| 
									
										
										
										
											2023-03-13 20:06:43 -05:00
										 |  |  | x = """Test suite for statistics module, including helper NumericTestCase and
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | approx_equal function. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | """
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 |  |  | import bisect | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | import collections | 
					
						
							| 
									
										
										
										
											2017-04-24 09:05:00 +03:00
										 |  |  | import collections.abc | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  | import copy | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | import decimal | 
					
						
							|  |  |  | import doctest | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  | import itertools | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | import math | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  | import pickle | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | import random | 
					
						
							| 
									
										
										
										
											2013-12-08 18:16:18 +02:00
										 |  |  | import sys | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | import unittest | 
					
						
							| 
									
										
										
										
											2019-07-30 11:08:18 -07:00
										 |  |  | from test import support | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  | from test.support import import_helper, requires_IEEE_754 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | from decimal import Decimal | 
					
						
							|  |  |  | from fractions import Fraction | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Module to be tested. | 
					
						
							|  |  |  | import statistics | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # === Helper functions and class === | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-08-11 17:19:19 +01:00
										 |  |  | # Test copied from Lib/test/test_math.py | 
					
						
							|  |  |  | # detect evidence of double-rounding: fsum is not always correctly | 
					
						
							|  |  |  | # rounded on machines that suffer from double rounding. | 
					
						
							|  |  |  | x, y = 1e16, 2.9999 # use temporary values to defeat peephole optimizer | 
					
						
							|  |  |  | HAVE_DOUBLE_ROUNDING = (x + y == 1e16 + 4) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  | def sign(x): | 
					
						
							|  |  |  |     """Return -1.0 for negatives, including -0.0, otherwise +1.0.""" | 
					
						
							|  |  |  |     return math.copysign(1, x) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  | def _nan_equal(a, b): | 
					
						
							|  |  |  |     """Return True if a and b are both the same kind of NAN.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> _nan_equal(Decimal('NAN'), Decimal('NAN')) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN')) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> _nan_equal(Decimal('NAN'), Decimal('sNAN')) | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  |     >>> _nan_equal(Decimal(42), Decimal('NAN')) | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> _nan_equal(float('NAN'), float('NAN')) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> _nan_equal(float('NAN'), 0.5) | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> _nan_equal(float('NAN'), Decimal('NAN')) | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     NAN payloads are not compared. | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     if type(a) is not type(b): | 
					
						
							|  |  |  |         return False | 
					
						
							|  |  |  |     if isinstance(a, float): | 
					
						
							|  |  |  |         return math.isnan(a) and math.isnan(b) | 
					
						
							|  |  |  |     aexp = a.as_tuple()[2] | 
					
						
							|  |  |  |     bexp = b.as_tuple()[2] | 
					
						
							|  |  |  |     return (aexp == bexp) and (aexp in ('n', 'N'))  # Both NAN or both sNAN. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | def _calc_errors(actual, expected): | 
					
						
							|  |  |  |     """Return the absolute and relative errors between two numbers.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> _calc_errors(100, 75) | 
					
						
							|  |  |  |     (25, 0.25) | 
					
						
							|  |  |  |     >>> _calc_errors(100, 100) | 
					
						
							|  |  |  |     (0, 0.0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Returns the (absolute error, relative error) between the two arguments. | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     base = max(abs(actual), abs(expected)) | 
					
						
							|  |  |  |     abs_err = abs(actual - expected) | 
					
						
							|  |  |  |     rel_err = abs_err/base if base else float('inf') | 
					
						
							|  |  |  |     return (abs_err, rel_err) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def approx_equal(x, y, tol=1e-12, rel=1e-7): | 
					
						
							|  |  |  |     """approx_equal(x, y [, tol [, rel]]) => True|False
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Return True if numbers x and y are approximately equal, to within some | 
					
						
							|  |  |  |     margin of error, otherwise return False. Numbers which compare equal | 
					
						
							|  |  |  |     will also compare approximately equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     x is approximately equal to y if the difference between them is less than | 
					
						
							|  |  |  |     an absolute error tol or a relative error rel, whichever is bigger. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     If given, both tol and rel must be finite, non-negative numbers. If not | 
					
						
							|  |  |  |     given, default values are tol=1e-12 and rel=1e-7. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0) | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Absolute error is defined as abs(x-y); if that is less than or equal to | 
					
						
							|  |  |  |     tol, x and y are considered approximately equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is | 
					
						
							|  |  |  |     smaller, provided x or y are not zero. If that figure is less than or | 
					
						
							|  |  |  |     equal to rel, x and y are considered approximately equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Complex numbers are not directly supported. If you wish to compare to | 
					
						
							|  |  |  |     complex numbers, extract their real and imaginary parts and compare them | 
					
						
							|  |  |  |     individually. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     NANs always compare unequal, even with themselves. Infinities compare | 
					
						
							|  |  |  |     approximately equal if they have the same sign (both positive or both | 
					
						
							|  |  |  |     negative). Infinities with different signs compare unequal; so do | 
					
						
							|  |  |  |     comparisons of infinities with finite numbers. | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     if tol < 0 or rel < 0: | 
					
						
							|  |  |  |         raise ValueError('error tolerances must be non-negative') | 
					
						
							|  |  |  |     # NANs are never equal to anything, approximately or otherwise. | 
					
						
							|  |  |  |     if math.isnan(x) or math.isnan(y): | 
					
						
							|  |  |  |         return False | 
					
						
							|  |  |  |     # Numbers which compare equal also compare approximately equal. | 
					
						
							|  |  |  |     if x == y: | 
					
						
							|  |  |  |         # This includes the case of two infinities with the same sign. | 
					
						
							|  |  |  |         return True | 
					
						
							|  |  |  |     if math.isinf(x) or math.isinf(y): | 
					
						
							|  |  |  |         # This includes the case of two infinities of opposite sign, or | 
					
						
							|  |  |  |         # one infinity and one finite number. | 
					
						
							|  |  |  |         return False | 
					
						
							|  |  |  |     # Two finite numbers. | 
					
						
							|  |  |  |     actual_error = abs(x - y) | 
					
						
							|  |  |  |     allowed_error = max(tol, rel*max(abs(x), abs(y))) | 
					
						
							|  |  |  |     return actual_error <= allowed_error | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # This class exists only as somewhere to stick a docstring containing | 
					
						
							|  |  |  | # doctests. The following docstring and tests were originally in a separate | 
					
						
							|  |  |  | # module. Now that it has been merged in here, I need somewhere to hang the. | 
					
						
							|  |  |  | # docstring. Ultimately, this class will die, and the information below will | 
					
						
							|  |  |  | # either become redundant, or be moved into more appropriate places. | 
					
						
							|  |  |  | class _DoNothing: | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     When doing numeric work, especially with floats, exact equality is often | 
					
						
							|  |  |  |     not what you want. Due to round-off error, it is often a bad idea to try | 
					
						
							|  |  |  |     to compare floats with equality. Instead the usual procedure is to test | 
					
						
							|  |  |  |     them with some (hopefully small!) allowance for error. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     The ``approx_equal`` function allows you to specify either an absolute | 
					
						
							|  |  |  |     error tolerance, or a relative error, or both. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Absolute error tolerances are simple, but you need to know the magnitude | 
					
						
							|  |  |  |     of the quantities being compared: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> approx_equal(12.345, 12.346, tol=1e-3) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> approx_equal(12.345e6, 12.346e6, tol=1e-3)  # tol is too small. | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Relative errors are more suitable when the values you are comparing can | 
					
						
							|  |  |  |     vary in magnitude: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> approx_equal(12.345, 12.346, rel=1e-4) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> approx_equal(12.345e6, 12.346e6, rel=1e-4) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     but a naive implementation of relative error testing can run into trouble | 
					
						
							|  |  |  |     around zero. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     If you supply both an absolute tolerance and a relative error, the | 
					
						
							|  |  |  |     comparison succeeds if either individual test succeeds: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     pass | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # We prefer this for testing numeric values that may not be exactly equal, | 
					
						
							|  |  |  | # and avoid using TestCase.assertAlmostEqual, because it sucks :-) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-08-06 19:51:29 +08:00
										 |  |  | py_statistics = import_helper.import_fresh_module('statistics', | 
					
						
							|  |  |  |                                                   blocked=['_statistics']) | 
					
						
							|  |  |  | c_statistics = import_helper.import_fresh_module('statistics', | 
					
						
							|  |  |  |                                                  fresh=['_statistics']) | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestModules(unittest.TestCase): | 
					
						
							|  |  |  |     func_names = ['_normal_dist_inv_cdf'] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_py_functions(self): | 
					
						
							|  |  |  |         for fname in self.func_names: | 
					
						
							|  |  |  |             self.assertEqual(getattr(py_statistics, fname).__module__, 'statistics') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     @unittest.skipUnless(c_statistics, 'requires _statistics') | 
					
						
							|  |  |  |     def test_c_functions(self): | 
					
						
							|  |  |  |         for fname in self.func_names: | 
					
						
							|  |  |  |             self.assertEqual(getattr(c_statistics, fname).__module__, '_statistics') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | class NumericTestCase(unittest.TestCase): | 
					
						
							|  |  |  |     """Unit test class for numeric work.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     This subclasses TestCase. In addition to the standard method | 
					
						
							|  |  |  |     ``TestCase.assertAlmostEqual``,  ``assertApproxEqual`` is provided. | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     # By default, we expect exact equality, unless overridden. | 
					
