2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								"""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Basic statistics module.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								This module provides functions for calculating statistics of data, including
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								averages, variance, and standard deviation.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Calculating averages
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								--------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								==================  ==================================================
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Function            Description
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								==================  ==================================================
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								mean                Arithmetic mean (average) of data.
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 01:35:16 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								fmean               Fast, floating point arithmetic mean.
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-07 09:20:03 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								geometric_mean      Geometric mean of data.
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								harmonic_mean       Harmonic mean of data.
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								median              Median (middle value) of data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								median_low          Low median of data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								median_high         High median of data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								median_grouped      Median, or 50th percentile, of grouped data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								mode                Mode (most common value) of data.
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-07 09:20:03 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								multimode           List of modes (most common values of data).
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								quantiles           Divide data into intervals with equal probability.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								==================  ==================================================
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Calculate the arithmetic mean ("the average") of data:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> mean([-1.0, 2.5, 3.25, 5.75])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								2.625
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Calculate the standard median of discrete data:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> median([2, 3, 4, 5])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								3.5
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Calculate the median, or 50th percentile, of data grouped into class intervals
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								centred on the data values provided. E.g. if your data points are rounded to
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								the nearest whole number:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> median_grouped([2, 2, 3, 3, 3, 4])  #doctest: +ELLIPSIS
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								2.8333333333...
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								This should be interpreted in this way: you have two data points in the class
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								the class interval 3.5-4.5. The median of these data points is 2.8333...
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Calculating variability or spread
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								---------------------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								==================  =============================================
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Function            Description
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								==================  =============================================
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								pvariance           Population variance of data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								variance            Sample variance of data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								pstdev              Population standard deviation of data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								stdev               Sample standard deviation of data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								==================  =============================================
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Calculate the standard deviation of sample data:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75])  #doctest: +ELLIPSIS
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								4.38961843444...
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								If you have previously calculated the mean, you can pass it as the optional
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								second argument to the four "spread" functions to avoid recalculating it:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> mu = mean(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> pvariance(data, mu)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								2.5
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Statistics for relations between two inputs
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								-------------------------------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								==================  ====================================================
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Function            Description
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								==================  ====================================================
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								covariance          Sample covariance for two variables.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								correlation         Pearson's correlation coefficient for two variables.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								linear_regression   Intercept and slope for simple linear regression.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								==================  ====================================================
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Calculate covariance, Pearson's correlation, and simple linear regression
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								for two inputs:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> covariance(x, y)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								0.75
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> correlation(x, y)  #doctest: +ELLIPSIS
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								0.31622776601...
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								>>> linear_regression(x, y)  #doctest:
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 20:30:58 -04:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								LinearRegression(slope=0.1, intercept=1.5)
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								Exceptions
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								----------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								A single exception is defined: StatisticsError is a subclass of ValueError.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								"""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								__all__ = [
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'NormalDist',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'StatisticsError',
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-15 11:00:51 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'correlation',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'covariance',
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'fmean',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'geometric_mean',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'harmonic_mean',
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-15 11:00:51 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'linear_regression',
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'mean',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'median',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'median_grouped',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'median_high',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'median_low',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'mode',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'multimode',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'pstdev',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'pvariance',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'quantiles',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'stdev',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    'variance',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								]
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import math
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import numbers
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import random
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import sys
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from fractions import Fraction
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from decimal import Decimal
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-18 13:48:27 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from itertools import count, groupby, repeat
							 | 
						
					
						
							
								
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from bisect import bisect_left, bisect_right
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
							 | 
						
					
						
							
								
									
										
										
										
											2022-02-28 11:43:52 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from functools import reduce
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-18 13:48:27 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from operator import mul, itemgetter
							 | 
						
					
						
							
								
									
										
										
										
											2022-01-05 07:39:10 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from collections import Counter, namedtuple, defaultdict
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-09 10:30:06 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								_SQRT2 = sqrt(2.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# === Exceptions ===
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								class StatisticsError(ValueError):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    pass
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# === Private utilities ===
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-09-08 22:00:12 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _sum(data):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """_sum(data) -> (type, sum, count)
							 | 
						
					
						
							
								
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Return a high-precision sum of the given numeric data as a fraction,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    together with the type to be converted to and the count of items.
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Examples
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    --------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-09-08 22:00:12 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> _sum([3, 2.25, 4.5, -0.5, 0.25])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    (<class 'float'>, Fraction(19, 2), 5)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Some sources of round-off error will be avoided:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Built-in sum returns zero.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> _sum([1e50, 1, -1e50] * 1000)
							 | 
						
					
						
							
								
									
										
										
										
											2016-07-13 21:13:29 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    (<class 'float'>, Fraction(1000, 1), 3000)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Fractions and Decimals are also supported:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> from fractions import Fraction as F
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
							 | 
						
					
						
							
								
									
										
										
										
											2016-07-13 21:13:29 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> from decimal import Decimal as D
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> _sum(data)
							 | 
						
					
						
							
								
									
										
										
										
											2016-07-13 21:13:29 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Mixed types are currently treated as an error, except that int is
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    allowed.
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    count = 0
							 | 
						
					
						
							
								
									
										
										
										
											2022-02-28 11:43:52 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    types = set()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    types_add = types.add
							 | 
						
					
						
							
								
									
										
										
										
											2021-09-08 22:00:12 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    partials = {}
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    partials_get = partials.get
							 | 
						
					
						
							
								
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for typ, values in groupby(data, type):
							 | 
						
					
						
							
								
									
										
										
										
											2022-02-28 11:43:52 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        types_add(typ)
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        for n, d in map(_exact_ratio, values):
							 | 
						
					
						
							
								
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            count += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            partials[d] = partials_get(d, 0) + n
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if None in partials:
							 | 
						
					
						
							
								
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # The sum will be a NAN or INF. We can ignore all the finite
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # partials, and just look at this special one.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        total = partials[None]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        assert not _isfinite(total)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Sum all the partial sums using builtin sum.
							 | 
						
					
						
							
								
									
										
										
										
											2021-09-08 22:00:12 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        total = sum(Fraction(n, d) for d, n in partials.items())
							 | 
						
					
						
							
								
									
										
										
										
											2022-02-28 11:43:52 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    T = reduce(_coerce, types, int)  # or raise TypeError
							 | 
						
