2000-02-04 15:28:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								"""Random variable generators.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    integers
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    --------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           uniform within range
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sequences
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ---------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           pick random element
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           generate random permutation
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    distributions on the real line:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ------------------------------
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								           uniform
							 | 
						
					
						
							
								
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								           normal (Gaussian)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           lognormal
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           negative exponential
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           gamma
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           beta
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    distributions on the circle (angles 0 to 2pi)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ---------------------------------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           circular uniform
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           von Mises
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								Translated from anonymously contributed C/C++ source.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-26 10:00:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								Multi-threading note:  the random number generator used here is not thread-
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								safe; it is possible that two calls return the same random value.  However,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								you can instantiate a different instance of Random() in each thread to get
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								generators that don't share state, then use .setstate() and .jumpahead() to
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								move the generators to disjoint segments of the full period.  For example,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def create_generators(num, delta, firstseed=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ""\"Return list of num distinct generators.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    Each generator has its own unique segment of delta elements from
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    Random.random()'s full period.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    Seed the first generator with optional arg firstseed (default is
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    None, to seed from current time).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    ""\"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    from random import Random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    g = Random(firstseed)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    result = [g]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i in range(num - 1):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        laststate = g.getstate()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        g = Random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        g.setstate(laststate)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        g.jumpahead(delta)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        result.append(g)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return result
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								gens = create_generators(10, 1000000)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								That creates 10 distinct generators, which can be passed out to 10 distinct
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								threads.  The generators don't share state so can be called safely in
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								parallel.  So long as no thread calls its g.random() more than a million
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								times (the second argument to create_generators), the sequences seen by
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								each thread will not overlap.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								The period of the underlying Wichmann-Hill generator is 6,953,607,871,644,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								and that limits how far this technique can be pushed.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								Just for fun, note that since we know the period, .jumpahead() can also be
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								used to "move backward in time":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								>>> g = Random(42)  # arbitrary
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								>>> g.random()
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								0.25420336316883324
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-26 10:00:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								>>> g.jumpahead(6953607871644L - 1) # move *back* one
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								>>> g.random()
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								0.25420336316883324
							 | 
						
					
						
							
								
									
										
										
										
											2000-02-04 15:28:42 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								"""
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								# XXX The docstring sucks.
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-29 17:51:31 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from math import log as _log, exp as _exp, pi as _pi, e as _e
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-15 22:15:14 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								__all__ = ["Random","seed","random","uniform","randint","choice",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           "randrange","shuffle","normalvariate","lognormvariate",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           "cunifvariate","expovariate","vonmisesvariate","gammavariate",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           "stdgamma","gauss","betavariate","paretovariate","weibullvariate",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								           "getstate","setstate","jumpahead","whseed"]
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-15 23:56:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-11-25 21:12:43 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def _verify(name, computed, expected):
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if abs(computed - expected) > 1e-7:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        raise ValueError(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "computed value for %s deviates too much "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            "(computed %g, expected %g)" % (name, computed, expected))
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
							 | 
						
					
						
							
								
									
										
										
										
											2001-11-25 21:12:43 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141)
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								TWOPI = 2.0*_pi
							 | 
						
					
						
							
								
									
										
										
										
											2001-11-25 21:12:43 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								_verify('TWOPI', TWOPI, 6.28318530718)
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								LOG4 = _log(4.0)
							 | 
						
					
						
							
								
									
										
										
										
											2001-11-25 21:12:43 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								_verify('LOG4', LOG4, 1.38629436111989)
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								SG_MAGICCONST = 1.0 + _log(4.5)
							 | 
						
					
						
							
								
									
										
										
										
											2001-11-25 21:12:43 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627)
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								del _verify
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								# Translated by Guido van Rossum from C source provided by
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# Adrian Baddeley.
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								class Random:
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    """Random number generator base class used by bound module functions.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    Used to instantiate instances of Random to get generators that don't
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    share state.  Especially useful for multi-threaded programs, creating
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    a different instance of Random for each thread, and using the jumpahead()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    method to ensure that the generated sequences seen by each thread don't
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    overlap.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    Class Random can also be subclassed if you want to use a different basic
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    generator of your own devising: in that case, override the following
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    methods:  random(), seed(), getstate(), setstate() and jumpahead().
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    VERSION = 1     # used by getstate/setstate
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def __init__(self, x=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Initialize an instance.
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        Optional argument x controls seeding, as for Random.seed().
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.seed(x)
							 | 
						
					
						
							
								
									
										
										
										
