbar`` is actually the mean of | 
					
						
							|  |  |  |  |     ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or | 
					
						
							|  |  |  |  |     impossible results. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Decimals and Fractions are supported: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> from decimal import Decimal as D | 
					
						
							|  |  |  |  |     >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) | 
					
						
							|  |  |  |  |     Decimal('31.01875') | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> from fractions import Fraction as F | 
					
						
							|  |  |  |  |     >>> variance([F(1, 6), F(1, 2), F(5, 3)]) | 
					
						
							|  |  |  |  |     Fraction(67, 108) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     if iter(data) is data: | 
					
						
							|  |  |  |  |         data = list(data) | 
					
						
							|  |  |  |  |     n = len(data) | 
					
						
							|  |  |  |  |     if n < 2: | 
					
						
							|  |  |  |  |         raise StatisticsError('variance requires at least two data points') | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     T, ss = _ss(data, xbar) | 
					
						
							|  |  |  |  |     return _convert(ss/(n-1), T) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def pvariance(data, mu=None): | 
					
						
							|  |  |  |  |     """Return the population variance of ``data``.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     data should be an iterable of Real-valued numbers, with at least one | 
					
						
							|  |  |  |  |     value. The optional argument mu, if given, should be the mean of | 
					
						
							|  |  |  |  |     the data. If it is missing or None, the mean is automatically calculated. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Use this function to calculate the variance from the entire population. | 
					
						
							|  |  |  |  |     To estimate the variance from a sample, the ``variance`` function is | 
					
						
							|  |  |  |  |     usually a better choice. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Examples: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25] | 
					
						
							|  |  |  |  |     >>> pvariance(data) | 
					
						
							|  |  |  |  |     1.25 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     If you have already calculated the mean of the data, you can pass it as | 
					
						
							|  |  |  |  |     the optional second argument to avoid recalculating it: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> mu = mean(data) | 
					
						
							|  |  |  |  |     >>> pvariance(data, mu) | 
					
						
							|  |  |  |  |     1.25 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     This function does not check that ``mu`` is actually the mean of ``data``. | 
					
						
							|  |  |  |  |     Giving arbitrary values for ``mu`` may lead to invalid or impossible | 
					
						
							|  |  |  |  |     results. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     Decimals and Fractions are supported: | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> from decimal import Decimal as D | 
					
						
							|  |  |  |  |     >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) | 
					
						
							|  |  |  |  |     Decimal('24.815') | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> from fractions import Fraction as F | 
					
						
							|  |  |  |  |     >>> pvariance([F(1, 4), F(5, 4), F(1, 2)]) | 
					
						
							|  |  |  |  |     Fraction(13, 72) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     if iter(data) is data: | 
					
						
							|  |  |  |  |         data = list(data) | 
					
						
							|  |  |  |  |     n = len(data) | 
					
						
							|  |  |  |  |     if n < 1: | 
					
						
							|  |  |  |  |         raise StatisticsError('pvariance requires at least one data point') | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |  |     T, ss = _ss(data, mu) | 
					
						
							|  |  |  |  |     return _convert(ss/n, T) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def stdev(data, xbar=None): | 
					
						
							|  |  |  |  |     """Return the square root of the sample variance.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     See ``variance`` for arguments and other details. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) | 
					
						
							|  |  |  |  |     1.0810874155219827 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     var = variance(data, xbar) | 
					
						
							|  |  |  |  |     try: | 
					
						
							|  |  |  |  |         return var.sqrt() | 
					
						
							|  |  |  |  |     except AttributeError: | 
					
						
							|  |  |  |  |         return math.sqrt(var) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | def pstdev(data, mu=None): | 
					
						
							|  |  |  |  |     """Return the square root of the population variance.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     See ``pvariance`` for arguments and other details. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) | 
					
						
							|  |  |  |  |     0.986893273527251 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     """
 | 
					