					
						
							
								
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return (T, total, count)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-01-05 07:39:10 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _ss(data, c=None):
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return the exact mean and sum of square deviations of sequence data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Calculations are done in a single pass, allowing the input to be an iterator.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    If given *c* is used the mean; otherwise, it is calculated from the data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Use the *c* argument with care, as it can lead to garbage results.
							 | 
						
					
						
							
								
									
										
										
										
											2022-01-05 07:39:10 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if c is not None:
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        T, ssd, count = _sum((d := x - c) * d for x in data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return (T, ssd, c, count)
							 | 
						
					
						
							
								
									
										
										
										
											2022-01-05 07:39:10 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    count = 0
							 | 
						
					
						
							
								
									
										
										
										
											2022-02-28 11:43:52 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    types = set()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    types_add = types.add
							 | 
						
					
						
							
								
									
										
										
										
											2022-01-05 07:39:10 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    sx_partials = defaultdict(int)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    sxx_partials = defaultdict(int)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for typ, values in groupby(data, type):
							 | 
						
					
						
							
								
									
										
										
										
											2022-02-28 11:43:52 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        types_add(typ)
							 | 
						
					
						
							
								
									
										
										
										
											2022-01-05 07:39:10 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        for n, d in map(_exact_ratio, values):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            count += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            sx_partials[d] += n
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            sxx_partials[d] += n * n
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if not count:
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ssd = c = Fraction(0)
							 | 
						
					
						
							
								
									
										
										
										
											2022-01-05 07:39:10 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    elif None in sx_partials:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # The sum will be a NAN or INF. We can ignore all the finite
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # partials, and just look at this special one.
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ssd = c = sx_partials[None]
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 23:22:04 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        assert not _isfinite(ssd)
							 | 
						
					
						
							
								
									
										
										
										
											2022-01-05 07:39:10 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sx = sum(Fraction(n, d) for d, n in sx_partials.items())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sxx = sum(Fraction(n, d*d) for d, n in sxx_partials.items())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # This formula has poor numeric properties for floats,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # but with fractions it is exact.
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ssd = (count * sxx - sx * sx) / count
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        c = sx / count
							 | 
						
					
						
							
								
									
										
										
										
											2022-02-28 11:43:52 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    T = reduce(_coerce, types, int)  # or raise TypeError
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return (T, ssd, c, count)
							 | 
						
					
						
							
								
									
										
										
										
											2022-01-05 07:39:10 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _isfinite(x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return x.is_finite()  # Likely a Decimal.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except AttributeError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return math.isfinite(x)  # Coerces to float first.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _coerce(T, S):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Coerce types T and S to a common type, or raise TypeError.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Coercion rules are currently an implementation detail. See the CoerceTest
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    test class in test_statistics for details.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # See http://bugs.python.org/issue24068.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    assert T is not bool, "initial type T is bool"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # If the types are the same, no need to coerce anything. Put this
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # first, so that the usual case (no coercion needed) happens as soon
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # as possible.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if T is S:  return T
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Mixed int & other coerce to the other type.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if S is int or S is bool:  return T
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if T is int:  return S
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # If one is a (strict) subclass of the other, coerce to the subclass.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if issubclass(S, T):  return S
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if issubclass(T, S):  return T
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Ints coerce to the other type.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if issubclass(T, int):  return S
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if issubclass(S, int):  return T
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Mixed fraction & float coerces to float (or float subclass).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if issubclass(T, Fraction) and issubclass(S, float):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return S
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if issubclass(T, float) and issubclass(S, Fraction):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return T
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Any other combination is disallowed.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    msg = "don't know how to coerce %s and %s"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    raise TypeError(msg % (T.__name__, S.__name__))
							 | 
						
					
						
							
								
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _exact_ratio(x):
							 | 
						
					
						
							
								
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return Real number x to exact (numerator, denominator) pair.
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> _exact_ratio(0.25)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    (1, 4)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    x is expected to be an int, Fraction, Decimal or float.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # XXX We should revisit whether using fractions to accumulate exact
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # ratios is the right way to go.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # The integer ratios for binary floats can have numerators or
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # denominators with over 300 decimal digits.  The problem is more
							 | 
						
					
						
							
								
									
										
										
										
											2022-07-12 14:34:23 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # acute with decimal floats where the default decimal context
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # supports a huge range of exponents from Emin=-999999 to
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Emax=999999.  When expanded with as_integer_ratio(), numbers like
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Decimal('3.14E+5000') and Decimal('3.14E-5000') have large
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # numerators or denominators that will slow computation.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # When the integer ratios are accumulated as fractions, the size
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # grows to cover the full range from the smallest magnitude to the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # largest.  For example, Fraction(3.14E+300) + Fraction(3.14E-300),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # has a 616 digit numerator.  Likewise,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Fraction(Decimal('3.14E+5000')) + Fraction(Decimal('3.14E-5000'))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # has 10,003 digit numerator.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # This doesn't seem to have been problem in practice, but it is a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # potential pitfall.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							
								
									
										
										
										
											2021-09-08 22:00:12 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return x.as_integer_ratio()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except AttributeError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        pass
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except (OverflowError, ValueError):
							 | 
						
					
						
							
								
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # float NAN or INF.
							 | 
						
					
						
							
								
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        assert not _isfinite(x)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return (x, None)
							 | 
						
					
						
							
								
									
										
										
										
											2021-09-08 22:00:12 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # x may be an Integral ABC.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return (x.numerator, x.denominator)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except AttributeError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        msg = f"can't convert type '{type(x).__name__}' to numerator/denominator"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise TypeError(msg)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _convert(value, T):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Convert value to given numeric type T."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if type(value) is T:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # This covers the cases where T is Fraction, or where value is
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # a NAN or INF (Decimal or float).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return value
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if issubclass(T, int) and value.denominator != 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        T = float
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # FIXME: what do we do if this overflows?
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return T(value)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except TypeError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if issubclass(T, Decimal):
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return T(value.numerator) / T(value.denominator)
							 | 
						
					
						
							
								