						
							|  |  |  |     tol = rel = 0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def assertApproxEqual( | 
					
						
							|  |  |  |             self, first, second, tol=None, rel=None, msg=None | 
					
						
							|  |  |  |             ): | 
					
						
							|  |  |  |         """Test passes if ``first`` and ``second`` are approximately equal.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         This test passes if ``first`` and ``second`` are equal to | 
					
						
							|  |  |  |         within ``tol``, an absolute error, or ``rel``, a relative error. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         If either ``tol`` or ``rel`` are None or not given, they default to | 
					
						
							|  |  |  |         test attributes of the same name (by default, 0). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         The objects may be either numbers, or sequences of numbers. Sequences | 
					
						
							|  |  |  |         are tested element-by-element. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         >>> class MyTest(NumericTestCase): | 
					
						
							|  |  |  |         ...     def test_number(self): | 
					
						
							|  |  |  |         ...         x = 1.0/6 | 
					
						
							|  |  |  |         ...         y = sum([x]*6) | 
					
						
							|  |  |  |         ...         self.assertApproxEqual(y, 1.0, tol=1e-15) | 
					
						
							|  |  |  |         ...     def test_sequence(self): | 
					
						
							|  |  |  |         ...         a = [1.001, 1.001e-10, 1.001e10] | 
					
						
							|  |  |  |         ...         b = [1.0, 1e-10, 1e10] | 
					
						
							|  |  |  |         ...         self.assertApproxEqual(a, b, rel=1e-3) | 
					
						
							|  |  |  |         ... | 
					
						
							|  |  |  |         >>> import unittest | 
					
						
							|  |  |  |         >>> from io import StringIO  # Suppress test runner output. | 
					
						
							|  |  |  |         >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest) | 
					
						
							|  |  |  |         >>> unittest.TextTestRunner(stream=StringIO()).run(suite) | 
					
						
							|  |  |  |         <unittest.runner.TextTestResult run=2 errors=0 failures=0> | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  |         if tol is None: | 
					
						
							|  |  |  |             tol = self.tol | 
					
						
							|  |  |  |         if rel is None: | 
					
						
							|  |  |  |             rel = self.rel | 
					
						
							|  |  |  |         if ( | 
					
						
							| 
									
										
										
										
											2017-04-24 09:05:00 +03:00
										 |  |  |                 isinstance(first, collections.abc.Sequence) and | 
					
						
							|  |  |  |                 isinstance(second, collections.abc.Sequence) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             ): | 
					
						
							|  |  |  |             check = self._check_approx_seq | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             check = self._check_approx_num | 
					
						
							|  |  |  |         check(first, second, tol, rel, msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def _check_approx_seq(self, first, second, tol, rel, msg): | 
					
						
							|  |  |  |         if len(first) != len(second): | 
					
						
							|  |  |  |             standardMsg = ( | 
					
						
							|  |  |  |                 "sequences differ in length: %d items != %d items" | 
					
						
							|  |  |  |                 % (len(first), len(second)) | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             msg = self._formatMessage(msg, standardMsg) | 
					
						
							|  |  |  |             raise self.failureException(msg) | 
					
						
							|  |  |  |         for i, (a,e) in enumerate(zip(first, second)): | 
					
						
							|  |  |  |             self._check_approx_num(a, e, tol, rel, msg, i) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def _check_approx_num(self, first, second, tol, rel, msg, idx=None): | 
					
						
							|  |  |  |         if approx_equal(first, second, tol, rel): | 
					
						
							|  |  |  |             # Test passes. Return early, we are done. | 
					
						
							|  |  |  |             return None | 
					
						
							|  |  |  |         # Otherwise we failed. | 
					
						
							|  |  |  |         standardMsg = self._make_std_err_msg(first, second, tol, rel, idx) | 
					
						
							|  |  |  |         msg = self._formatMessage(msg, standardMsg) | 
					
						
							|  |  |  |         raise self.failureException(msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     @staticmethod | 
					
						
							|  |  |  |     def _make_std_err_msg(first, second, tol, rel, idx): | 
					
						
							|  |  |  |         # Create the standard error message for approx_equal failures. | 
					
						
							|  |  |  |         assert first != second | 
					
						
							|  |  |  |         template = ( | 
					
						
							|  |  |  |             '  %r != %r\n' | 
					
						
							|  |  |  |             '  values differ by more than tol=%r and rel=%r\n' | 
					
						
							|  |  |  |             '  -> absolute error = %r\n' | 
					
						
							|  |  |  |             '  -> relative error = %r' | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         if idx is not None: | 
					
						
							|  |  |  |             header = 'numeric sequences first differ at index %d.\n' % idx | 
					
						
							|  |  |  |             template = header + template | 
					
						
							|  |  |  |         # Calculate actual errors: | 
					
						
							|  |  |  |         abs_err, rel_err = _calc_errors(first, second) | 
					
						
							|  |  |  |         return template % (first, second, tol, rel, abs_err, rel_err) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # ======================== | 
					
						
							|  |  |  | # === Test the helpers === | 
					
						
							|  |  |  | # ======================== | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  | class TestSign(unittest.TestCase): | 
					
						
							|  |  |  |     """Test that the helper function sign() works correctly.""" | 
					
						
							|  |  |  |     def testZeroes(self): | 
					
						
							|  |  |  |         # Test that signed zeroes report their sign correctly. | 
					
						
							|  |  |  |         self.assertEqual(sign(0.0), +1) | 
					
						
							|  |  |  |         self.assertEqual(sign(-0.0), -1) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | # --- Tests for approx_equal --- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ApproxEqualSymmetryTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test symmetry of approx_equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_relative_symmetry(self): | 
					
						
							|  |  |  |         # Check that approx_equal treats relative error symmetrically. | 
					
						
							|  |  |  |         # (a-b)/a is usually not equal to (a-b)/b. Ensure that this | 
					
						
							|  |  |  |         # doesn't matter. | 
					
						
							|  |  |  |         # | 
					
						
							|  |  |  |         #   Note: the reason for this test is that an early version | 
					
						
							|  |  |  |         #   of approx_equal was not symmetric. A relative error test | 
					
						
							|  |  |  |         #   would pass, or fail, depending on which value was passed | 
					
						
							|  |  |  |         #   as the first argument. | 
					
						
							|  |  |  |         # | 
					
						
							|  |  |  |         args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)] | 
					
						
							|  |  |  |         args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)] | 
					
						
							|  |  |  |         assert len(args1) == len(args2) | 
					
						
							|  |  |  |         for a, b in zip(args1, args2): | 
					
						
							|  |  |  |             self.do_relative_symmetry(a, b) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_relative_symmetry(self, a, b): | 
					
						
							|  |  |  |         a, b = min(a, b), max(a, b) | 
					
						
							|  |  |  |         assert a < b | 
					
						
							|  |  |  |         delta = b - a  # The absolute difference between the values. | 
					
						
							|  |  |  |         rel_err1, rel_err2 = abs(delta/a), abs(delta/b) | 
					
						
							|  |  |  |         # Choose an error margin halfway between the two. | 
					
						
							|  |  |  |         rel = (rel_err1 + rel_err2)/2 | 
					
						
							|  |  |  |         # Now see that values a and b compare approx equal regardless of | 
					
						
							|  |  |  |         # which is given first. | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(a, b, tol=0, rel=rel)) | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(b, a, tol=0, rel=rel)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_symmetry(self): | 
					
						
							|  |  |  |         # Test that approx_equal(a, b) == approx_equal(b, a) | 
					
						
							|  |  |  |         args = [-23, -2, 5, 107, 93568] | 
					
						
							|  |  |  |         delta = 2 | 
					
						
							| 
									
										
										
										
											2013-11-26 01:32:15 +01:00
										 |  |  |         for a in args: | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             for type_ in (int, float, Decimal, Fraction): | 
					
						
							| 
									
										
										
										
											2013-11-26 01:32:15 +01:00
										 |  |  |                 x = type_(a)*100 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |                 y = x + delta | 
					
						
							|  |  |  |                 r = abs(delta/max(x, y)) | 
					
						
							|  |  |  |                 # There are five cases to check: | 
					
						
							|  |  |  |                 # 1) actual error <= tol, <= rel | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta, rel=r) | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta+1, rel=2*r) | 
					
						
							|  |  |  |                 # 2) actual error > tol, > rel | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta-1, rel=r/2) | 
					
						
							|  |  |  |                 # 3) actual error <= tol, > rel | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta, rel=r/2) | 
					
						
							|  |  |  |                 # 4) actual error > tol, <= rel | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta-1, rel=r) | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta-1, rel=2*r) | 
					
						
							|  |  |  |                 # 5) exact equality test | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, x, tol=0, rel=0) | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=0, rel=0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_symmetry_test(self, a, b, tol, rel): | 
					
						
							|  |  |  |         template = "approx_equal comparisons don't match for %r" | 
					
						
							|  |  |  |         flag1 = approx_equal(a, b, tol, rel) | 
					
						
							|  |  |  |         flag2 = approx_equal(b, a, tol, rel) | 
					
						
							|  |  |  |         self.assertEqual(flag1, flag2, template.format((a, b, tol, rel))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ApproxEqualExactTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test the approx_equal function with exactly equal values. | 
					
						
							|  |  |  |     # Equal values should compare as approximately equal. | 
					
						
							|  |  |  |     # Test cases for exactly equal values, which should compare approx | 
					