						
							|  |  |  |  |     var = pvariance(data, mu) | 
					
						
							|  |  |  |  |     try: | 
					
						
							|  |  |  |  |         return var.sqrt() | 
					
						
							|  |  |  |  |     except AttributeError: | 
					
						
							|  |  |  |  |         return math.sqrt(var) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  | ## Normal Distribution ##################################################### | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | class NormalDist: | 
					
						
							|  |  |  |  |     'Normal distribution of a random variable' | 
					
						
							|  |  |  |  |     # https://en.wikipedia.org/wiki/Normal_distribution | 
					
						
							|  |  |  |  |     # https://en.wikipedia.org/wiki/Variance#Properties | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-25 13:01:13 -07:00
										 |  |  |  |     __slots__ = {'mu': 'Arithmetic mean of a normal distribution', | 
					
						
							|  |  |  |  |                  'sigma': 'Standard deviation of a normal distribution'} | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __init__(self, mu=0.0, sigma=1.0): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'NormalDist where mu is the mean and sigma is the standard deviation.' | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         if sigma < 0.0: | 
					
						
							|  |  |  |  |             raise StatisticsError('sigma must be non-negative') | 
					
						
							|  |  |  |  |         self.mu = mu | 
					
						
							|  |  |  |  |         self.sigma = sigma | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     @classmethod | 
					
						
							|  |  |  |  |     def from_samples(cls, data): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'Make a normal distribution instance from sample data.' | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         if not isinstance(data, (list, tuple)): | 
					
						
							|  |  |  |  |             data = list(data) | 
					
						
							|  |  |  |  |         xbar = fmean(data) | 
					
						
							|  |  |  |  |         return cls(xbar, stdev(data, xbar)) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def samples(self, n, seed=None): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'Generate *n* samples for a given mean and standard deviation.' | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         gauss = random.gauss if seed is None else random.Random(seed).gauss | 
					
						
							|  |  |  |  |         mu, sigma = self.mu, self.sigma | 
					
						
							|  |  |  |  |         return [gauss(mu, sigma) for i in range(n)] | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def pdf(self, x): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'Probability density function.  P(x <= X < x+dx) / dx' | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         variance = self.sigma ** 2.0 | 
					
						
							|  |  |  |  |         if not variance: | 
					
						
							|  |  |  |  |             raise StatisticsError('pdf() not defined when sigma is zero') | 
					
						
							|  |  |  |  |         return exp((x - self.mu)**2.0 / (-2.0*variance)) / sqrt(tau * variance) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def cdf(self, x): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'Cumulative distribution function.  P(X <= x)' | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         if not self.sigma: | 
					
						
							|  |  |  |  |             raise StatisticsError('cdf() not defined when sigma is zero') | 
					
						
							|  |  |  |  |         return 0.5 * (1.0 + erf((x - self.mu) / (self.sigma * sqrt(2.0)))) | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |  |     def inv_cdf(self, p): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         '''Inverse cumulative distribution function.  x : P(X <= x) = p
 | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         Finds the value of the random variable such that the probability of the | 
					
						
							|  |  |  |  |         variable being less than or equal to that value equals the given probability. | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         This function is also called the percent point function or quantile function. | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |  |         '''
 | 
					
						
							|  |  |  |  |         if (p <= 0.0 or p >= 1.0): | 
					
						
							|  |  |  |  |             raise StatisticsError('p must be in the range 0.0 < p < 1.0') | 
					
						
							|  |  |  |  |         if self.sigma <= 0.0: | 
					
						
							|  |  |  |  |             raise StatisticsError('cdf() not defined when sigma at or below zero') | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         # There is no closed-form solution to the inverse CDF for the normal | 
					
						
							|  |  |  |  |         # distribution, so we use a rational approximation instead: | 
					
						
							|  |  |  |  |         # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the | 
					
						
							|  |  |  |  |         # Normal Distribution".  Applied Statistics. Blackwell Publishing. 37 | 
					
						
							|  |  |  |  |         # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         q = p - 0.5 | 
					
						
							|  |  |  |  |         if fabs(q) <= 0.425: | 
					
						
							|  |  |  |  |             r = 0.180625 - q * q | 
					
						
							| 
									
										
										