											1998-05-20 16:28:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- core generator -------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    # Specific to Wichmann-Hill generator.  Subclasses wishing to use a
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 06:23:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    # different core generator should override the seed(), random(),
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    # getstate(), setstate() and jumpahead() methods.
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def seed(self, a=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Initialize internal state from hashable object.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        None or no argument seeds from current time.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 10:06:53 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        If a is not None or an int or long, hash(a) is used instead.
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        If a is an int or long, a is used directly.  Distinct values between
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        0 and 27814431486575L inclusive are guaranteed to yield distinct
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        internal states (this guarantee is specific to the default
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Wichmann-Hill generator).
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if a is None:
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            # Initialize from current time
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            import time
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            a = long(time.time() * 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if type(a) not in (type(3), type(3L)):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            a = hash(a)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, x = divmod(a, 30268)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, y = divmod(a, 30306)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, z = divmod(a, 30322)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self._seed = int(x)+1, int(y)+1, int(z)+1
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-05 20:40:00 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.gauss_next = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def random(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Get the next random number in the range [0.0, 1.0)."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Wichman-Hill random number generator.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Wichmann, B. A. & Hill, I. D. (1982)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Algorithm AS 183:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # An efficient and portable pseudo-random number generator
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Applied Statistics 31 (1982) 188-190
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # see also:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #        Correction to Algorithm AS 183
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #        Applied Statistics 33 (1984) 123
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #        McLeod, A. I. (1985)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #        A remark on Algorithm AS 183
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #        Applied Statistics 34 (1985),198-200
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # This part is thread-unsafe:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # BEGIN CRITICAL SECTION
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x, y, z = self._seed
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x = (171 * x) % 30269
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        y = (172 * y) % 30307
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        z = (170 * z) % 30323
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self._seed = x, y, z
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # END CRITICAL SECTION
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Note:  on a platform using IEEE-754 double arithmetic, this can
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # never return 0.0 (asserted by Tim; proof too long for a comment).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def getstate(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Return internal state; can be passed to setstate() later."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return self.VERSION, self._seed, self.gauss_next
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def setstate(self, state):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Restore internal state from object returned by getstate()."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        version = state[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if version == 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            version, self._seed, self.gauss_next = state
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError("state with version %s passed to "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                             "Random.setstate() of version %s" %
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                             (version, self.VERSION))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 06:23:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def jumpahead(self, n):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Act as if n calls to random() were made, but quickly.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        n is an int, greater than or equal to 0.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Example use:  If you have 2 threads and know that each will
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        consume no more than a million random numbers, create two Random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        objects r1 and r2, then do
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            r2.setstate(r1.getstate())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            r2.jumpahead(1000000)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Then r1 and r2 will use guaranteed-disjoint segments of the full
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        period.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if not n >= 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError("n must be >= 0")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x, y, z = self._seed
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x = int(x * pow(171, n, 30269)) % 30269
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        y = int(y * pow(172, n, 30307)) % 30307
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        z = int(z * pow(170, n, 30323)) % 30323
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self._seed = x, y, z
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def __whseed(self, x=0, y=0, z=0):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Set the Wichmann-Hill seed from (x, y, z).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        These must be integers in the range [0, 256).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if not type(x) == type(y) == type(z) == type(0):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise TypeError('seeds must be integers')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError('seeds must be in range(0, 256)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if 0 == x == y == z:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Initialize from current time
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            import time
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            t = long(time.time() * 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            t = int((t&0xffffff) ^ (t>>24))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            t, x = divmod(t, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            t, y = divmod(t, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            t, z = divmod(t, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Zero is a poor seed, so substitute 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self._seed = (x or 1, y or 1, z or 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-05 20:40:00 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        self.gauss_next = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def whseed(self, a=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Seed from hashable object's hash code.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        None or no argument seeds from current time.  It is not guaranteed
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        that objects with distinct hash codes lead to distinct internal
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        states.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        This is obsolete, provided for compatibility with the seed routine
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        used prior to Python 2.1.  Use the .seed() method instead.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if a is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            self.__whseed()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a = hash(a)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, x = divmod(a, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, y = divmod(a, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        a, z = divmod(a, 256)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x = (x + a) % 256 or 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        y = (y + a) % 256 or 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        z = (z + a) % 256 or 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.__whseed(x, y, z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## ---- Methods below this point do not need to be overridden when
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								## ---- subclassing for the purpose of using a different core generator.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- pickle support  -------------------
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def __getstate__(self): # for pickle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return self.getstate()
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def __setstate__(self, state):  # for pickle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.setstate(state)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								## -------------------- integer methods  -------------------