						
							|  |  |  |     # equal regardless of the error tolerances given. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_exactly_equal_test(self, x, tol, rel): | 
					
						
							|  |  |  |         result = approx_equal(x, x, tol=tol, rel=rel) | 
					
						
							|  |  |  |         self.assertTrue(result, 'equality failure for x=%r' % x) | 
					
						
							|  |  |  |         result = approx_equal(-x, -x, tol=tol, rel=rel) | 
					
						
							|  |  |  |         self.assertTrue(result, 'equality failure for x=%r' % -x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_ints(self): | 
					
						
							|  |  |  |         # Test that equal int values are exactly equal. | 
					
						
							|  |  |  |         for n in [42, 19740, 14974, 230, 1795, 700245, 36587]: | 
					
						
							|  |  |  |             self.do_exactly_equal_test(n, 0, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_floats(self): | 
					
						
							|  |  |  |         # Test that equal float values are exactly equal. | 
					
						
							|  |  |  |         for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]: | 
					
						
							|  |  |  |             self.do_exactly_equal_test(x, 0, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_fractions(self): | 
					
						
							|  |  |  |         # Test that equal Fraction values are exactly equal. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]: | 
					
						
							|  |  |  |             self.do_exactly_equal_test(f, 0, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_decimals(self): | 
					
						
							|  |  |  |         # Test that equal Decimal values are exactly equal. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()): | 
					
						
							|  |  |  |             self.do_exactly_equal_test(d, 0, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_absolute(self): | 
					
						
							|  |  |  |         # Test that equal values are exactly equal with an absolute error. | 
					
						
							|  |  |  |         for n in [16, 1013, 1372, 1198, 971, 4]: | 
					
						
							|  |  |  |             # Test as ints. | 
					
						
							|  |  |  |             self.do_exactly_equal_test(n, 0.01, 0) | 
					
						
							|  |  |  |             # Test as floats. | 
					
						
							|  |  |  |             self.do_exactly_equal_test(n/10, 0.01, 0) | 
					
						
							|  |  |  |             # Test as Fractions. | 
					
						
							|  |  |  |             f = Fraction(n, 1234) | 
					
						
							|  |  |  |             self.do_exactly_equal_test(f, 0.01, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_absolute_decimals(self): | 
					
						
							|  |  |  |         # Test equal Decimal values are exactly equal with an absolute error. | 
					
						
							|  |  |  |         self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0) | 
					
						
							|  |  |  |         self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_relative(self): | 
					
						
							|  |  |  |         # Test that equal values are exactly equal with a relative error. | 
					
						
							|  |  |  |         for x in [8347, 101.3, -7910.28, Fraction(5, 21)]: | 
					
						
							|  |  |  |             self.do_exactly_equal_test(x, 0, 0.01) | 
					
						
							|  |  |  |         self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01")) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_both(self): | 
					
						
							|  |  |  |         # Test that equal values are equal when both tol and rel are given. | 
					
						
							|  |  |  |         for x in [41017, 16.742, -813.02, Fraction(3, 8)]: | 
					
						
							|  |  |  |             self.do_exactly_equal_test(x, 0.1, 0.01) | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01")) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ApproxEqualUnequalTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Unequal values should compare unequal with zero error tolerances. | 
					
						
							|  |  |  |     # Test cases for unequal values, with exact equality test. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_exactly_unequal_test(self, x): | 
					
						
							|  |  |  |         for a in (x, -x): | 
					
						
							|  |  |  |             result = approx_equal(a, a+1, tol=0, rel=0) | 
					
						
							|  |  |  |             self.assertFalse(result, 'inequality failure for x=%r' % a) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_unequal_ints(self): | 
					
						
							|  |  |  |         # Test unequal int values are unequal with zero error tolerance. | 
					
						
							|  |  |  |         for n in [951, 572305, 478, 917, 17240]: | 
					
						
							|  |  |  |             self.do_exactly_unequal_test(n) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_unequal_floats(self): | 
					
						
							|  |  |  |         # Test unequal float values are unequal with zero error tolerance. | 
					
						
							|  |  |  |         for x in [9.51, 5723.05, 47.8, 9.17, 17.24]: | 
					
						
							|  |  |  |             self.do_exactly_unequal_test(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_unequal_fractions(self): | 
					
						
							|  |  |  |         # Test that unequal Fractions are unequal with zero error tolerance. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]: | 
					
						
							|  |  |  |             self.do_exactly_unequal_test(f) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_unequal_decimals(self): | 
					
						
							|  |  |  |         # Test that unequal Decimals are unequal with zero error tolerance. | 
					
						
							|  |  |  |         for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()): | 
					
						
							|  |  |  |             self.do_exactly_unequal_test(d) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ApproxEqualInexactTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Inexact test cases for approx_error. | 
					
						
							|  |  |  |     # Test cases when comparing two values that are not exactly equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # === Absolute error tests === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_approx_equal_abs_test(self, x, delta): | 
					
						
							|  |  |  |         template = "Test failure for x={!r}, y={!r}" | 
					
						
							|  |  |  |         for y in (x + delta, x - delta): | 
					
						
							|  |  |  |             msg = template.format(x, y) | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg) | 
					
						
							|  |  |  |             self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_absolute_ints(self): | 
					
						
							|  |  |  |         # Test approximate equality of ints with an absolute error. | 
					
						
							|  |  |  |         for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]: | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(n, 10) | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(n, 2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_absolute_floats(self): | 
					
						
							|  |  |  |         # Test approximate equality of floats with an absolute error. | 
					
						
							|  |  |  |         for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]: | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(x, 1.5) | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(x, 0.01) | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(x, 0.0001) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_absolute_fractions(self): | 
					
						
							|  |  |  |         # Test approximate equality of Fractions with an absolute error. | 
					
						
							|  |  |  |         delta = Fraction(1, 29) | 
					
						
							|  |  |  |         numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71] | 
					
						
							|  |  |  |         for f in (Fraction(n, 29) for n in numerators): | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(f, delta) | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(f, float(delta)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_absolute_decimals(self): | 
					
						
							|  |  |  |         # Test approximate equality of Decimals with an absolute error. | 
					
						
							|  |  |  |         delta = Decimal("0.01") | 
					
						
							|  |  |  |         for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()): | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(d, delta) | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(-d, delta) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_cross_zero(self): | 
					
						
							|  |  |  |         # Test for the case of the two values having opposite signs. | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # === Relative error tests === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_approx_equal_rel_test(self, x, delta): | 
					
						
							|  |  |  |         template = "Test failure for x={!r}, y={!r}" | 
					
						
							|  |  |  |         for y in (x*(1+delta), x*(1-delta)): | 
					
						
							|  |  |  |             msg = template.format(x, y) | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg) | 
					
						
							|  |  |  |             self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_relative_ints(self): | 
					
						
							|  |  |  |         # Test approximate equality of ints with a relative error. | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36)) | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37)) | 
					
						
							|  |  |  |         # --- | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125)) | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125)) | 
					
						
							|  |  |  |         self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_relative_floats(self): | 
					
						
							|  |  |  |         # Test approximate equality of floats with a relative error. | 
					
						
							|  |  |  |         for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]: | 
					
						
							|  |  |  |             self.do_approx_equal_rel_test(x, 0.02) | 
					
						
							|  |  |  |             self.do_approx_equal_rel_test(x, 0.0001) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_relative_fractions(self): | 
					
						
							|  |  |  |         # Test approximate equality of Fractions with a relative error. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         delta = Fraction(3, 8) | 
					
						
							|  |  |  |         for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]: | 
					
						
							|  |  |  |             for d in (delta, float(delta)): | 
					
						
							|  |  |  |                 self.do_approx_equal_rel_test(f, d) | 
					
						
							|  |  |  |                 self.do_approx_equal_rel_test(-f, d) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_relative_decimals(self): | 
					
						
							|  |  |  |         # Test approximate equality of Decimals with a relative error. | 
					
						
							|  |  |  |         for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()): | 
					
						
							|  |  |  |             self.do_approx_equal_rel_test(d, Decimal("0.001")) | 
					
						
							|  |  |  |             self.do_approx_equal_rel_test(-d, Decimal("0.05")) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # === Both absolute and relative error tests === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # There are four cases to consider: | 
					
						
							|  |  |  |     #   1) actual error <= both absolute and relative error | 
					
						
							|  |  |  |     #   2) actual error <= absolute error but > relative error | 
					
						
							|  |  |  |     #   3) actual error <= relative error but > absolute error | 
					
						
							|  |  |  |     #   4) actual error > both absolute and relative error | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag): | 
					
						
							|  |  |  |         check = self.assertTrue if tol_flag else self.assertFalse | 
					
						
							|  |  |  |         check(approx_equal(a, b, tol=tol, rel=0)) | 
					
						
							|  |  |  |         check = self.assertTrue if rel_flag else self.assertFalse | 
					
						
							|  |  |  |         check(approx_equal(a, b, tol=0, rel=rel)) | 
					
						
							|  |  |  |         check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse | 
					
						
							|  |  |  |         check(approx_equal(a, b, tol=tol, rel=rel)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_both1(self): | 
					
						
							|  |  |  |         # Test actual error <= both absolute and relative error. | 
					
						
							|  |  |  |         self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True) | 
					
						
							|  |  |  |         self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_both2(self): | 
					
						
							|  |  |  |         # Test actual error <= absolute error but > relative error. | 
					
						
							|  |  |  |         self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_both3(self): | 
					