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _fail_neg(values, errmsg='negative value'):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Iterate over values, failing if any are less than zero."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for x in values:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if x < 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise StatisticsError(errmsg)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        yield x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-28 23:41:58 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _rank(data, /, *, key=None, reverse=False, ties='average', start=1) -> list[float]:
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-18 13:48:27 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Rank order a dataset. The lowest value has rank 1.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Ties are averaged so that equal values receive the same rank:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> data = [31, 56, 31, 25, 75, 18]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> _rank(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        [3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    The operation is idempotent:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> _rank([3.5, 5.0, 3.5, 2.0, 6.0, 1.0])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        [3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-28 23:41:58 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    It is possible to rank the data in reverse order so that the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    highest value has rank 1.  Also, a key-function can extract
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    the field to be ranked:
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-18 13:48:27 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> goals = [('eagles', 45), ('bears', 48), ('lions', 44)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> _rank(goals, key=itemgetter(1), reverse=True)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        [2.0, 1.0, 3.0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-28 23:41:58 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Ranks are conventionally numbered starting from one; however,
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-29 12:19:48 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    setting *start* to zero allows the ranks to be used as array indices:
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-28 23:41:58 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> prize = ['Gold', 'Silver', 'Bronze', 'Certificate']
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> scores = [8.1, 7.3, 9.4, 8.3]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> [prize[int(i)] for i in _rank(scores, start=0, reverse=True)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ['Bronze', 'Certificate', 'Gold', 'Silver']
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-18 13:48:27 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # If this function becomes public at some point, more thought
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # needs to be given to the signature.  A list of ints is
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # plausible when ties is "min" or "max".  When ties is "average",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # either list[float] or list[Fraction] is plausible.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Default handling of ties matches scipy.stats.mstats.spearmanr.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if ties != 'average':
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise ValueError(f'Unknown tie resolution method: {ties!r}')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if key is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        data = map(key, data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    val_pos = sorted(zip(data, count()), reverse=reverse)
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-28 23:41:58 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    i = start - 1
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-18 13:48:27 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    result = [0] * len(val_pos)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for _, g in groupby(val_pos, key=itemgetter(0)):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        group = list(g)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        size = len(group)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        rank = i + (size + 1) / 2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        for value, orig_pos in group:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            result[orig_pos] = rank
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        i += size
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return result
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-28 23:41:58 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _integer_sqrt_of_frac_rto(n: int, m: int) -> int:
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Square root of n/m, rounded to the nearest integer using round-to-odd."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Reference: https://www.lri.fr/~melquion/doc/05-imacs17_1-expose.pdf
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    a = math.isqrt(n // m)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return a | (a*a*m != n)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# For 53 bit precision floats, the bit width used in
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# _float_sqrt_of_frac() is 109.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								_sqrt_bit_width: int = 2 * sys.float_info.mant_dig + 3
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _float_sqrt_of_frac(n: int, m: int) -> float:
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Square root of n/m as a float, correctly rounded."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # See principle and proof sketch at: https://bugs.python.org/msg407078
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    q = (n.bit_length() - m.bit_length() - _sqrt_bit_width) // 2
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if q >= 0:
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        numerator = _integer_sqrt_of_frac_rto(n, m << 2 * q) << q
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        denominator = 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        numerator = _integer_sqrt_of_frac_rto(n << -2 * q, m)
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        denominator = 1 << -q
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return numerator / denominator   # Convert to float
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _decimal_sqrt_of_frac(n: int, m: int) -> Decimal:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Square root of n/m as a Decimal, correctly rounded."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Premise:  For decimal, computing (n/m).sqrt() can be off
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    #           by 1 ulp from the correctly rounded result.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Method:   Check the result, moving up or down a step if needed.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n <= 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not n:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return Decimal('0.0')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        n, m = -n, -m
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    root = (Decimal(n) / Decimal(m)).sqrt()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    nr, dr = root.as_integer_ratio()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    plus = root.next_plus()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    np, dp = plus.as_integer_ratio()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # test: n / m > ((root + plus) / 2) ** 2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if 4 * n * (dr*dp)**2 > m * (dr*np + dp*nr)**2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return plus
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    minus = root.next_minus()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    nm, dm = minus.as_integer_ratio()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # test: n / m < ((root + minus) / 2) ** 2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if 4 * n * (dr*dm)**2 < m * (dr*nm + dm*nr)**2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return minus
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return root
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# === Measures of central tendency (averages) ===
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def mean(data):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return the sample arithmetic mean of data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> mean([1, 2, 3, 4, 4])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    2.8
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> from fractions import Fraction as F
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Fraction(13, 21)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> from decimal import Decimal as D
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Decimal('0.5625')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    If ``data`` is empty, StatisticsError will be raised.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											2022-01-05 07:39:10 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    T, total, n = _sum(data)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n < 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('mean requires at least one data point')
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return _convert(total / n, T)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-20 20:22:26 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def fmean(data, weights=None):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Convert data to floats and compute the arithmetic mean.
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-21 15:06:29 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This runs faster than the mean() function and it always returns a float.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    If the input dataset is empty, it raises a StatisticsError.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> fmean([3.5, 4.0, 5.25])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    4.25
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        n = len(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except TypeError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Handle iterators that do not define __len__().
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        n = 0
							 | 
						
					
						
							
								
									
										
										
										
											2019-06-05 07:39:38 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        def count(iterable):
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-21 15:06:29 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            nonlocal n
							 | 
						
					
						
							
								
									
										
										
										
											2019-06-05 07:39:38 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            for n, x in enumerate(iterable, start=1):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                yield x
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-20 20:22:26 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        data = count(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if weights is None:
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        total = fsum(data)
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-20 20:22:26 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not n:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise StatisticsError('fmean requires at least one data point')
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-21 15:06:29 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return total / n
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-20 20:22:26 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num_weights = len(weights)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except TypeError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        weights = list(weights)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num_weights = len(weights)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    num = fsum(map(mul, data, weights))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n != num_weights:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('data and weights must be the same length')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    den = fsum(weights)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if not den:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('sum of weights must be non-zero')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return num / den
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-07 09:20:03 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def geometric_mean(data):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Convert data to floats and compute the geometric mean.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Raises a StatisticsError if the input dataset is empty,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if it contains a zero, or if it contains a negative value.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    No special efforts are made to achieve exact results.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    (However, this may change in the future.)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> round(geometric_mean([54, 24, 36]), 9)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    36.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return exp(fmean(map(log, data)))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except ValueError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('geometric mean requires a non-empty dataset '
							 | 
						
