mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
	
	
		
			174 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			174 lines
		
	
	
	
		
			4.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2008-2012 Stefan Krah. All rights reserved. | ||
|  |  * | ||
|  |  * Redistribution and use in source and binary forms, with or without | ||
|  |  * modification, are permitted provided that the following conditions | ||
|  |  * are met: | ||
|  |  * | ||
|  |  * 1. Redistributions of source code must retain the above copyright | ||
|  |  *    notice, this list of conditions and the following disclaimer. | ||
|  |  * | ||
|  |  * 2. Redistributions in binary form must reproduce the above copyright | ||
|  |  *    notice, this list of conditions and the following disclaimer in the | ||
|  |  *    documentation and/or other materials provided with the distribution. | ||
|  |  * | ||
|  |  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND | ||
|  |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
|  |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
|  |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
|  |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
|  |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
|  |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
|  |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
|  |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
|  |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
|  |  * SUCH DAMAGE. | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "mpdecimal.h"
 | ||
|  | #include <stdio.h>
 | ||
|  | #include <assert.h>
 | ||
|  | #include "bits.h"
 | ||
|  | #include "numbertheory.h"
 | ||
|  | #include "umodarith.h"
 | ||
|  | #include "difradix2.h"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Bignum: The actual transform routine (decimation in frequency). */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Generate index pairs (x, bitreverse(x)) and carry out the permutation. | ||
|  |  * n must be a power of two. | ||
|  |  * Algorithm due to Brent/Lehmann, see Joerg Arndt, "Matters Computational", | ||
|  |  * Chapter 1.14.4. [http://www.jjj.de/fxt/]
 | ||
|  |  */ | ||
|  | static inline void | ||
|  | bitreverse_permute(mpd_uint_t a[], mpd_size_t n) | ||
|  | { | ||
|  |     mpd_size_t x = 0; | ||
|  |     mpd_size_t r = 0; | ||
|  |     mpd_uint_t t; | ||
|  | 
 | ||
|  |     do { /* Invariant: r = bitreverse(x) */ | ||
|  |         if (r > x) { | ||
|  |             t = a[x]; | ||
|  |             a[x] = a[r]; | ||
|  |             a[r] = t; | ||
|  |         } | ||
|  |         /* Flip trailing consecutive 1 bits and the first zero bit
 | ||
|  |          * that absorbs a possible carry. */ | ||
|  |         x += 1; | ||
|  |         /* Mirror the operation on r: Flip n_trailing_zeros(x)+1
 | ||
|  |            high bits of r. */ | ||
|  |         r ^= (n - (n >> (mpd_bsf(x)+1))); | ||
|  |         /* The loop invariant is preserved. */ | ||
|  |     } while (x < n); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Fast Number Theoretic Transform, decimation in frequency. */ | ||
|  | void | ||
|  | fnt_dif2(mpd_uint_t a[], mpd_size_t n, struct fnt_params *tparams) | ||
|  | { | ||
|  |     mpd_uint_t *wtable = tparams->wtable; | ||
|  |     mpd_uint_t umod; | ||
|  | #ifdef PPRO
 | ||
|  |     double dmod; | ||
|  |     uint32_t dinvmod[3]; | ||
|  | #endif
 | ||
|  |     mpd_uint_t u0, u1, v0, v1; | ||
|  |     mpd_uint_t w, w0, w1, wstep; | ||
|  |     mpd_size_t m, mhalf; | ||
|  |     mpd_size_t j, r; | ||
|  | 
 | ||
|  | 
 | ||
|  |     assert(ispower2(n)); | ||
|  |     assert(n >= 4); | ||
|  | 
 | ||
|  |     SETMODULUS(tparams->modnum); | ||
|  | 
 | ||
|  |     /* m == n */ | ||
|  |     mhalf = n / 2; | ||
|  |     for (j = 0; j < mhalf; j += 2) { | ||
|  | 
 | ||
|  |         w0 = wtable[j]; | ||
|  |         w1 = wtable[j+1]; | ||
|  | 
 | ||
|  |         u0 = a[j]; | ||
|  |         v0 = a[j+mhalf]; | ||
|  | 
 | ||
|  |         u1 = a[j+1]; | ||
|  |         v1 = a[j+1+mhalf]; | ||
|  | 
 | ||
|  |         a[j] = addmod(u0, v0, umod); | ||
|  |         v0 = submod(u0, v0, umod); | ||
|  | 
 | ||
|  |         a[j+1] = addmod(u1, v1, umod); | ||
|  |         v1 = submod(u1, v1, umod); | ||
|  | 
 | ||
|  |         MULMOD2(&v0, w0, &v1, w1); | ||
|  | 
 | ||
|  |         a[j+mhalf] = v0; | ||
|  |         a[j+1+mhalf] = v1; | ||
|  | 
 | ||
|  |     } | ||
|  | 
 | ||
|  |     wstep = 2; | ||
|  |     for (m = n/2; m >= 2; m>>=1, wstep<<=1) { | ||
|  | 
 | ||
|  |         mhalf = m / 2; | ||
|  | 
 | ||
|  |         /* j == 0 */ | ||
|  |         for (r = 0; r < n; r += 2*m) { | ||
|  | 
 | ||
|  |             u0 = a[r]; | ||
|  |             v0 = a[r+mhalf]; | ||
|  | 
 | ||
|  |             u1 = a[m+r]; | ||
|  |             v1 = a[m+r+mhalf]; | ||
|  | 
 | ||
|  |             a[r] = addmod(u0, v0, umod); | ||
|  |             v0 = submod(u0, v0, umod); | ||
|  | 
 | ||
|  |             a[m+r] = addmod(u1, v1, umod); | ||
|  |             v1 = submod(u1, v1, umod); | ||
|  | 
 | ||
|  |             a[r+mhalf] = v0; | ||
|  |             a[m+r+mhalf] = v1; | ||
|  |         } | ||
|  | 
 | ||
|  |         for (j = 1; j < mhalf; j++) { | ||
|  | 
 | ||
|  |             w = wtable[j*wstep]; | ||
|  | 
 | ||
|  |             for (r = 0; r < n; r += 2*m) { | ||
|  | 
 | ||
|  |                 u0 = a[r+j]; | ||
|  |                 v0 = a[r+j+mhalf]; | ||
|  | 
 | ||
|  |                 u1 = a[m+r+j]; | ||
|  |                 v1 = a[m+r+j+mhalf]; | ||
|  | 
 | ||
|  |                 a[r+j] = addmod(u0, v0, umod); | ||
|  |                 v0 = submod(u0, v0, umod); | ||
|  | 
 | ||
|  |                 a[m+r+j] = addmod(u1, v1, umod); | ||
|  |                 v1 = submod(u1, v1, umod); | ||
|  | 
 | ||
|  |                 MULMOD2C(&v0, &v1, w); | ||
|  | 
 | ||
|  |                 a[r+j+mhalf] = v0; | ||
|  |                 a[m+r+j+mhalf] = v1; | ||
|  |             } | ||
|  | 
 | ||
|  |         } | ||
|  | 
 | ||
|  |     } | ||
|  | 
 | ||
|  |     bitreverse_permute(a, n); | ||
|  | } | ||
|  | 
 | ||
|  | 
 |