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def randrange(self, start, stop=None, step=1, int=int, default=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Choose a random item from range(start, stop[, step]).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        This fixes the problem with randint() which includes the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        endpoint; in Python this is usually not what you want.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Do not supply the 'int' and 'default' arguments.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # This code is a bit messy to make it fast for the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # common case while still doing adequate error checking
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        istart = int(start)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if istart != start:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "non-integer arg 1 for randrange()"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if stop is default:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if istart > 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                return int(self.random() * istart)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "empty range for randrange()"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        istop = int(stop)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if istop != stop:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "non-integer stop for randrange()"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if step == 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if istart < istop:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                return istart + int(self.random() *
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                   (istop - istart))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "empty range for randrange()"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        istep = int(step)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if istep != step:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "non-integer step for randrange()"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if istep > 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            n = (istop - istart + istep - 1) / istep
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        elif istep < 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            n = (istop - istart + istep + 1) / istep
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "zero step for randrange()"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if n <= 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, "empty range for randrange()"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return istart + istep*int(self.random() * n)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def randint(self, a, b):
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Return random integer in range [a, b], including both end points.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return self.randrange(a, b+1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- sequence methods  -------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def choice(self, seq):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Choose a random element from a non-empty sequence."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return seq[int(self.random() * len(seq))]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def shuffle(self, x, random=None, int=int):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """x, random=random.random -> shuffle list x in place; return None.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Optional arg random is a 0-argument function returning a random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        float in [0.0, 1.0); by default, the standard random.random.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Note that for even rather small len(x), the total number of
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        permutations of x is larger than the period of most random number
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        generators; this implies that "most" permutations of a long
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        sequence can never be generated.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if random is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            random = self.random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        for i in xrange(len(x)-1, 0, -1):
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            # pick an element in x[:i+1] with which to exchange x[i]
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            j = int(random() * (i+1))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            x[i], x[j] = x[j], x[i]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- real-valued distributions  -------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								## -------------------- uniform distribution -------------------
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def uniform(self, a, b):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """Get a random number in the range [a, b)."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return a + (b-a) * self.random()
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- normal distribution --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def normalvariate(self, mu, sigma):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Normal distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        mu is the mean, and sigma is the standard deviation.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # mu = mean, sigma = standard deviation
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Uses Kinderman and Monahan method. Reference: Kinderman,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # A.J. and Monahan, J.F., "Computer generation of random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # variables using the ratio of uniform deviates", ACM Trans
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Math Software, 3, (1977), pp257-260.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        random = self.random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        while 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            u1 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            u2 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            z = NV_MAGICCONST*(u1-0.5)/u2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            zz = z*z/4.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            if zz <= -_log(u2):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return mu + z*sigma
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- lognormal distribution --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def lognormvariate(self, mu, sigma):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Log normal distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        If you take the natural logarithm of this distribution, you'll get a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        normal distribution with mean mu and standard deviation sigma.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        mu can have any value, and sigma must be greater than zero.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return _exp(self.normalvariate(mu, sigma))
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- circular uniform --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def cunifvariate(self, mean, arc):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Circular uniform distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        mean is the mean angle, and arc is the range of the distribution,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        centered around the mean angle.  Both values must be expressed in
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        radians.  Returned values range between mean - arc/2 and
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        mean + arc/2 and are normalized to between 0 and pi.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Deprecated in version 2.3.  Use:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            (mean + arc * (Random.random() - 0.5)) % Math.pi
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # mean: mean angle (in radians between 0 and pi)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # arc:  range of distribution (in radians between 0 and pi)
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        import warnings
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        warnings.warn("The cunifvariate function is deprecated; Use (mean "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                      "+ arc * (Random.random() - 0.5)) % Math.pi instead",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                      DeprecationWarning)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return (mean + arc * (self.random() - 0.5)) % _pi
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- exponential distribution --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def expovariate(self, lambd):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Exponential distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        lambd is 1.0 divided by the desired mean.  (The parameter would be
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        called "lambda", but that is a reserved word in Python.)  Returned
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        values range from 0 to positive infinity.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # lambd: rate lambd = 1/mean
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # ('lambda' is a Python reserved word)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        random = self.random
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        u = random()
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        while u <= 1e-7:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            u = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return -_log(u)/lambd
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- von Mises distribution --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def vonmisesvariate(self, mu, kappa):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Circular data distribution.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        mu is the mean angle, expressed in radians between 0 and 2*pi, and
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        kappa is the concentration parameter, which must be greater than or
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        equal to zero.  If kappa is equal to zero, this distribution reduces
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        to a uniform random angle over the range 0 to 2*pi.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # mu:    mean angle (in radians between 0 and 2*pi)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # kappa: concentration parameter kappa (>= 0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # if kappa = 0 generate uniform random angle
							 | 
						