					
						
							
								
									
										
										
										
											2021-12-08 02:42:02 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                              'containing positive numbers') from None
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-07 09:20:03 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-12-23 19:52:09 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def harmonic_mean(data, weights=None):
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return the harmonic mean of data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-02-07 16:44:42 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    The harmonic mean is the reciprocal of the arithmetic mean of the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    reciprocals of the data.  It can be used for averaging ratios or
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    rates, for example speeds.
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-12-23 19:52:09 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Suppose a car travels 40 km/hr for 5 km and then speeds-up to
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    60 km/hr for another 5 km. What is the average speed?
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-12-23 19:52:09 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> harmonic_mean([40, 60])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        48.0
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-12-23 19:52:09 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Suppose a car travels 40 km/hr for 5 km, and when traffic clears,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    speeds-up to 60 km/hr for the remaining 30 km of the journey. What
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    is the average speed?
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> harmonic_mean([40, 60], weights=[5, 30])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        56.0
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    If ``data`` is empty, or any element is less than zero,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ``harmonic_mean`` will raise ``StatisticsError``.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if iter(data) is data:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        data = list(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    errmsg = 'harmonic mean does not support negative values'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    n = len(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n < 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('harmonic_mean requires at least one data point')
							 | 
						
					
						
							
								
									
										
										
										
											2020-12-23 19:52:09 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    elif n == 1 and weights is None:
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x = data[0]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if isinstance(x, (numbers.Real, Decimal)):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            if x < 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                raise StatisticsError(errmsg)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise TypeError('unsupported type')
							 | 
						
					
						
							
								
									
										
										
										
											2020-12-23 19:52:09 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if weights is None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        weights = repeat(1, n)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sum_weights = n
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if iter(weights) is weights:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            weights = list(weights)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if len(weights) != n:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise StatisticsError('Number of weights does not match data size')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        _, sum_weights, _ = _sum(w for w in _fail_neg(weights, errmsg))
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							
								
									
										
										
										
											2020-12-23 19:52:09 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        data = _fail_neg(data, errmsg)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        T, total, count = _sum(w / x if w else 0 for w, x in zip(weights, data))
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except ZeroDivisionError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return 0
							 | 
						
					
						
							
								
									
										
										
										
											2020-12-23 19:52:09 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if total <= 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('Weighted sum must be positive')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return _convert(sum_weights / total, T)
							 | 
						
					
						
							
								
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# FIXME: investigate ways to calculate medians without sorting? Quickselect?
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def median(data):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return the median (middle value) of numeric data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    When the number of data points is odd, return the middle data point.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    When the number of data points is even, the median is interpolated by
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    taking the average of the two middle values:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> median([1, 3, 5])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    3
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> median([1, 3, 5, 7])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    4.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    data = sorted(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    n = len(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n == 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError("no median for empty data")
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n % 2 == 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return data[n // 2]
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        i = n // 2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return (data[i - 1] + data[i]) / 2
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def median_low(data):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return the low median of numeric data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    When the number of data points is odd, the middle value is returned.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    When it is even, the smaller of the two middle values is returned.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> median_low([1, 3, 5])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    3
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> median_low([1, 3, 5, 7])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    3
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    data = sorted(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    n = len(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n == 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError("no median for empty data")
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n % 2 == 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return data[n // 2]
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return data[n // 2 - 1]
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def median_high(data):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return the high median of data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    When the number of data points is odd, the middle value is returned.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    When it is even, the larger of the two middle values is returned.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> median_high([1, 3, 5])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    3
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> median_high([1, 3, 5, 7])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    5
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    data = sorted(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    n = len(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n == 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError("no median for empty data")
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return data[n // 2]
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-09 02:08:41 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def median_grouped(data, interval=1.0):
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-05 03:01:07 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Estimates the median for numeric data binned around the midpoints
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    of consecutive, fixed-width intervals.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    The *data* can be any iterable of numeric data with each value being
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    exactly the midpoint of a bin.  At least one value must be present.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    The *interval* is width of each bin.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    For example, demographic information may have been summarized into
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    consecutive ten-year age groups with each group being represented
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    by the 5-year midpoints of the intervals:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> demographics = Counter({
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ...    25: 172,   # 20 to 30 years old
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ...    35: 484,   # 30 to 40 years old
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ...    45: 387,   # 40 to 50 years old
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ...    55:  22,   # 50 to 60 years old
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ...    65:   6,   # 60 to 70 years old
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ... })
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    The 50th percentile (median) is the 536th person out of the 1071
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    member cohort.  That person is in the 30 to 40 year old age group.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    The regular median() function would assume that everyone in the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    tricenarian age group was exactly 35 years old.  A more tenable
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    assumption is that the 484 members of that age group are evenly
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    distributed between 30 and 40.  For that, we use median_grouped().
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> data = list(demographics.elements())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> median(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        35
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> round(median_grouped(data, interval=10), 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        37.5
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    The caller is responsible for making sure the data points are separated
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    by exact multiples of *interval*.  This is essential for getting a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    correct result.  The function does not check this precondition.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-09 02:08:41 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Inputs may be any numeric type that can be coerced to a float during
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    the interpolation step.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    data = sorted(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    n = len(data)
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-09 02:08:41 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if not n:
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError("no median for empty data")
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-05 03:01:07 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Find the value at the midpoint. Remember this corresponds to the
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-05 03:01:07 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # midpoint of the class interval.
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    x = data[n // 2]
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-05 03:01:07 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Using O(log n) bisection, find where all the x values occur in the data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # All x will lie within data[i:j].
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    i = bisect_left(data, x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    j = bisect_right(data, x, lo=i)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-09 02:08:41 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Coerce to floats, raising a TypeError if not possible
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        interval = float(interval)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x = float(x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except ValueError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise TypeError(f'Value cannot be converted to a float')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-05 03:01:07 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Interpolate the median using the formula found at:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # https://www.cuemath.com/data/median-of-grouped-data/
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-09 02:08:41 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    L = x - interval / 2.0    # Lower limit of the median interval
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-05 03:01:07 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    cf = i                    # Cumulative frequency of the preceding interval
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    f = j - i                 # Number of elements in the median internal
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return L + interval * (n / 2 - cf) / f
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def mode(data):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return the most common data point from discrete or nominal data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ``mode`` assumes discrete data, and returns a single value. This is the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    standard treatment of the mode as commonly taught in schools:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-05 00:18:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        3
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This also works with nominal (non-numeric) data:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-05 00:18:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        'red'
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-05 00:18:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    If there are multiple modes with same frequency, return the first one
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    encountered:
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        >>> mode(['red', 'red', 'green', 'blue', 'blue'])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        'red'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    If *data* is empty, ``mode``, raises StatisticsError.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    pairs = Counter(iter(data)).most_common(1)
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-20 21:46:52 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return pairs[0][0]
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except IndexError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('no mode for empty data') from None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def multimode(data):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return a list of the most frequently occurring values.
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Will return more than one result if there are multiple modes
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    or an empty list if *data* is empty.
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> multimode('aabbbbbbbbcc')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ['b']
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> multimode('aabbbbccddddeeffffgg')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ['b', 'd', 'f']
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> multimode('')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    []
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-20 10:04:37 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    counts = Counter(iter(data))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if not counts:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    maxcount = max(counts.values())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return [value for value, count in counts.items() if count == maxcount]
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-06-02 21:07:43 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# Notes on methods for computing quantiles
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# ----------------------------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								#
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# There is no one perfect way to compute quantiles.  Here we offer
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# two methods that serve common needs.  Most other packages
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# surveyed offered at least one or both of these two, making them
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# "standard" in the sense of "widely-adopted and reproducible".
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# They are also easy to explain, easy to compute manually, and have
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# straight-forward interpretations that aren't surprising.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# The default method is known as "R6", "PERCENTILE.EXC", or "expected
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# value of rank order statistics". The alternative method is known as
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# "R7", "PERCENTILE.INC", or "mode of rank order statistics".
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# For sample data where there is a positive probability for values
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# beyond the range of the data, the R6 exclusive method is a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# reasonable choice.  Consider a random sample of nine values from a
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# population with a uniform distribution from 0.0 to 1.0.  The
							 | 
						