										
											2019-03-19 14:29:13 -07:00
										 |  |  |  |             num = (((((((2.50908_09287_30122_6727e+3 * r + | 
					
						
							|  |  |  |  |                          3.34305_75583_58812_8105e+4) * r + | 
					
						
							|  |  |  |  |                          6.72657_70927_00870_0853e+4) * r + | 
					
						
							|  |  |  |  |                          4.59219_53931_54987_1457e+4) * r + | 
					
						
							|  |  |  |  |                          1.37316_93765_50946_1125e+4) * r + | 
					
						
							|  |  |  |  |                          1.97159_09503_06551_4427e+3) * r + | 
					
						
							|  |  |  |  |                          1.33141_66789_17843_7745e+2) * r + | 
					
						
							|  |  |  |  |                          3.38713_28727_96366_6080e+0) * q | 
					
						
							|  |  |  |  |             den = (((((((5.22649_52788_52854_5610e+3 * r + | 
					
						
							|  |  |  |  |                          2.87290_85735_72194_2674e+4) * r + | 
					
						
							|  |  |  |  |                          3.93078_95800_09271_0610e+4) * r + | 
					
						
							|  |  |  |  |                          2.12137_94301_58659_5867e+4) * r + | 
					
						
							|  |  |  |  |                          5.39419_60214_24751_1077e+3) * r + | 
					
						
							|  |  |  |  |                          6.87187_00749_20579_0830e+2) * r + | 
					
						
							|  |  |  |  |                          4.23133_30701_60091_1252e+1) * r + | 
					
						
							|  |  |  |  |                          1.0) | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |  |             x = num / den | 
					
						
							|  |  |  |  |             return self.mu + (x * self.sigma) | 
					
						
							|  |  |  |  |         r = p if q <= 0.0 else 1.0 - p | 
					
						
							|  |  |  |  |         r = sqrt(-log(r)) | 
					
						
							|  |  |  |  |         if r <= 5.0: | 
					
						
							|  |  |  |  |             r = r - 1.6 | 
					
						
							| 
									
										
										
										
											2019-03-19 14:29:13 -07:00
										 |  |  |  |             num = (((((((7.74545_01427_83414_07640e-4 * r + | 
					
						
							|  |  |  |  |                          2.27238_44989_26918_45833e-2) * r + | 
					
						
							|  |  |  |  |                          2.41780_72517_74506_11770e-1) * r + | 
					
						
							|  |  |  |  |                          1.27045_82524_52368_38258e+0) * r + | 
					
						
							|  |  |  |  |                          3.64784_83247_63204_60504e+0) * r + | 
					
						
							|  |  |  |  |                          5.76949_72214_60691_40550e+0) * r + | 
					
						
							|  |  |  |  |                          4.63033_78461_56545_29590e+0) * r + | 
					
						
							|  |  |  |  |                          1.42343_71107_49683_57734e+0) | 
					
						
							|  |  |  |  |             den = (((((((1.05075_00716_44416_84324e-9 * r + | 
					
						
							|  |  |  |  |                          5.47593_80849_95344_94600e-4) * r + | 
					
						
							|  |  |  |  |                          1.51986_66563_61645_71966e-2) * r + | 
					
						
							|  |  |  |  |                          1.48103_97642_74800_74590e-1) * r + | 
					
						
							|  |  |  |  |                          6.89767_33498_51000_04550e-1) * r + | 
					
						
							|  |  |  |  |                          1.67638_48301_83803_84940e+0) * r + | 
					
						
							|  |  |  |  |                          2.05319_16266_37758_82187e+0) * r + | 
					
						
							|  |  |  |  |                          1.0) | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |  |         else: | 
					
						
							|  |  |  |  |             r = r - 5.0 | 
					
						
							| 
									
										
										