						
							|  |  |  |         # Test actual error <= relative error but > absolute error. | 
					
						
							|  |  |  |         self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_both4(self): | 
					
						
							|  |  |  |         # Test actual error > both absolute and relative error. | 
					
						
							|  |  |  |         self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False) | 
					
						
							|  |  |  |         self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ApproxEqualSpecialsTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test approx_equal with NANs and INFs and zeroes. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_inf(self): | 
					
						
							|  |  |  |         for type_ in (float, Decimal): | 
					
						
							|  |  |  |             inf = type_('inf') | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(inf, inf)) | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(inf, inf, 0, 0)) | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(inf, inf, 1, 0.01)) | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(-inf, -inf)) | 
					
						
							|  |  |  |             self.assertFalse(approx_equal(inf, -inf)) | 
					
						
							|  |  |  |             self.assertFalse(approx_equal(inf, 1000)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         for type_ in (float, Decimal): | 
					
						
							|  |  |  |             nan = type_('nan') | 
					
						
							|  |  |  |             for other in (nan, type_('inf'), 1000): | 
					
						
							|  |  |  |                 self.assertFalse(approx_equal(nan, other)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float_zeroes(self): | 
					
						
							|  |  |  |         nzero = math.copysign(0.0, -1) | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal_zeroes(self): | 
					
						
							|  |  |  |         nzero = Decimal("-0.0") | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestApproxEqualErrors(unittest.TestCase): | 
					
						
							|  |  |  |     # Test error conditions of approx_equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_bad_tol(self): | 
					
						
							|  |  |  |         # Test negative tol raises. | 
					
						
							|  |  |  |         self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_bad_rel(self): | 
					
						
							|  |  |  |         # Test negative rel raises. | 
					
						
							|  |  |  |         self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --- Tests for NumericTestCase --- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # The formatting routine that generates the error messages is complex enough | 
					
						
							|  |  |  | # that it too needs testing. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestNumericTestCase(unittest.TestCase): | 
					
						
							|  |  |  |     # The exact wording of NumericTestCase error messages is *not* guaranteed, | 
					
						
							|  |  |  |     # but we need to give them some sort of test to ensure that they are | 
					
						
							|  |  |  |     # generated correctly. As a compromise, we look for specific substrings | 
					
						
							|  |  |  |     # that are expected to be found even if the overall error message changes. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_test(self, args): | 
					
						
							|  |  |  |         actual_msg = NumericTestCase._make_std_err_msg(*args) | 
					
						
							|  |  |  |         expected = self.generate_substrings(*args) | 
					
						
							|  |  |  |         for substring in expected: | 
					
						
							|  |  |  |             self.assertIn(substring, actual_msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_numerictestcase_is_testcase(self): | 
					
						
							|  |  |  |         # Ensure that NumericTestCase actually is a TestCase. | 
					
						
							|  |  |  |         self.assertTrue(issubclass(NumericTestCase, unittest.TestCase)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_error_msg_numeric(self): | 
					
						
							|  |  |  |         # Test the error message generated for numeric comparisons. | 
					
						
							|  |  |  |         args = (2.5, 4.0, 0.5, 0.25, None) | 
					
						
							|  |  |  |         self.do_test(args) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_error_msg_sequence(self): | 
					
						
							|  |  |  |         # Test the error message generated for sequence comparisons. | 
					
						
							|  |  |  |         args = (3.75, 8.25, 1.25, 0.5, 7) | 
					
						
							|  |  |  |         self.do_test(args) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def generate_substrings(self, first, second, tol, rel, idx): | 
					
						
							|  |  |  |         """Return substrings we expect to see in error messages.""" | 
					
						
							|  |  |  |         abs_err, rel_err = _calc_errors(first, second) | 
					
						
							|  |  |  |         substrings = [ | 
					
						
							|  |  |  |                 'tol=%r' % tol, | 
					
						
							|  |  |  |                 'rel=%r' % rel, | 
					
						
							|  |  |  |                 'absolute error = %r' % abs_err, | 
					
						
							|  |  |  |                 'relative error = %r' % rel_err, | 
					
						
							|  |  |  |                 ] | 
					
						
							|  |  |  |         if idx is not None: | 
					
						
							|  |  |  |             substrings.append('differ at index %d' % idx) | 
					
						
							|  |  |  |         return substrings | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # ======================================= | 
					
						
							|  |  |  | # === Tests for the statistics module === | 
					
						
							|  |  |  | # ======================================= | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class GlobalsTest(unittest.TestCase): | 
					
						
							|  |  |  |     module = statistics | 
					
						
							|  |  |  |     expected_metadata = ["__doc__", "__all__"] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_meta(self): | 
					
						
							|  |  |  |         # Test for the existence of metadata. | 
					
						
							|  |  |  |         for meta in self.expected_metadata: | 
					
						
							|  |  |  |             self.assertTrue(hasattr(self.module, meta), | 
					
						
							|  |  |  |                             "%s not present" % meta) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_check_all(self): | 
					
						
							|  |  |  |         # Check everything in __all__ exists and is public. | 
					
						
							|  |  |  |         module = self.module | 
					
						
							|  |  |  |         for name in module.__all__: | 
					
						
							|  |  |  |             # No private names in __all__: | 
					
						
							|  |  |  |             self.assertFalse(name.startswith("_"), | 
					
						
							|  |  |  |                              'private name "%s" in __all__' % name) | 
					
						
							|  |  |  |             # And anything in __all__ must exist: | 
					
						
							|  |  |  |             self.assertTrue(hasattr(module, name), | 
					
						
							|  |  |  |                             'missing name "%s" in __all__' % name) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class StatisticsErrorTest(unittest.TestCase): | 
					
						
							|  |  |  |     def test_has_exception(self): | 
					
						
							|  |  |  |         errmsg = ( | 
					
						
							|  |  |  |                 "Expected StatisticsError to be a ValueError, but got a" | 
					
						
							|  |  |  |                 " subclass of %r instead." | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |         self.assertTrue(hasattr(statistics, 'StatisticsError')) | 
					
						
							|  |  |  |         self.assertTrue( | 
					
						
							|  |  |  |                 issubclass(statistics.StatisticsError, ValueError), | 
					
						
							|  |  |  |                 errmsg % statistics.StatisticsError.__base__ | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # === Tests for private utility functions === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ExactRatioTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test _exact_ratio utility. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_int(self): | 
					
						
							|  |  |  |         for i in (-20, -3, 0, 5, 99, 10**20): | 
					
						
							|  |  |  |             self.assertEqual(statistics._exact_ratio(i), (i, 1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fraction(self): | 
					
						
							|  |  |  |         numerators = (-5, 1, 12, 38) | 
					
						
							|  |  |  |         for n in numerators: | 
					
						
							|  |  |  |             f = Fraction(n, 37) | 
					
						
							|  |  |  |             self.assertEqual(statistics._exact_ratio(f), (n, 37)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float(self): | 
					
						
							|  |  |  |         self.assertEqual(statistics._exact_ratio(0.125), (1, 8)) | 
					
						
							|  |  |  |         self.assertEqual(statistics._exact_ratio(1.125), (9, 8)) | 
					
						
							|  |  |  |         data = [random.uniform(-100, 100) for _ in range(100)] | 
					
						
							|  |  |  |         for x in data: | 
					
						
							|  |  |  |             num, den = statistics._exact_ratio(x) | 
					
						
							|  |  |  |             self.assertEqual(x, num/den) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal(self): | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         _exact_ratio = statistics._exact_ratio | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         self.assertEqual(_exact_ratio(D("0.125")), (1, 8)) | 
					
						
							|  |  |  |         self.assertEqual(_exact_ratio(D("12.345")), (2469, 200)) | 
					
						
							|  |  |  |         self.assertEqual(_exact_ratio(D("-1.98")), (-99, 50)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_inf(self): | 
					
						
							|  |  |  |         INF = float("INF") | 
					
						
							|  |  |  |         class MyFloat(float): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         class MyDecimal(Decimal): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         for inf in (INF, -INF): | 
					
						
							|  |  |  |             for type_ in (float, MyFloat, Decimal, MyDecimal): | 
					
						
							|  |  |  |                 x = type_(inf) | 
					
						
							|  |  |  |                 ratio = statistics._exact_ratio(x) | 
					
						
							|  |  |  |                 self.assertEqual(ratio, (x, None)) | 
					
						
							|  |  |  |                 self.assertEqual(type(ratio[0]), type_) | 
					
						
							|  |  |  |                 self.assertTrue(math.isinf(ratio[0])) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float_nan(self): | 
					
						
							|  |  |  |         NAN = float("NAN") | 
					
						
							|  |  |  |         class MyFloat(float): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         for nan in (NAN, MyFloat(NAN)): | 
					
						
							|  |  |  |             ratio = statistics._exact_ratio(nan) | 
					
						
							|  |  |  |             self.assertTrue(math.isnan(ratio[0])) | 
					
						
							|  |  |  |             self.assertIs(ratio[1], None) | 
					
						
							|  |  |  |             self.assertEqual(type(ratio[0]), type(nan)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal_nan(self): | 
					
						
							|  |  |  |         NAN = Decimal("NAN") | 
					
						
							|  |  |  |         sNAN = Decimal("sNAN") | 
					
						
							|  |  |  |         class MyDecimal(Decimal): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)): | 
					