					
						
							
								
									
										
										
										
											2019-06-02 21:07:43 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# distribution of the third ranked sample point is described by
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# mean=0.300.  Only the latter (which corresponds with R6) gives the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# desired cut point with 30% of the population falling below that
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# value, making it comparable to a result from an inv_cdf() function.
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-20 21:46:52 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# The R6 exclusive method is also idempotent.
							 | 
						
					
						
							
								
									
										
										
										
											2019-06-02 21:07:43 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# For describing population data where the end points are known to
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# be included in the data, the R7 inclusive method is a reasonable
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# choice.  Instead of the mean, it uses the mode of the beta
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# distribution for the interior points.  Per Hyndman & Fan, "One nice
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# property is that the vertices of Q7(p) divide the range into n - 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# intervals, and exactly 100p% of the intervals lie to the left of
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)."
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-19 01:57:22 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# If needed, other methods could be added.  However, for now, the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# position is that fewer options make for easier choices and that
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# external packages can be used for anything more advanced.
							 | 
						
					
						
							
								
									
										
										
										
											2019-06-02 21:07:43 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-17 20:45:05 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def quantiles(data, *, n=4, method='exclusive'):
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-05 00:18:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Divide *data* into *n* continuous intervals with equal probability.
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Returns a list of (n - 1) cut points separating the intervals.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Set *n* to 100 for percentiles which gives the 99 cuts points that
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-05 00:18:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    separate *data* in to 100 equal sized groups.
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-08 16:57:58 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    The *data* can be any iterable containing sample.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    The cut points are linearly interpolated between data points.
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-05 00:18:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    If *method* is set to *inclusive*, *data* is treated as population
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    data.  The minimum value is treated as the 0th percentile and the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    maximum value is treated as the 100th percentile.
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n < 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('n must be at least 1')
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-05 00:18:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    data = sorted(data)
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ld = len(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if ld < 2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('must have at least two data points')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if method == 'inclusive':
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        m = ld - 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        result = []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        for i in range(1, n):
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            j, delta = divmod(i * m, n)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            interpolated = (data[j] * (n - delta) + data[j + 1] * delta) / n
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            result.append(interpolated)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return result
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if method == 'exclusive':
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        m = ld + 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        result = []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        for i in range(1, n):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            j = i * m // n                               # rescale i to m/n
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            j = 1 if j < 1 else ld-1 if j > ld-1 else j  # clamp to 1 .. ld-1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            delta = i*m - j*n                            # exact integer math
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            interpolated = (data[j - 1] * (n - delta) + data[j] * delta) / n
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            result.append(interpolated)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return result
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    raise ValueError(f'Unknown method: {method!r}')
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# === Measures of spread ===
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# See http://mathworld.wolfram.com/Variance.html
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								#     http://mathworld.wolfram.com/SampleVariance.html
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def variance(data, xbar=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return the sample variance of data.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    data should be an iterable of Real-valued numbers, with at least two
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    values. The optional argument xbar, if given, should be the mean of
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    the data. If it is missing or None, the mean is automatically calculated.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Use this function when your data is a sample from a population. To
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    calculate the variance from the entire population, see ``pvariance``.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Examples:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> variance(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    1.3720238095238095
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    If you have already calculated the mean of your data, you can pass it as
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    the optional second argument ``xbar`` to avoid recalculating it:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> m = mean(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> variance(data, m)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    1.3720238095238095
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    This function does not check that ``xbar`` is actually the mean of
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    impossible results.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Decimals and Fractions are supported:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> from decimal import Decimal as D
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Decimal('31.01875')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> from fractions import Fraction as F
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> variance([F(1, 6), F(1, 2), F(5, 3)])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Fraction(67, 108)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    T, ss, c, n = _ss(data, xbar)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n < 2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('variance requires at least two data points')
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return _convert(ss / (n - 1), T)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def pvariance(data, mu=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return the population variance of ``data``.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-11-11 23:35:06 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    data should be a sequence or iterable of Real-valued numbers, with at least one
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    value. The optional argument mu, if given, should be the mean of
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    the data. If it is missing or None, the mean is automatically calculated.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Use this function to calculate the variance from the entire population.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    To estimate the variance from a sample, the ``variance`` function is
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    usually a better choice.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Examples:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> pvariance(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    1.25
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    If you have already calculated the mean of the data, you can pass it as
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    the optional second argument to avoid recalculating it:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> mu = mean(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> pvariance(data, mu)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    1.25
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Decimals and Fractions are supported:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> from decimal import Decimal as D
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Decimal('24.815')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> from fractions import Fraction as F
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Fraction(13, 72)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    T, ss, c, n = _ss(data, mu)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n < 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('pvariance requires at least one data point')
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return _convert(ss / n, T)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def stdev(data, xbar=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return the square root of the sample variance.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    See ``variance`` for arguments and other details.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    1.0810874155219827
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    T, ss, c, n = _ss(data, xbar)
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n < 2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('stdev requires at least two data points')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    mss = ss / (n - 1)
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 19:25:57 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if issubclass(T, Decimal):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return _float_sqrt_of_frac(mss.numerator, mss.denominator)
							 | 
						