										
											2019-03-19 14:29:13 -07:00
										 |  |  |  |             num = (((((((2.01033_43992_92288_13265e-7 * r + | 
					
						
							|  |  |  |  |                          2.71155_55687_43487_57815e-5) * r + | 
					
						
							|  |  |  |  |                          1.24266_09473_88078_43860e-3) * r + | 
					
						
							|  |  |  |  |                          2.65321_89526_57612_30930e-2) * r + | 
					
						
							|  |  |  |  |                          2.96560_57182_85048_91230e-1) * r + | 
					
						
							|  |  |  |  |                          1.78482_65399_17291_33580e+0) * r + | 
					
						
							|  |  |  |  |                          5.46378_49111_64114_36990e+0) * r + | 
					
						
							|  |  |  |  |                          6.65790_46435_01103_77720e+0) | 
					
						
							|  |  |  |  |             den = (((((((2.04426_31033_89939_78564e-15 * r + | 
					
						
							|  |  |  |  |                          1.42151_17583_16445_88870e-7) * r + | 
					
						
							|  |  |  |  |                          1.84631_83175_10054_68180e-5) * r + | 
					
						
							|  |  |  |  |                          7.86869_13114_56132_59100e-4) * r + | 
					
						
							|  |  |  |  |                          1.48753_61290_85061_48525e-2) * r + | 
					
						
							|  |  |  |  |                          1.36929_88092_27358_05310e-1) * r + | 
					
						
							|  |  |  |  |                          5.99832_20655_58879_37690e-1) * r + | 
					
						
							|  |  |  |  |                          1.0) | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |  |         x = num / den | 
					
						
							|  |  |  |  |         if q < 0.0: | 
					
						
							|  |  |  |  |             x = -x | 
					
						
							|  |  |  |  |         return self.mu + (x * self.sigma) | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 |  |  |  |     def overlap(self, other): | 
					
						
							|  |  |  |  |         '''Compute the overlapping coefficient (OVL) between two normal distributions.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         Measures the agreement between two normal probability distributions. | 
					
						
							|  |  |  |  |         Returns a value between 0.0 and 1.0 giving the overlapping area in | 
					
						
							|  |  |  |  |         the two underlying probability density functions. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |             >>> N1 = NormalDist(2.4, 1.6) | 
					
						
							|  |  |  |  |             >>> N2 = NormalDist(3.2, 2.0) | 
					
						
							|  |  |  |  |             >>> N1.overlap(N2) | 
					
						
							|  |  |  |  |             0.8035050657330205 | 
					
						
							|  |  |  |  |         '''
 | 
					
						
							|  |  |  |  |         # See: "The overlapping coefficient as a measure of agreement between | 
					
						
							|  |  |  |  |         # probability distributions and point estimation of the overlap of two | 
					
						
							|  |  |  |  |         # normal densities" -- Henry F. Inman and Edwin L. Bradley Jr | 
					
						
							|  |  |  |  |         # http://dx.doi.org/10.1080/03610928908830127 | 
					
						
							|  |  |  |  |         if not isinstance(other, NormalDist): | 
					
						
							|  |  |  |  |             raise TypeError('Expected another NormalDist instance') | 
					
						
							|  |  |  |  |         X, Y = self, other | 
					
						
							|  |  |  |  |         if (Y.sigma, Y.mu) < (X.sigma, X.mu):   # sort to assure commutativity | 
					
						
							|  |  |  |  |             X, Y = Y, X | 
					
						
							|  |  |  |  |         X_var, Y_var = X.variance, Y.variance | 
					
						
							|  |  |  |  |         if not X_var or not Y_var: | 
					
						
							|  |  |  |  |             raise StatisticsError('overlap() not defined when sigma is zero') | 
					
						
							|  |  |  |  |         dv = Y_var - X_var | 
					
						
							|  |  |  |  |         dm = fabs(Y.mu - X.mu) | 
					
						
							|  |  |  |  |         if not dv: | 
					
						
							| 
									
										
										