						
							|  |  |  |             ratio = statistics._exact_ratio(nan) | 
					
						
							|  |  |  |             self.assertTrue(_nan_equal(ratio[0], nan)) | 
					
						
							|  |  |  |             self.assertIs(ratio[1], None) | 
					
						
							|  |  |  |             self.assertEqual(type(ratio[0]), type(nan)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | class DecimalToRatioTest(unittest.TestCase): | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |     # Test _exact_ratio private function. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_infinity(self): | 
					
						
							|  |  |  |         # Test that INFs are handled correctly. | 
					
						
							|  |  |  |         inf = Decimal('INF') | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         self.assertEqual(statistics._exact_ratio(inf), (inf, None)) | 
					
						
							|  |  |  |         self.assertEqual(statistics._exact_ratio(-inf), (-inf, None)) | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         # Test that NANs are handled correctly. | 
					
						
							|  |  |  |         for nan in (Decimal('NAN'), Decimal('sNAN')): | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |             num, den = statistics._exact_ratio(nan) | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |             # Because NANs always compare non-equal, we cannot use assertEqual. | 
					
						
							|  |  |  |             # Nor can we use an identity test, as we don't guarantee anything | 
					
						
							|  |  |  |             # about the object identity. | 
					
						
							|  |  |  |             self.assertTrue(_nan_equal(num, nan)) | 
					
						
							|  |  |  |             self.assertIs(den, None) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |     def test_sign(self): | 
					
						
							|  |  |  |         # Test sign is calculated correctly. | 
					
						
							|  |  |  |         numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")] | 
					
						
							|  |  |  |         for d in numbers: | 
					
						
							|  |  |  |             # First test positive decimals. | 
					
						
							|  |  |  |             assert d > 0 | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |             num, den = statistics._exact_ratio(d) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |             self.assertGreaterEqual(num, 0) | 
					
						
							|  |  |  |             self.assertGreater(den, 0) | 
					
						
							|  |  |  |             # Then test negative decimals. | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |             num, den = statistics._exact_ratio(-d) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |             self.assertLessEqual(num, 0) | 
					
						
							|  |  |  |             self.assertGreater(den, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_negative_exponent(self): | 
					
						
							|  |  |  |         # Test result when the exponent is negative. | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         t = statistics._exact_ratio(Decimal("0.1234")) | 
					
						
							|  |  |  |         self.assertEqual(t, (617, 5000)) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_positive_exponent(self): | 
					
						
							|  |  |  |         # Test results when the exponent is positive. | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         t = statistics._exact_ratio(Decimal("1.234e7")) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |         self.assertEqual(t, (12340000, 1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_regression_20536(self): | 
					
						
							|  |  |  |         # Regression test for issue 20536. | 
					
						
							|  |  |  |         # See http://bugs.python.org/issue20536 | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         t = statistics._exact_ratio(Decimal("1e2")) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |         self.assertEqual(t, (100, 1)) | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         t = statistics._exact_ratio(Decimal("1.47e5")) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |         self.assertEqual(t, (147000, 1)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  | class IsFiniteTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test _isfinite private function. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_finite(self): | 
					
						
							|  |  |  |         # Test that finite numbers are recognised as finite. | 
					
						
							|  |  |  |         for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")): | 
					
						
							|  |  |  |             self.assertTrue(statistics._isfinite(x)) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_infinity(self): | 
					
						
							|  |  |  |         # Test that INFs are not recognised as finite. | 
					
						
							|  |  |  |         for x in (float("inf"), Decimal("inf")): | 
					
						
							|  |  |  |             self.assertFalse(statistics._isfinite(x)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         # Test that NANs are not recognised as finite. | 
					
						
							|  |  |  |         for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")): | 
					
						
							|  |  |  |             self.assertFalse(statistics._isfinite(x)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class CoerceTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test that private function _coerce correctly deals with types. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # The coercion rules are currently an implementation detail, although at | 
					
						
							|  |  |  |     # some point that should change. The tests and comments here define the | 
					
						
							|  |  |  |     # correct implementation. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Pre-conditions of _coerce: | 
					
						
							|  |  |  |     # | 
					
						
							|  |  |  |     #   - The first time _sum calls _coerce, the | 
					
						
							|  |  |  |     #   - coerce(T, S) will never be called with bool as the first argument; | 
					
						
							|  |  |  |     #     this is a pre-condition, guarded with an assertion. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # | 
					
						
							|  |  |  |     #   - coerce(T, T) will always return T; we assume T is a valid numeric | 
					
						
							|  |  |  |     #     type. Violate this assumption at your own risk. | 
					
						
							|  |  |  |     # | 
					
						
							|  |  |  |     #   - Apart from as above, bool is treated as if it were actually int. | 
					
						
							|  |  |  |     # | 
					
						
							|  |  |  |     #   - coerce(int, X) and coerce(X, int) return X. | 
					
						
							|  |  |  |     #   - | 
					
						
							|  |  |  |     def test_bool(self): | 
					
						
							|  |  |  |         # bool is somewhat special, due to the pre-condition that it is | 
					
						
							|  |  |  |         # never given as the first argument to _coerce, and that it cannot | 
					
						
							|  |  |  |         # be subclassed. So we test it specially. | 
					
						
							|  |  |  |         for T in (int, float, Fraction, Decimal): | 
					
						
							|  |  |  |             self.assertIs(statistics._coerce(T, bool), T) | 
					
						
							|  |  |  |             class MyClass(T): pass | 
					
						
							|  |  |  |             self.assertIs(statistics._coerce(MyClass, bool), MyClass) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def assertCoerceTo(self, A, B): | 
					
						
							|  |  |  |         """Assert that type A coerces to B.""" | 
					
						
							|  |  |  |         self.assertIs(statistics._coerce(A, B), B) | 
					
						
							|  |  |  |         self.assertIs(statistics._coerce(B, A), B) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def check_coerce_to(self, A, B): | 
					
						
							|  |  |  |         """Checks that type A coerces to B, including subclasses.""" | 
					
						
							|  |  |  |         # Assert that type A is coerced to B. | 
					
						
							|  |  |  |         self.assertCoerceTo(A, B) | 
					
						
							|  |  |  |         # Subclasses of A are also coerced to B. | 
					
						
							|  |  |  |         class SubclassOfA(A): pass | 
					
						
							|  |  |  |         self.assertCoerceTo(SubclassOfA, B) | 
					
						
							|  |  |  |         # A, and subclasses of A, are coerced to subclasses of B. | 
					
						
							|  |  |  |         class SubclassOfB(B): pass | 
					
						
							|  |  |  |         self.assertCoerceTo(A, SubclassOfB) | 
					
						
							|  |  |  |         self.assertCoerceTo(SubclassOfA, SubclassOfB) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def assertCoerceRaises(self, A, B): | 
					
						
							|  |  |  |         """Assert that coercing A to B, or vice versa, raises TypeError.""" | 
					
						
							|  |  |  |         self.assertRaises(TypeError, statistics._coerce, (A, B)) | 
					
						
							|  |  |  |         self.assertRaises(TypeError, statistics._coerce, (B, A)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def check_type_coercions(self, T): | 
					
						
							|  |  |  |         """Check that type T coerces correctly with subclasses of itself.""" | 
					
						
							|  |  |  |         assert T is not bool | 
					
						
							|  |  |  |         # Coercing a type with itself returns the same type. | 
					
						
							|  |  |  |         self.assertIs(statistics._coerce(T, T), T) | 
					
						
							|  |  |  |         # Coercing a type with a subclass of itself returns the subclass. | 
					
						
							|  |  |  |         class U(T): pass | 
					
						
							|  |  |  |         class V(T): pass | 
					
						
							|  |  |  |         class W(U): pass | 
					
						
							|  |  |  |         for typ in (U, V, W): | 
					
						
							|  |  |  |             self.assertCoerceTo(T, typ) | 
					
						
							|  |  |  |         self.assertCoerceTo(U, W) | 
					
						
							|  |  |  |         # Coercing two subclasses that aren't parent/child is an error. | 
					
						
							|  |  |  |         self.assertCoerceRaises(U, V) | 
					
						
							|  |  |  |         self.assertCoerceRaises(V, W) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_int(self): | 
					
						
							|  |  |  |         # Check that int coerces correctly. | 
					
						
							|  |  |  |         self.check_type_coercions(int) | 
					
						
							|  |  |  |         for typ in (float, Fraction, Decimal): | 
					
						
							|  |  |  |             self.check_coerce_to(int, typ) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_fraction(self): | 
					
						
							|  |  |  |         # Check that Fraction coerces correctly. | 
					
						
							|  |  |  |         self.check_type_coercions(Fraction) | 
					
						
							|  |  |  |         self.check_coerce_to(Fraction, float) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal(self): | 
					
						
							|  |  |  |         # Check that Decimal coerces correctly. | 
					
						
							|  |  |  |         self.check_type_coercions(Decimal) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float(self): | 
					
						
							|  |  |  |         # Check that float coerces correctly. | 
					
						
							|  |  |  |         self.check_type_coercions(float) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_non_numeric_types(self): | 
					
						
							|  |  |  |         for bad_type in (str, list, type(None), tuple, dict): | 
					
						
							|  |  |  |             for good_type in (int, float, Fraction, Decimal): | 
					
						
							|  |  |  |                 self.assertCoerceRaises(good_type, bad_type) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_incompatible_types(self): | 
					
						
							|  |  |  |         # Test that incompatible types raise. | 
					
						
							|  |  |  |         for T in (float, Fraction): | 
					
						
							|  |  |  |             class MySubclass(T): pass | 
					
						
							|  |  |  |             self.assertCoerceRaises(T, Decimal) | 
					
						
							|  |  |  |             self.assertCoerceRaises(MySubclass, Decimal) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ConvertTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test private _convert function. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def check_exact_equal(self, x, y): | 
					