					
						
							
								
									
										
										
										
											1998-04-06 14:12:13 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Based upon an algorithm published in: Fisher, N.I.,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # "Statistical Analysis of Circular Data", Cambridge
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # University Press, 1993.
							 | 
						
					
						
							
								
									
										
										
										
											1998-04-06 14:12:13 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Thanks to Magnus Kessler for a correction to the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # implementation of step 4.
							 | 
						
					
						
							
								
									
										
										
										
											1998-04-06 14:12:13 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        random = self.random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if kappa <= 1e-6:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return TWOPI * random()
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        r = (1.0 + b * b)/(2.0 * b)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        while 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            u1 = random()
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            z = _cos(_pi * u1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            f = (1.0 + r * z)/(r + z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            c = kappa * (r - f)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            u2 = random()
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                break
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        u3 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if u3 > 0.5:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            theta = (mu % TWOPI) + _acos(f)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            theta = (mu % TWOPI) - _acos(f)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return theta
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- gamma distribution --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def gammavariate(self, alpha, beta):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Gamma distribution.  Not the gamma function!
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Conditions on the parameters are alpha > 0 and beta > 0.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 14:08:12 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Warning: a few older sources define the gamma distribution in terms
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # of alpha > -1.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if alpha <= 0.0 or beta <= 0.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        random = self.random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if alpha > 1.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Uses R.C.H. Cheng, "The generation of Gamma
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # variables with non-integral shape parameters",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Applied Statistics, (1977), 26, No. 1, p71-74
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-13 23:40:14 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            ainv = _sqrt(2.0 * alpha - 1.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            bbb = alpha - LOG4
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            ccc = alpha + ainv
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            while 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                u1 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                u2 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                v = _log(u1/(1.0-u1))/ainv
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                x = alpha*_exp(v)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                z = u1*u1*u2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                r = bbb+ccc*v-x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                    return x * beta
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        elif alpha == 1.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # expovariate(1)
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            u = random()
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            while u <= 1e-7:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                u = random()
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            return -_log(u) * beta
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:   # alpha is between 0 and 1 (exclusive)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            while 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                u = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                b = (_e + alpha)/_e
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                p = b*u
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                if p <= 1.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    x = pow(p, 1.0/alpha)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    # p > 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    x = -_log((b-p)/alpha)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                u1 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                if not (((p <= 1.0) and (u1 > _exp(-x))) or
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                          ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    break
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            return x * beta
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    def stdgamma(self, alpha, ainv, bbb, ccc):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # This method was (and shall remain) undocumented.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # This method is deprecated
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # for the following reasons:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # 1. Returns same as .gammavariate(alpha, 1.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # 2. Requires caller to provide 3 extra arguments
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #    that are functions of alpha anyway
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # 3. Can't be used for alpha < 0.5
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # ainv = sqrt(2 * alpha - 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # bbb = alpha - log(4)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # ccc = alpha + ainv
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        import warnings
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        warnings.warn("The stdgamma function is deprecated; "
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                      "use gammavariate() instead",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                      DeprecationWarning)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return self.gammavariate(alpha, 1.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- Gauss (faster alternative) --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def gauss(self, mu, sigma):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Gaussian distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        mu is the mean, and sigma is the standard deviation.  This is
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        slightly faster than the normalvariate() function.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Not thread-safe without a lock around calls.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # When x and y are two variables from [0, 1), uniformly
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # distributed, then
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #    cos(2*pi*x)*sqrt(-2*log(1-y))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #    sin(2*pi*x)*sqrt(-2*log(1-y))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        #
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # are two *independent* variables with normal distribution
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # (mu = 0, sigma = 1).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # (Lambert Meertens)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # (corrected version; bug discovered by Mike Miller, fixed by LM)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # Multithreading note: When two threads call this function
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # simultaneously, it is possible that they will receive the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # same return value.  The window is very small though.  To
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # avoid this, you have to use a lock around all calls.  (I
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # didn't want to slow this down in the serial case by using a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # lock here.)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        random = self.random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        z = self.gauss_next
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        self.gauss_next = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if z is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            x2pi = random() * TWOPI
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            z = _cos(x2pi) * g2rad
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            self.gauss_next = _sin(x2pi) * g2rad
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return mu + z*sigma
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- beta --------------------
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-26 06:49:56 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## See
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								## for Ivan Frohne's insightful analysis of why the original implementation:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##    def betavariate(self, alpha, beta):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##        # Discrete Event Simulation in C, pp 87-88.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##        y = self.expovariate(alpha)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##        z = self.expovariate(1.0/beta)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##        return z/(y+z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								##
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								## was dead wrong, and how it probably got that way.
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def betavariate(self, alpha, beta):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Beta distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Conditions on the parameters are alpha > -1 and beta} > -1.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        Returned values range between 0 and 1.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-26 06:49:56 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # This version due to Janne Sinkkonen, and matches all the std
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        y = self.gammavariate(alpha, 1.)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if y == 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return 0.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return y / (y + self.gammavariate(beta, 1.))
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- Pareto --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def paretovariate(self, alpha):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Pareto distribution.  alpha is the shape parameter."""
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Jain, pg. 495
							 | 
						