										
											2019-03-14 02:25:26 -07:00
										 |  |  |  |             return 1.0 - erf(dm / (2.0 * X.sigma * sqrt(2.0))) | 
					
						
							| 
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 |  |  |  |         a = X.mu * Y_var - Y.mu * X_var | 
					
						
							|  |  |  |  |         b = X.sigma * Y.sigma * sqrt(dm**2.0 + dv * log(Y_var / X_var)) | 
					
						
							|  |  |  |  |         x1 = (a + b) / dv | 
					
						
							|  |  |  |  |         x2 = (a - b) / dv | 
					
						
							|  |  |  |  |         return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2))) | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-24 11:44:55 -08:00
										 |  |  |  |     @property | 
					
						
							|  |  |  |  |     def mean(self): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'Arithmetic mean of the normal distribution.' | 
					
						
							| 
									
										
										
										
											2019-02-24 11:44:55 -08:00
										 |  |  |  |         return self.mu | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     @property | 
					
						
							|  |  |  |  |     def stdev(self): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'Standard deviation of the normal distribution.' | 
					
						
							| 
									
										
										
										
											2019-02-24 11:44:55 -08:00
										 |  |  |  |         return self.sigma | 
					
						
							|  |  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |     @property | 
					
						
							|  |  |  |  |     def variance(self): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'Square of the standard deviation.' | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         return self.sigma ** 2.0 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __add__(x1, x2): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         '''Add a constant or another NormalDist instance.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         If *other* is a constant, translate mu by the constant, | 
					
						
							|  |  |  |  |         leaving sigma unchanged. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         If *other* is a NormalDist, add both the means and the variances. | 
					
						
							|  |  |  |  |         Mathematically, this works only if the two distributions are | 
					
						
							|  |  |  |  |         independent or if they are jointly normally distributed. | 
					
						
							|  |  |  |  |         '''
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         if isinstance(x2, NormalDist): | 
					
						
							|  |  |  |  |             return NormalDist(x1.mu + x2.mu, hypot(x1.sigma, x2.sigma)) | 
					
						
							|  |  |  |  |         return NormalDist(x1.mu + x2, x1.sigma) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __sub__(x1, x2): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         '''Subtract a constant or another NormalDist instance.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         If *other* is a constant, translate by the constant mu, | 
					
						
							|  |  |  |  |         leaving sigma unchanged. | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         If *other* is a NormalDist, subtract the means and add the variances. | 
					
						
							|  |  |  |  |         Mathematically, this works only if the two distributions are | 
					
						
							|  |  |  |  |         independent or if they are jointly normally distributed. | 
					
						
							|  |  |  |  |         '''
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         if isinstance(x2, NormalDist): | 
					
						
							|  |  |  |  |             return NormalDist(x1.mu - x2.mu, hypot(x1.sigma, x2.sigma)) | 
					
						
							|  |  |  |  |         return NormalDist(x1.mu - x2, x1.sigma) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __mul__(x1, x2): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         '''Multiply both mu and sigma by a constant.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         Used for rescaling, perhaps to change measurement units. | 
					
						
							|  |  |  |  |         Sigma is scaled with the absolute value of the constant. | 
					
						
							|  |  |  |  |         '''
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         return NormalDist(x1.mu * x2, x1.sigma * fabs(x2)) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __truediv__(x1, x2): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         '''Divide both mu and sigma by a constant.
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         Used for rescaling, perhaps to change measurement units. | 
					
						
							|  |  |  |  |         Sigma is scaled with the absolute value of the constant. | 
					
						
							|  |  |  |  |         '''
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         return NormalDist(x1.mu / x2, x1.sigma / fabs(x2)) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __pos__(x1): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'Return a copy of the instance.' | 
					
						
							| 
									
										
										
										
											2019-02-23 22:19:01 -08:00
										 |  |  |  |         return NormalDist(x1.mu, x1.sigma) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __neg__(x1): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'Negates mu while keeping sigma the same.' | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         return NormalDist(-x1.mu, x1.sigma) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     __radd__ = __add__ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __rsub__(x1, x2): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'Subtract a NormalDist from a constant or another NormalDist.' | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         return -(x1 - x2) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     __rmul__ = __mul__ | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __eq__(x1, x2): | 
					
						
							| 
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 |  |  |  |         'Two NormalDist objects are equal if their mu and sigma are both equal.' | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  |         if not isinstance(x2, NormalDist): | 
					