						
							|  |  |  |         """Check that x equals y, and has the same type as well.""" | 
					
						
							|  |  |  |         self.assertEqual(x, y) | 
					
						
							|  |  |  |         self.assertIs(type(x), type(y)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_int(self): | 
					
						
							|  |  |  |         # Test conversions to int. | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(71), int) | 
					
						
							|  |  |  |         self.check_exact_equal(x, 71) | 
					
						
							|  |  |  |         class MyInt(int): pass | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(17), MyInt) | 
					
						
							|  |  |  |         self.check_exact_equal(x, MyInt(17)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fraction(self): | 
					
						
							|  |  |  |         # Test conversions to Fraction. | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(95, 99), Fraction) | 
					
						
							|  |  |  |         self.check_exact_equal(x, Fraction(95, 99)) | 
					
						
							|  |  |  |         class MyFraction(Fraction): | 
					
						
							|  |  |  |             def __truediv__(self, other): | 
					
						
							|  |  |  |                 return self.__class__(super().__truediv__(other)) | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(71, 13), MyFraction) | 
					
						
							|  |  |  |         self.check_exact_equal(x, MyFraction(71, 13)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float(self): | 
					
						
							|  |  |  |         # Test conversions to float. | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(-1, 2), float) | 
					
						
							|  |  |  |         self.check_exact_equal(x, -0.5) | 
					
						
							|  |  |  |         class MyFloat(float): | 
					
						
							|  |  |  |             def __truediv__(self, other): | 
					
						
							|  |  |  |                 return self.__class__(super().__truediv__(other)) | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(9, 8), MyFloat) | 
					
						
							|  |  |  |         self.check_exact_equal(x, MyFloat(1.125)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal(self): | 
					
						
							|  |  |  |         # Test conversions to Decimal. | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(1, 40), Decimal) | 
					
						
							|  |  |  |         self.check_exact_equal(x, Decimal("0.025")) | 
					
						
							|  |  |  |         class MyDecimal(Decimal): | 
					
						
							|  |  |  |             def __truediv__(self, other): | 
					
						
							|  |  |  |                 return self.__class__(super().__truediv__(other)) | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(-15, 16), MyDecimal) | 
					
						
							|  |  |  |         self.check_exact_equal(x, MyDecimal("-0.9375")) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_inf(self): | 
					
						
							|  |  |  |         for INF in (float('inf'), Decimal('inf')): | 
					
						
							|  |  |  |             for inf in (INF, -INF): | 
					
						
							|  |  |  |                 x = statistics._convert(inf, type(inf)) | 
					
						
							|  |  |  |                 self.check_exact_equal(x, inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')): | 
					
						
							|  |  |  |             x = statistics._convert(nan, type(nan)) | 
					
						
							|  |  |  |             self.assertTrue(_nan_equal(x, nan)) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-13 13:29:31 +03:00
										 |  |  |     def test_invalid_input_type(self): | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             statistics._convert(None, float) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  | class FailNegTest(unittest.TestCase): | 
					
						
							|  |  |  |     """Test _fail_neg private function.""" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_pass_through(self): | 
					
						
							|  |  |  |         # Test that values are passed through unchanged. | 
					
						
							|  |  |  |         values = [1, 2.0, Fraction(3), Decimal(4)] | 
					
						
							|  |  |  |         new = list(statistics._fail_neg(values)) | 
					
						
							|  |  |  |         self.assertEqual(values, new) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_negatives_raise(self): | 
					
						
							|  |  |  |         # Test that negatives raise an exception. | 
					
						
							|  |  |  |         for x in [1, 2.0, Fraction(3), Decimal(4)]: | 
					
						
							|  |  |  |             seq = [-x] | 
					
						
							|  |  |  |             it = statistics._fail_neg(seq) | 
					
						
							|  |  |  |             self.assertRaises(statistics.StatisticsError, next, it) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_error_msg(self): | 
					
						
							|  |  |  |         # Test that a given error message is used. | 
					
						
							|  |  |  |         msg = "badness #%d" % random.randint(10000, 99999) | 
					
						
							|  |  |  |         try: | 
					
						
							|  |  |  |             next(statistics._fail_neg([-1], msg)) | 
					
						
							|  |  |  |         except statistics.StatisticsError as e: | 
					
						
							|  |  |  |             errmsg = e.args[0] | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             self.fail("expected exception, but it didn't happen") | 
					
						
							|  |  |  |         self.assertEqual(errmsg, msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | # === Tests for public functions === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class UnivariateCommonMixin: | 
					
						
							|  |  |  |     # Common tests for most univariate functions that take a data argument. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_no_args(self): | 
					
						
							|  |  |  |         # Fail if given no arguments. | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_empty_data(self): | 
					
						
							|  |  |  |         # Fail when the data argument (first argument) is empty. | 
					
						
							|  |  |  |         for empty in ([], (), iter([])): | 
					
						
							|  |  |  |             self.assertRaises(statistics.StatisticsError, self.func, empty) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_data(self): | 
					
						
							|  |  |  |         """Return int data for various tests.""" | 
					
						
							|  |  |  |         data = list(range(10)) | 
					
						
							|  |  |  |         while data == sorted(data): | 
					
						
							|  |  |  |             random.shuffle(data) | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_no_inplace_modifications(self): | 
					
						
							|  |  |  |         # Test that the function does not modify its input data. | 
					
						
							|  |  |  |         data = self.prepare_data() | 
					
						
							|  |  |  |         assert len(data) != 1  # Necessary to avoid infinite loop. | 
					
						
							|  |  |  |         assert data != sorted(data) | 
					
						
							|  |  |  |         saved = data[:] | 
					
						
							|  |  |  |         assert data is not saved | 
					
						
							|  |  |  |         _ = self.func(data) | 
					
						
							|  |  |  |         self.assertListEqual(data, saved, "data has been modified") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_order_doesnt_matter(self): | 
					
						
							|  |  |  |         # Test that the order of data points doesn't change the result. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # CAUTION: due to floating point rounding errors, the result actually | 
					
						
							|  |  |  |         # may depend on the order. Consider this test representing an ideal. | 
					
						
							|  |  |  |         # To avoid this test failing, only test with exact values such as ints | 
					
						
							|  |  |  |         # or Fractions. | 
					
						
							|  |  |  |         data = [1, 2, 3, 3, 3, 4, 5, 6]*100 | 
					
						
							|  |  |  |         expected = self.func(data) | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         actual = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(expected, actual) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_type_of_data_collection(self): | 
					
						
							|  |  |  |         # Test that the type of iterable data doesn't effect the result. | 
					
						
							|  |  |  |         class MyList(list): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         class MyTuple(tuple): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         def generator(data): | 
					
						
							|  |  |  |             return (obj for obj in data) | 
					
						
							|  |  |  |         data = self.prepare_data() | 
					
						
							|  |  |  |         expected = self.func(data) | 
					
						
							|  |  |  |         for kind in (list, tuple, iter, MyList, MyTuple, generator): | 
					
						
							|  |  |  |             result = self.func(kind(data)) | 
					
						
							|  |  |  |             self.assertEqual(result, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_range_data(self): | 
					
						
							|  |  |  |         # Test that functions work with range objects. | 
					
						
							|  |  |  |         data = range(20, 50, 3) | 
					
						
							|  |  |  |         expected = self.func(list(data)) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_bad_arg_types(self): | 
					
						
							|  |  |  |         # Test that function raises when given data of the wrong type. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Don't roll the following into a loop like this: | 
					
						
							|  |  |  |         #   for bad in list_of_bad: | 
					
						
							|  |  |  |         #       self.check_for_type_error(bad) | 
					
						
							|  |  |  |         # | 
					
						
							|  |  |  |         # Since assertRaises doesn't show the arguments that caused the test | 
					
						
							|  |  |  |         # failure, it is very difficult to debug these test failures when the | 
					
						
							|  |  |  |         # following are in a loop. | 
					
						
							|  |  |  |         self.check_for_type_error(None) | 
					
						
							|  |  |  |         self.check_for_type_error(23) | 
					
						
							|  |  |  |         self.check_for_type_error(42.0) | 
					
						
							|  |  |  |         self.check_for_type_error(object()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def check_for_type_error(self, *args): | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, *args) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_type_of_data_element(self): | 
					
						
							|  |  |  |         # Check the type of data elements doesn't affect the numeric result. | 
					
						
							|  |  |  |         # This is a weaker test than UnivariateTypeMixin.testTypesConserved, | 
					
						
							|  |  |  |         # because it checks the numeric result by equality, but not by type. | 
					
						
							|  |  |  |         class MyFloat(float): | 
					
						
							|  |  |  |             def __truediv__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__truediv__(other)) | 
					
						
							|  |  |  |             def __add__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__add__(other)) | 
					
						
							|  |  |  |             __radd__ = __add__ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         raw = self.prepare_data() | 
					
						
							|  |  |  |         expected = self.func(raw) | 
					
						
							|  |  |  |         for kind in (float, MyFloat, Decimal, Fraction): | 
					
						
							|  |  |  |             data = [kind(x) for x in raw] | 
					
						
							|  |  |  |             result = type(expected)(self.func(data)) | 
					
						
							|  |  |  |             self.assertEqual(result, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class UnivariateTypeMixin: | 
					
						
							|  |  |  |     """Mixin class for type-conserving functions.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     This mixin class holds test(s) for functions which conserve the type of | 
					
						
							|  |  |  |     individual data points. E.g. the mean of a list of Fractions should itself | 
					
						
							|  |  |  |     be a Fraction. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Not all tests to do with types need go in this class. Only those that | 
					
						
							|  |  |  |     rely on the function returning the same type as its input data. | 
					
						
							|  |  |  |     """
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |     def prepare_types_for_conservation_test(self): | 
					
						
							|  |  |  |         """Return the types which are expected to be conserved.""" | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         class MyFloat(float): | 
					
						
							|  |  |  |             def __truediv__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__truediv__(other)) | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |             def __rtruediv__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__rtruediv__(other)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             def __sub__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__sub__(other)) | 
					
						
							|  |  |  |             def __rsub__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__rsub__(other)) | 
					
						
							|  |  |  |             def __pow__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__pow__(other)) | 
					
						
							|  |  |  |             def __add__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__add__(other)) | 
					
						
							|  |  |  |             __radd__ = __add__ | 
					
						
							| 
									
										
										