					
						
							
								
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def pstdev(data, mu=None):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Return the square root of the population variance.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    See ``pvariance`` for arguments and other details.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    0.986893273527251
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    T, ss, c, n = _ss(data, mu)
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n < 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('pstdev requires at least one data point')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    mss = ss / n
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if issubclass(T, Decimal):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return _float_sqrt_of_frac(mss.numerator, mss.denominator)
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _mean_stdev(data):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """In one pass, compute the mean and sample standard deviation as floats."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    T, ss, xbar, n = _ss(data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n < 2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('stdev requires at least two data points')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    mss = ss / (n - 1)
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 23:22:04 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return float(xbar), _float_sqrt_of_frac(mss.numerator, mss.denominator)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except AttributeError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Handle Nans and Infs gracefully
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return float(xbar), float(xbar) / float(ss)
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# === Statistics for relations between two inputs ===
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# See https://en.wikipedia.org/wiki/Covariance
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								#     https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								#     https://en.wikipedia.org/wiki/Simple_linear_regression
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def covariance(x, y, /):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Covariance
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Return the sample covariance of two inputs *x* and *y*. Covariance
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    is a measure of the joint variability of two inputs.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> covariance(x, y)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    0.75
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> covariance(x, z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    -7.5
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> covariance(z, x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    -7.5
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    n = len(x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if len(y) != n:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('covariance requires that both inputs have same number of data points')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n < 2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('covariance requires at least two data points')
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-15 11:00:51 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    xbar = fsum(x) / n
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ybar = fsum(y) / n
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    sxy = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return sxy / (n - 1)
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-18 13:48:27 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def correlation(x, y, /, *, method='linear'):
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Pearson's correlation coefficient
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Return the Pearson's correlation coefficient for two inputs. Pearson's
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-18 13:48:27 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    correlation coefficient *r* takes values between -1 and +1. It measures
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    the strength and direction of a linear relationship.
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> correlation(x, x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    1.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> correlation(x, y)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    -1.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-18 13:48:27 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    If *method* is "ranked", computes Spearman's rank correlation coefficient
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for two inputs.  The data is replaced by ranks.  Ties are averaged
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    so that equal values receive the same rank.  The resulting coefficient
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    measures the strength of a monotonic relationship.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Spearman's rank correlation coefficient is appropriate for ordinal
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    data or for continuous data that doesn't meet the linear proportion
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    requirement for Pearson's correlation coefficient.
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    n = len(x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if len(y) != n:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('correlation requires that both inputs have same number of data points')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n < 2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('correlation requires at least two data points')
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-18 13:48:27 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if method not in {'linear', 'ranked'}:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise ValueError(f'Unknown method: {method!r}')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if method == 'ranked':
							 | 
						
					
						
							
								
									
										
										
										
											2022-08-29 12:19:48 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        start = (n - 1) / -2            # Center rankings around zero
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x = _rank(x, start=start)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        y = _rank(y, start=start)
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-15 11:00:51 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    xbar = fsum(x) / n
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    ybar = fsum(y) / n
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    sxy = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y))
							 | 
						
					
						
							
								
									
										
										
										
											2021-08-30 20:57:30 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    sxx = fsum((d := xi - xbar) * d for xi in x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    syy = fsum((d := yi - ybar) * d for yi in y)
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							
								
									
										
										
										
											2021-06-04 16:28:31 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return sxy / sqrt(sxx * syy)
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except ZeroDivisionError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('at least one of the inputs is constant')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 20:30:58 -04:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								LinearRegression = namedtuple('LinearRegression', ('slope', 'intercept'))
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-21 08:39:26 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def linear_regression(x, y, /, *, proportional=False):
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 23:04:04 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Slope and intercept for simple linear regression.
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 23:04:04 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Return the slope and intercept of simple linear regression
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    parameters estimated using ordinary least squares. Simple linear
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 23:04:04 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    regression describes relationship between an independent variable
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-21 08:39:26 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    *x* and a dependent variable *y* in terms of a linear function:
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 23:04:04 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        y = slope * x + intercept + noise
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 23:04:04 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    where *slope* and *intercept* are the regression parameters that are
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-16 19:21:14 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    estimated, and noise represents the variability of the data that was
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    not explained by the linear regression (it is equal to the
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 23:04:04 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    difference between predicted and actual values of the dependent
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-16 19:21:14 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    variable).
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    The parameters are returned as a named tuple.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 20:30:58 -04:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> x = [1, 2, 3, 4, 5]
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> noise = NormalDist().samples(5, seed=42)
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 23:04:04 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> y = [3 * x[i] + 2 + noise[i] for i in range(5)]
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 20:30:58 -04:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> linear_regression(x, y)  #doctest: +ELLIPSIS
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    LinearRegression(slope=3.09078914170..., intercept=1.75684970486...)
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-21 08:39:26 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    If *proportional* is true, the independent variable *x* and the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    dependent variable *y* are assumed to be directly proportional.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    The data is fit to a line passing through the origin.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Since the *intercept* will always be 0.0, the underlying linear
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    function simplifies to:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        y = slope * x + noise
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> y = [3 * x[i] + noise[i] for i in range(5)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> linear_regression(x, y, proportional=True)  #doctest: +ELLIPSIS
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    LinearRegression(slope=3.02447542484..., intercept=0.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 20:30:58 -04:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    n = len(x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if len(y) != n:
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('linear regression requires that both inputs have same number of data points')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if n < 2:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('linear regression requires at least two data points')
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-21 08:39:26 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if proportional:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sxy = fsum(xi * yi for xi, yi in zip(x, y))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sxx = fsum(xi * xi for xi in x)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        xbar = fsum(x) / n
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ybar = fsum(y) / n
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sxy = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        sxx = fsum((d := xi - xbar) * d for xi in x)
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							
								