						
							|  |  |  |  |             return NotImplemented | 
					
						
							|  |  |  |  |         return (x1.mu, x2.sigma) == (x2.mu, x2.sigma) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def __repr__(self): | 
					
						
							|  |  |  |  |         return f'{type(self).__name__}(mu={self.mu!r}, sigma={self.sigma!r})' | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | if __name__ == '__main__': | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     # Show math operations computed analytically in comparsion | 
					
						
							|  |  |  |  |     # to a monte carlo simulation of the same operations | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     from math import isclose | 
					
						
							|  |  |  |  |     from operator import add, sub, mul, truediv | 
					
						
							|  |  |  |  |     from itertools import repeat | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |  |     import doctest | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     g1 = NormalDist(10, 20) | 
					
						
							|  |  |  |  |     g2 = NormalDist(-5, 25) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     # Test scaling by a constant | 
					
						
							|  |  |  |  |     assert (g1 * 5 / 5).mu == g1.mu | 
					
						
							|  |  |  |  |     assert (g1 * 5 / 5).sigma == g1.sigma | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     n = 100_000 | 
					
						
							|  |  |  |  |     G1 = g1.samples(n) | 
					
						
							|  |  |  |  |     G2 = g2.samples(n) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     for func in (add, sub): | 
					
						
							|  |  |  |  |         print(f'\nTest {func.__name__} with another NormalDist:') | 
					
						
							|  |  |  |  |         print(func(g1, g2)) | 
					
						
							|  |  |  |  |         print(NormalDist.from_samples(map(func, G1, G2))) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const = 11 | 
					
						
							|  |  |  |  |     for func in (add, sub, mul, truediv): | 
					
						
							|  |  |  |  |         print(f'\nTest {func.__name__} with a constant:') | 
					
						
							|  |  |  |  |         print(func(g1, const)) | 
					
						
							|  |  |  |  |         print(NormalDist.from_samples(map(func, G1, repeat(const)))) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const = 19 | 
					
						
							|  |  |  |  |     for func in (add, sub, mul): | 
					
						
							|  |  |  |  |         print(f'\nTest constant with {func.__name__}:') | 
					
						
							|  |  |  |  |         print(func(const, g1)) | 
					
						
							|  |  |  |  |         print(NormalDist.from_samples(map(func, repeat(const), G1))) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     def assert_close(G1, G2): | 
					
						
							|  |  |  |  |         assert isclose(G1.mu, G1.mu, rel_tol=0.01), (G1, G2) | 
					
						
							|  |  |  |  |         assert isclose(G1.sigma, G2.sigma, rel_tol=0.01), (G1, G2) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     X = NormalDist(-105, 73) | 
					
						
							|  |  |  |  |     Y = NormalDist(31, 47) | 
					
						
							|  |  |  |  |     s = 32.75 | 
					
						
							|  |  |  |  |     n = 100_000 | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     S = NormalDist.from_samples([x + s for x in X.samples(n)]) | 
					
						
							|  |  |  |  |     assert_close(X + s, S) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     S = NormalDist.from_samples([x - s for x in X.samples(n)]) | 
					
						
							|  |  |  |  |     assert_close(X - s, S) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     S = NormalDist.from_samples([x * s for x in X.samples(n)]) | 
					
						
							|  |  |  |  |     assert_close(X * s, S) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     S = NormalDist.from_samples([x / s for x in X.samples(n)]) | 
					
						
							|  |  |  |  |     assert_close(X / s, S) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     S = NormalDist.from_samples([x + y for x, y in zip(X.samples(n), | 
					
						
							|  |  |  |  |                                                        Y.samples(n))]) | 
					
						
							|  |  |  |  |     assert_close(X + Y, S) | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     S = NormalDist.from_samples([x - y for x, y in zip(X.samples(n), | 
					
						
							|  |  |  |  |                                                        Y.samples(n))]) | 
					
						
							|  |  |  |  |     assert_close(X - Y, S) | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |  | 
 | 
					
						
							|  |  |  |  |     print(doctest.testmod()) |