					
						
							
								
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        u = self.random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return 1.0 / pow(u, 1.0/alpha)
							 | 
						
					
						
							
								
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- Weibull --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    def weibullvariate(self, alpha, beta):
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """Weibull distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        alpha is the scale parameter and beta is the shape parameter.
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 23:58:17 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 19:44:49 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        # Jain, pg. 499; bug fix courtesy Bill Arms
							 | 
						
					
						
							
								
									
										
										
										
											1997-12-02 02:47:39 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        u = self.random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return alpha * pow(-_log(u), 1.0/beta)
							 | 
						
					
						
							
								
									
										
										
										
											1999-08-18 13:53:28 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								## -------------------- test program --------------------
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def _test_generator(n, funccall):
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    import time
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print n, 'times', funccall
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    code = compile(funccall, funccall, 'eval')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sum = 0.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    sqsum = 0.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    smallest = 1e10
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    largest = -1e10
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    t0 = time.time()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i in range(n):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        x = eval(code)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        sum = sum + x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        sqsum = sqsum + x*x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        smallest = min(x, smallest)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        largest = max(x, largest)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    t1 = time.time()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print round(t1-t0, 3), 'sec,',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    avg = sum/n
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    stddev = _sqrt(sqsum/n - avg*avg)
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-15 01:18:21 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    print 'avg %g, stddev %g, min %g, max %g' % \
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								              (avg, stddev, smallest, largest)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def _test(N=20000):
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    print 'TWOPI         =', TWOPI
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print 'LOG4          =', LOG4
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print 'NV_MAGICCONST =', NV_MAGICCONST
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    print 'SG_MAGICCONST =', SG_MAGICCONST
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'random()')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'normalvariate(0.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'lognormvariate(0.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'cunifvariate(0.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'expovariate(1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'vonmisesvariate(0.0, 1.0)')
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-14 06:40:34 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'gammavariate(0.01, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'gammavariate(0.1, 1.0)')
							 | 
						
					
						
							
								
									
										
										
										
											2002-05-23 15:15:30 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'gammavariate(0.1, 2.0)')
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'gammavariate(0.5, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'gammavariate(0.9, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'gammavariate(1.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'gammavariate(2.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'gammavariate(20.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'gammavariate(200.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'gauss(0.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'betavariate(3.0, 3.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'paretovariate(1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    _test_generator(N, 'weibullvariate(1.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 20:25:57 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    # Test jumpahead.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    s = getstate()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    jumpahead(N)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    r1 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    # now do it the slow way
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    setstate(s)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for i in range(N):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    r2 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if r1 != r2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        raise ValueError("jumpahead test failed " + `(N, r1, r2)`)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-26 22:56:56 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								# Create one instance, seeded from current time, and export its methods
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# as module-level functions.  The functions are not threadsafe, and state
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# is shared across all uses (both in the user's code and in the Python
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# libraries), but that's fine for most programs and is easier for the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# casual user than making them instantiate their own Random() instance.
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								_inst = Random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								seed = _inst.seed
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								random = _inst.random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								uniform = _inst.uniform
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								randint = _inst.randint
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								choice = _inst.choice
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								randrange = _inst.randrange
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								shuffle = _inst.shuffle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								normalvariate = _inst.normalvariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								lognormvariate = _inst.lognormvariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								cunifvariate = _inst.cunifvariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								expovariate = _inst.expovariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								vonmisesvariate = _inst.vonmisesvariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								gammavariate = _inst.gammavariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								stdgamma = _inst.stdgamma
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								gauss = _inst.gauss
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								betavariate = _inst.betavariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								paretovariate = _inst.paretovariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								weibullvariate = _inst.weibullvariate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								getstate = _inst.getstate
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								setstate = _inst.setstate
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 06:23:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								jumpahead = _inst.jumpahead
							 | 
						
					
						
							
								
									
										
										
										
											2001-02-01 04:59:18 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								whseed = _inst.whseed
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								if __name__ == '__main__':
							 | 
						
					
						
							
								
									
										
										
										
											2001-01-25 03:36:26 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    _test()
							 |