									
										
										
										
											2021-06-04 16:28:31 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        slope = sxy / sxx   # equivalent to:  covariance(x, y) / variance(x)
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except ZeroDivisionError:
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 20:30:58 -04:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise StatisticsError('x is constant')
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-21 08:39:26 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    intercept = 0.0 if proportional else ybar - slope * xbar
							 | 
						
					
						
							
								
									
										
										
										
											2021-05-24 20:30:58 -04:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return LinearRegression(slope=slope, intercept=intercept)
							 | 
						
					
						
							
								
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								## Normal Distribution #####################################################
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-08-24 07:20:30 +09:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _normal_dist_inv_cdf(p, mu, sigma):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # There is no closed-form solution to the inverse CDF for the normal
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # distribution, so we use a rational approximation instead:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Normal Distribution".  Applied Statistics. Blackwell Publishing. 37
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								    # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    q = p - 0.5
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if fabs(q) <= 0.425:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        r = 0.180625 - q * q
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Hash sum: 55.88319_28806_14901_4439
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num = (((((((2.50908_09287_30122_6727e+3 * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     3.34305_75583_58812_8105e+4) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     6.72657_70927_00870_0853e+4) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     4.59219_53931_54987_1457e+4) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.37316_93765_50946_1125e+4) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.97159_09503_06551_4427e+3) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.33141_66789_17843_7745e+2) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     3.38713_28727_96366_6080e+0) * q
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        den = (((((((5.22649_52788_52854_5610e+3 * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     2.87290_85735_72194_2674e+4) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     3.93078_95800_09271_0610e+4) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     2.12137_94301_58659_5867e+4) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     5.39419_60214_24751_1077e+3) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     6.87187_00749_20579_0830e+2) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     4.23133_30701_60091_1252e+1) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x = num / den
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return mu + (x * sigma)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    r = p if q <= 0.0 else 1.0 - p
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    r = sqrt(-log(r))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if r <= 5.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        r = r - 1.6
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Hash sum: 49.33206_50330_16102_89036
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num = (((((((7.74545_01427_83414_07640e-4 * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     2.27238_44989_26918_45833e-2) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     2.41780_72517_74506_11770e-1) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.27045_82524_52368_38258e+0) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     3.64784_83247_63204_60504e+0) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     5.76949_72214_60691_40550e+0) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     4.63033_78461_56545_29590e+0) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.42343_71107_49683_57734e+0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        den = (((((((1.05075_00716_44416_84324e-9 * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     5.47593_80849_95344_94600e-4) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.51986_66563_61645_71966e-2) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.48103_97642_74800_74590e-1) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     6.89767_33498_51000_04550e-1) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.67638_48301_83803_84940e+0) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     2.05319_16266_37758_82187e+0) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        r = r - 5.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Hash sum: 47.52583_31754_92896_71629
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num = (((((((2.01033_43992_92288_13265e-7 * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     2.71155_55687_43487_57815e-5) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.24266_09473_88078_43860e-3) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     2.65321_89526_57612_30930e-2) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     2.96560_57182_85048_91230e-1) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.78482_65399_17291_33580e+0) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     5.46378_49111_64114_36990e+0) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     6.65790_46435_01103_77720e+0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        den = (((((((2.04426_31033_89939_78564e-15 * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.42151_17583_16445_88870e-7) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.84631_83175_10054_68180e-5) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     7.86869_13114_56132_59100e-4) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.48753_61290_85061_48525e-2) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.36929_88092_27358_05310e-1) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     5.99832_20655_58879_37690e-1) * r +
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                     1.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    x = num / den
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if q < 0.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x = -x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return mu + (x * sigma)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-05-02 19:30:24 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								# If available, use C implementation
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    from _statistics import _normal_dist_inv_cdf
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								except ImportError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    pass
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								class NormalDist:
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    "Normal distribution of a random variable"
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # https://en.wikipedia.org/wiki/Normal_distribution
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # https://en.wikipedia.org/wiki/Variance#Properties
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    __slots__ = {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        '_mu': 'Arithmetic mean of a normal distribution',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        '_sigma': 'Standard deviation of a normal distribution',
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    }
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def __init__(self, mu=0.0, sigma=1.0):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "NormalDist where mu is the mean and sigma is the standard deviation."
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if sigma < 0.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise StatisticsError('sigma must be non-negative')
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-05 00:18:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        self._mu = float(mu)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        self._sigma = float(sigma)
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    @classmethod
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def from_samples(cls, data):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Make a normal distribution instance from sample data."
							 | 
						
					
						
							
								
									
										
										
										
											2022-05-03 21:22:26 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return cls(*_mean_stdev(data))
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-04-23 01:46:18 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def samples(self, n, *, seed=None):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Generate *n* samples for a given mean and standard deviation."
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        gauss = random.gauss if seed is None else random.Random(seed).gauss
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        mu, sigma = self._mu, self._sigma
							 | 
						
					
						
							
								
									
										
										
										
											2022-07-10 22:34:53 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return [gauss(mu, sigma) for _ in repeat(None, n)]
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def pdf(self, x):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Probability density function.  P(x <= X < x+dx) / dx"
							 | 
						
					
						
							
								
									
										
										
										
											2021-08-30 20:57:30 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        variance = self._sigma * self._sigma
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not variance:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise StatisticsError('pdf() not defined when sigma is zero')
							 | 
						
					
						
							
								
									
										
										
										
											2021-08-30 20:57:30 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        diff = x - self._mu
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return exp(diff * diff / (-2.0 * variance)) / sqrt(tau * variance)
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def cdf(self, x):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Cumulative distribution function.  P(X <= x)"
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not self._sigma:
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise StatisticsError('cdf() not defined when sigma is zero')
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-09 10:30:06 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * _SQRT2)))
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def inv_cdf(self, p):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """Inverse cumulative distribution function.  x : P(X <= x) = p
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Finds the value of the random variable such that the probability of
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        the variable being less than or equal to that value equals the given
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        probability.
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        This function is also called the percent point function or quantile
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        function.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if p <= 0.0 or p >= 1.0:
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise StatisticsError('p must be in the range 0.0 < p < 1.0')
							 | 
						