										
											2021-08-30 20:57:30 -05:00
										 |  |  |             def __mul__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__mul__(other)) | 
					
						
							|  |  |  |             __rmul__ = __mul__ | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |         return (float, Decimal, Fraction, MyFloat) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |     def test_types_conserved(self): | 
					
						
							|  |  |  |         # Test that functions keeps the same type as their data points. | 
					
						
							|  |  |  |         # (Excludes mixed data types.) This only tests the type of the return | 
					
						
							|  |  |  |         # result, not the value. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         data = self.prepare_data() | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |         for kind in self.prepare_types_for_conservation_test(): | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             d = [kind(x) for x in data] | 
					
						
							|  |  |  |             result = self.func(d) | 
					
						
							|  |  |  |             self.assertIs(type(result), kind) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  | class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin): | 
					
						
							|  |  |  |     # Common test cases for statistics._sum() function. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # This test suite looks only at the numeric value returned by _sum, | 
					
						
							|  |  |  |     # after conversion to the appropriate type. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         def simplified_sum(*args): | 
					
						
							|  |  |  |             T, value, n = statistics._sum(*args) | 
					
						
							|  |  |  |             return statistics._coerce(value, T) | 
					
						
							|  |  |  |         self.func = simplified_sum | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestSum(NumericTestCase): | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |     # Test cases for statistics._sum() function. | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     # These tests look at the entire three value tuple returned by _sum. | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics._sum | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_empty_data(self): | 
					
						
							|  |  |  |         # Override test for empty data. | 
					
						
							|  |  |  |         for data in ([], (), iter([])): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |             self.assertEqual(self.func(data), (int, Fraction(0), 0)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_ints(self): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]), | 
					
						
							|  |  |  |                          (int, Fraction(60), 8)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_floats(self): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertEqual(self.func([0.25]*20), | 
					
						
							|  |  |  |                          (float, Fraction(5.0), 20)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_fractions(self): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertEqual(self.func([Fraction(1, 1000)]*500), | 
					
						
							|  |  |  |                          (Fraction, Fraction(1, 2), 500)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_decimals(self): | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"), | 
					
						
							|  |  |  |                 D("3.974"), D("2.328"), D("4.617"), D("2.843"), | 
					
						
							|  |  |  |                 ] | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertEqual(self.func(data), | 
					
						
							|  |  |  |                          (Decimal, Decimal("20.686"), 8)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_compare_with_math_fsum(self): | 
					
						
							|  |  |  |         # Compare with the math.fsum function. | 
					
						
							|  |  |  |         # Ideally we ought to get the exact same result, but sometimes | 
					
						
							|  |  |  |         # we differ by a very slight amount :-( | 
					
						
							|  |  |  |         data = [random.uniform(-100, 1000) for _ in range(1000)] | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_strings_fail(self): | 
					
						
							|  |  |  |         # Sum of strings should fail. | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, [1, 2, 3], '999') | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, [1, 2, 3, '999']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_bytes_fail(self): | 
					
						
							|  |  |  |         # Sum of bytes should fail. | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, [1, 2, 3], b'999') | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, [1, 2, 3, b'999']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_mixed_sum(self): | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  |         # Mixed input types are not (currently) allowed. | 
					
						
							|  |  |  |         # Check that mixed data types fail. | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)]) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  |         # And so does mixed start argument. | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class SumTortureTest(NumericTestCase): | 
					
						
							|  |  |  |     def test_torture(self): | 
					
						
							|  |  |  |         # Tim Peters' torture test for sum, and variants of same. | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000), | 
					
						
							|  |  |  |                          (float, Fraction(20000.0), 40000)) | 
					
						
							|  |  |  |         self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000), | 
					
						
							|  |  |  |                          (float, Fraction(20000.0), 40000)) | 
					
						
							|  |  |  |         T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000) | 
					
						
							|  |  |  |         self.assertIs(T, float) | 
					
						
							|  |  |  |         self.assertEqual(count, 40000) | 
					
						
							|  |  |  |         self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class SumSpecialValues(NumericTestCase): | 
					
						
							|  |  |  |     # Test that sum works correctly with IEEE-754 special values. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         for type_ in (float, Decimal): | 
					
						
							|  |  |  |             nan = type_('nan') | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |             result = statistics._sum([1, nan, 2])[1] | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             self.assertIs(type(result), type_) | 
					
						
							|  |  |  |             self.assertTrue(math.isnan(result)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def check_infinity(self, x, inf): | 
					
						
							|  |  |  |         """Check x is an infinity of the same type and sign as inf.""" | 
					
						
							|  |  |  |         self.assertTrue(math.isinf(x)) | 
					
						
							|  |  |  |         self.assertIs(type(x), type(inf)) | 
					
						
							|  |  |  |         self.assertEqual(x > 0, inf > 0) | 
					
						
							|  |  |  |         assert x == inf | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_test_inf(self, inf): | 
					
						
							|  |  |  |         # Adding a single infinity gives infinity. | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         result = statistics._sum([1, 2, inf, 3])[1] | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         self.check_infinity(result, inf) | 
					
						
							|  |  |  |         # Adding two infinities of the same sign also gives infinity. | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         result = statistics._sum([1, 2, inf, 3, inf, 4])[1] | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         self.check_infinity(result, inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float_inf(self): | 
					
						
							|  |  |  |         inf = float('inf') | 
					
						
							|  |  |  |         for sign in (+1, -1): | 
					
						
							|  |  |  |             self.do_test_inf(sign*inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal_inf(self): | 
					
						
							|  |  |  |         inf = Decimal('inf') | 
					
						
							|  |  |  |         for sign in (+1, -1): | 
					
						
							|  |  |  |             self.do_test_inf(sign*inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float_mismatched_infs(self): | 
					
						
							|  |  |  |         # Test that adding two infinities of opposite sign gives a NAN. | 
					
						
							|  |  |  |         inf = float('inf') | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         result = statistics._sum([1, 2, inf, 3, -inf, 4])[1] | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         self.assertTrue(math.isnan(result)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-09-24 15:03:25 +03:00
										 |  |  |     def test_decimal_extendedcontext_mismatched_infs_to_nan(self): | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         # Test adding Decimal INFs with opposite sign returns NAN. | 
					
						
							|  |  |  |         inf = Decimal('inf') | 
					
						
							|  |  |  |         data = [1, 2, inf, 3, -inf, 4] | 
					
						
							|  |  |  |         with decimal.localcontext(decimal.ExtendedContext): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |             self.assertTrue(math.isnan(statistics._sum(data)[1])) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-09-24 15:03:25 +03:00
										 |  |  |     def test_decimal_basiccontext_mismatched_infs_to_nan(self): | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         # Test adding Decimal INFs with opposite sign raises InvalidOperation. | 
					
						
							|  |  |  |         inf = Decimal('inf') | 
					
						
							|  |  |  |         data = [1, 2, inf, 3, -inf, 4] | 
					
						
							|  |  |  |         with decimal.localcontext(decimal.BasicContext): | 
					
						
							|  |  |  |             self.assertRaises(decimal.InvalidOperation, statistics._sum, data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal_snan_raises(self): | 
					
						
							|  |  |  |         # Adding sNAN should raise InvalidOperation. | 
					
						
							|  |  |  |         sNAN = Decimal('sNAN') | 
					
						
							|  |  |  |         data = [1, sNAN, 2] | 
					
						
							|  |  |  |         self.assertRaises(decimal.InvalidOperation, statistics._sum, data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # === Tests for averages === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class AverageMixin(UnivariateCommonMixin): | 
					
						
							|  |  |  |     # Mixin class holding common tests for averages. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_single_value(self): | 
					
						
							|  |  |  |         # Average of a single value is the value itself. | 
					
						
							|  |  |  |         for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')): | 
					
						
							|  |  |  |             self.assertEqual(self.func([x]), x) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |     def prepare_values_for_repeated_single_test(self): | 
					
						
							|  |  |  |         return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712')) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |     def test_repeated_single_value(self): | 
					
						
							|  |  |  |         # The average of a single repeated value is the value itself. | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |         for x in self.prepare_values_for_repeated_single_test(): | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             for count in (2, 5, 10, 20): | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |                 with self.subTest(x=x, count=count): | 
					
						
							|  |  |  |                     data = [x]*count | 
					
						
							|  |  |  |                     self.assertEqual(self.func(data), x) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin): | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.mean | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_torture_pep(self): | 
					