					
						
							
								
									
										
										
										
											2019-08-24 07:20:30 +09:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return _normal_dist_inv_cdf(p, self._mu, self._sigma)
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-08 16:57:58 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def quantiles(self, n=4):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """Divide into *n* continuous intervals with equal probability.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Returns a list of (n - 1) cut points separating the intervals.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Set *n* to 4 for quartiles (the default).  Set *n* to 10 for deciles.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Set *n* to 100 for percentiles which gives the 99 cuts points that
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        separate the normal distribution in to 100 equal sized groups.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return [self.inv_cdf(i / n) for i in range(1, n)]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def overlap(self, other):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """Compute the overlapping coefficient (OVL) between two normal distributions.
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Measures the agreement between two normal probability distributions.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Returns a value between 0.0 and 1.0 giving the overlapping area in
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        the two underlying probability density functions.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            >>> N1 = NormalDist(2.4, 1.6)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            >>> N2 = NormalDist(3.2, 2.0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            >>> N1.overlap(N2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            0.8035050657330205
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # See: "The overlapping coefficient as a measure of agreement between
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # probability distributions and point estimation of the overlap of two
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # normal densities" -- Henry F. Inman and Edwin L. Bradley Jr
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # http://dx.doi.org/10.1080/03610928908830127
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not isinstance(other, NormalDist):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise TypeError('Expected another NormalDist instance')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        X, Y = self, other
							 | 
						
					
						
							
								
									
										
										
										
											2020-06-13 19:17:28 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if (Y._sigma, Y._mu) < (X._sigma, X._mu):  # sort to assure commutativity
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            X, Y = Y, X
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        X_var, Y_var = X.variance, Y.variance
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not X_var or not Y_var:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise StatisticsError('overlap() not defined when sigma is zero')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        dv = Y_var - X_var
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        dm = fabs(Y._mu - X._mu)
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not dv:
							 | 
						
					
						
							
								
									
										
										
										
											2021-11-09 10:30:06 -06:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return 1.0 - erf(dm / (2.0 * X._sigma * _SQRT2))
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        a = X._mu * Y_var - Y._mu * X_var
							 | 
						
					
						
							
								
									
										
										
										
											2021-08-30 20:57:30 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        b = X._sigma * Y._sigma * sqrt(dm * dm + dv * log(Y_var / X_var))
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x1 = (a + b) / dv
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        x2 = (a - b) / dv
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-16 10:25:14 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def zscore(self, x):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """Compute the Standard Score.  (x - mean) / stdev
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Describes *x* in terms of the number of standard deviations
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        above or below the mean of the normal distribution.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # https://www.statisticshowto.com/probability-and-statistics/z-score/
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not self._sigma:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            raise StatisticsError('zscore() not defined when sigma is zero')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return (x - self._mu) / self._sigma
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-24 11:44:55 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    @property
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def mean(self):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Arithmetic mean of the normal distribution."
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return self._mu
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-24 11:44:55 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-09-08 16:57:58 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    @property
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def median(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Return the median of the normal distribution"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return self._mu
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    @property
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def mode(self):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """Return the mode of the normal distribution
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        The mode is the value x where which the probability density
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        function (pdf) takes its maximum value.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return self._mu
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-24 11:44:55 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    @property
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def stdev(self):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Standard deviation of the normal distribution."
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return self._sigma
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-24 11:44:55 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    @property
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def variance(self):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Square of the standard deviation."
							 | 
						
					
						
							
								
									
										
										
										
											2021-08-30 20:57:30 -05:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return self._sigma * self._sigma
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def __add__(x1, x2):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """Add a constant or another NormalDist instance.
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        If *other* is a constant, translate mu by the constant,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        leaving sigma unchanged.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        If *other* is a NormalDist, add both the means and the variances.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Mathematically, this works only if the two distributions are
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        independent or if they are jointly normally distributed.
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if isinstance(x2, NormalDist):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return NormalDist(x1._mu + x2, x1._sigma)
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def __sub__(x1, x2):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """Subtract a constant or another NormalDist instance.
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        If *other* is a constant, translate by the constant mu,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        leaving sigma unchanged.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        If *other* is a NormalDist, subtract the means and add the variances.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Mathematically, this works only if the two distributions are
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        independent or if they are jointly normally distributed.
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if isinstance(x2, NormalDist):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return NormalDist(x1._mu - x2, x1._sigma)
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def __mul__(x1, x2):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """Multiply both mu and sigma by a constant.
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Used for rescaling, perhaps to change measurement units.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Sigma is scaled with the absolute value of the constant.
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return NormalDist(x1._mu * x2, x1._sigma * fabs(x2))
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def __truediv__(x1, x2):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """Divide both mu and sigma by a constant.
							 | 
						
					
						
							
								
									
										
										
										
											2019-03-18 22:24:15 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Used for rescaling, perhaps to change measurement units.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Sigma is scaled with the absolute value of the constant.
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        """
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return NormalDist(x1._mu / x2, x1._sigma / fabs(x2))
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def __pos__(x1):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Return a copy of the instance."
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return NormalDist(x1._mu, x1._sigma)
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def __neg__(x1):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Negates mu while keeping sigma the same."
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return NormalDist(-x1._mu, x1._sigma)
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    __radd__ = __add__
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def __rsub__(x1, x2):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Subtract a NormalDist from a constant or another NormalDist."
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return -(x1 - x2)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    __rmul__ = __mul__
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def __eq__(x1, x2):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "Two NormalDist objects are equal if their mu and sigma are both equal."
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not isinstance(x2, NormalDist):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            return NotImplemented
							 | 
						
					
						
							
								
									
										
										
										
											2019-10-18 14:20:35 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return x1._mu == x2._mu and x1._sigma == x2._sigma
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def __hash__(self):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 12:13:07 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        "NormalDist objects hash equal if their mu and sigma are both equal."
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return hash((self._mu, self._sigma))
							 | 
						
					
						
							
								
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    def __repr__(self):
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
							 |