						
							|  |  |  |         # "Torture Test" from PEP-450. | 
					
						
							|  |  |  |         self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_ints(self): | 
					
						
							|  |  |  |         # Test mean with ints. | 
					
						
							|  |  |  |         data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 4.8125) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_floats(self): | 
					
						
							|  |  |  |         # Test mean with floats. | 
					
						
							|  |  |  |         data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 22.015625) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimals(self): | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |         # Test mean with Decimals. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D("3.5896")) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fractions(self): | 
					
						
							|  |  |  |         # Test mean with Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(1479, 1960)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_inf(self): | 
					
						
							|  |  |  |         # Test mean with infinities. | 
					
						
							|  |  |  |         raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later. | 
					
						
							|  |  |  |         for kind in (float, Decimal): | 
					
						
							|  |  |  |             for sign in (1, -1): | 
					
						
							|  |  |  |                 inf = kind("inf")*sign | 
					
						
							|  |  |  |                 data = raw + [inf] | 
					
						
							|  |  |  |                 result = self.func(data) | 
					
						
							|  |  |  |                 self.assertTrue(math.isinf(result)) | 
					
						
							|  |  |  |                 self.assertEqual(result, inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_mismatched_infs(self): | 
					
						
							|  |  |  |         # Test mean with infinities of opposite sign. | 
					
						
							|  |  |  |         data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')] | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(result)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         # Test mean with NANs. | 
					
						
							|  |  |  |         raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later. | 
					
						
							|  |  |  |         for kind in (float, Decimal): | 
					
						
							|  |  |  |             inf = kind("nan") | 
					
						
							|  |  |  |             data = raw + [inf] | 
					
						
							|  |  |  |             result = self.func(data) | 
					
						
							|  |  |  |             self.assertTrue(math.isnan(result)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_big_data(self): | 
					
						
							|  |  |  |         # Test adding a large constant to every data point. | 
					
						
							|  |  |  |         c = 1e9 | 
					
						
							|  |  |  |         data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4] | 
					
						
							|  |  |  |         expected = self.func(data) + c | 
					
						
							|  |  |  |         assert expected != c | 
					
						
							|  |  |  |         result = self.func([x+c for x in data]) | 
					
						
							|  |  |  |         self.assertEqual(result, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_doubled_data(self): | 
					
						
							|  |  |  |         # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z]. | 
					
						
							|  |  |  |         data = [random.uniform(-3, 5) for _ in range(1000)] | 
					
						
							|  |  |  |         expected = self.func(data) | 
					
						
							|  |  |  |         actual = self.func(data*2) | 
					
						
							|  |  |  |         self.assertApproxEqual(actual, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |     def test_regression_20561(self): | 
					
						
							|  |  |  |         # Regression test for issue 20561. | 
					
						
							|  |  |  |         # See http://bugs.python.org/issue20561 | 
					
						
							|  |  |  |         d = Decimal('1e4') | 
					
						
							|  |  |  |         self.assertEqual(statistics.mean([d]), d) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_regression_25177(self): | 
					
						
							|  |  |  |         # Regression test for issue 25177. | 
					
						
							|  |  |  |         # Ensure very big and very small floats don't overflow. | 
					
						
							|  |  |  |         # See http://bugs.python.org/issue25177. | 
					
						
							|  |  |  |         self.assertEqual(statistics.mean( | 
					
						
							|  |  |  |             [8.988465674311579e+307, 8.98846567431158e+307]), | 
					
						
							|  |  |  |             8.98846567431158e+307) | 
					
						
							|  |  |  |         big = 8.98846567431158e+307 | 
					
						
							|  |  |  |         tiny = 5e-324 | 
					
						
							|  |  |  |         for n in (2, 3, 5, 200): | 
					
						
							|  |  |  |             self.assertEqual(statistics.mean([big]*n), big) | 
					
						
							|  |  |  |             self.assertEqual(statistics.mean([tiny]*n), tiny) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  | class TestHarmonicMean(NumericTestCase, AverageMixin, UnivariateTypeMixin): | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.harmonic_mean | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_data(self): | 
					
						
							|  |  |  |         # Override mixin method. | 
					
						
							|  |  |  |         values = super().prepare_data() | 
					
						
							|  |  |  |         values.remove(0) | 
					
						
							|  |  |  |         return values | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_values_for_repeated_single_test(self): | 
					
						
							|  |  |  |         # Override mixin method. | 
					
						
							|  |  |  |         return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.125')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_zero(self): | 
					
						
							|  |  |  |         # Test that harmonic mean returns zero when given zero. | 
					
						
							|  |  |  |         values = [1, 0, 2] | 
					
						
							|  |  |  |         self.assertEqual(self.func(values), 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_negative_error(self): | 
					
						
							|  |  |  |         # Test that harmonic mean raises when given a negative value. | 
					
						
							|  |  |  |         exc = statistics.StatisticsError | 
					
						
							|  |  |  |         for values in ([-1], [1, -2, 3]): | 
					
						
							|  |  |  |             with self.subTest(values=values): | 
					
						
							|  |  |  |                 self.assertRaises(exc, self.func, values) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-13 13:29:31 +03:00
										 |  |  |     def test_invalid_type_error(self): | 
					
						
							|  |  |  |         # Test error is raised when input contains invalid type(s) | 
					
						
							|  |  |  |         for data in [ | 
					
						
							|  |  |  |             ['3.14'],               # single string | 
					
						
							|  |  |  |             ['1', '2', '3'],        # multiple strings | 
					
						
							|  |  |  |             [1, '2', 3, '4', 5],    # mixed strings and valid integers | 
					
						
							|  |  |  |             [2.3, 3.4, 4.5, '5.6']  # only one string and valid floats | 
					
						
							|  |  |  |         ]: | 
					
						
							|  |  |  |             with self.subTest(data=data): | 
					
						
							|  |  |  |                 with self.assertRaises(TypeError): | 
					
						
							|  |  |  |                     self.func(data) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |     def test_ints(self): | 
					
						
							|  |  |  |         # Test harmonic mean with ints. | 
					
						
							|  |  |  |         data = [2, 4, 4, 8, 16, 16] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 6*4/5) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_floats_exact(self): | 
					
						
							|  |  |  |         # Test harmonic mean with some carefully chosen floats. | 
					
						
							|  |  |  |         data = [1/8, 1/4, 1/4, 1/2, 1/2] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 1/4) | 
					
						
							|  |  |  |         self.assertEqual(self.func([0.25, 0.5, 1.0, 1.0]), 0.5) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_singleton_lists(self): | 
					
						
							|  |  |  |         # Test that harmonic mean([x]) returns (approximately) x. | 
					
						
							|  |  |  |         for x in range(1, 101): | 
					
						
							| 
									
										
										
										
											2016-08-09 13:19:48 +10:00
										 |  |  |             self.assertEqual(self.func([x]), x) | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_decimals_exact(self): | 
					
						
							|  |  |  |         # Test harmonic mean with some carefully chosen Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         self.assertEqual(self.func([D(15), D(30), D(60), D(60)]), D(30)) | 
					
						
							|  |  |  |         data = [D("0.05"), D("0.10"), D("0.20"), D("0.20")] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D("0.10")) | 
					
						
							|  |  |  |         data = [D("1.68"), D("0.32"), D("5.94"), D("2.75")] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D(66528)/70723) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fractions(self): | 
					
						
							|  |  |  |         # Test harmonic mean with Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(7*420, 4029)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_inf(self): | 
					
						
							|  |  |  |         # Test harmonic mean with infinity. | 
					
						
							|  |  |  |         values = [2.0, float('inf'), 1.0] | 
					
						
							|  |  |  |         self.assertEqual(self.func(values), 2.0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         # Test harmonic mean with NANs. | 
					
						
							|  |  |  |         values = [2.0, float('nan'), 1.0] | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(self.func(values))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_multiply_data_points(self): | 
					
						
							|  |  |  |         # Test multiplying every data point by a constant. | 
					
						
							|  |  |  |         c = 111 | 
					
						
							|  |  |  |         data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4] | 
					
						
							|  |  |  |         expected = self.func(data)*c | 
					
						
							|  |  |  |         result = self.func([x*c for x in data]) | 
					
						
							|  |  |  |         self.assertEqual(result, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_doubled_data(self): | 
					
						
							|  |  |  |         # Harmonic mean of [a,b...z] should be same as for [a,a,b,b...z,z]. | 
					
						
							|  |  |  |         data = [random.uniform(1, 5) for _ in range(1000)] | 
					
						
							|  |  |  |         expected = self.func(data) | 
					
						
							|  |  |  |         actual = self.func(data*2) | 
					
						
							|  |  |  |         self.assertApproxEqual(actual, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-23 19:52:09 -08:00
										 |  |  |     def test_with_weights(self): | 
					
						
							|  |  |  |         self.assertEqual(self.func([40, 60], [5, 30]), 56.0)  # common case | 
					
						
							|  |  |  |         self.assertEqual(self.func([40, 60], | 
					
						
							|  |  |  |                                    weights=[5, 30]), 56.0)    # keyword argument | 
					
						
							|  |  |  |         self.assertEqual(self.func(iter([40, 60]), | 
					
						
							|  |  |  |                                    iter([5, 30])), 56.0)      # iterator inputs | 
					
						
							|  |  |  |         self.assertEqual( | 
					
						
							|  |  |  |             self.func([Fraction(10, 3), Fraction(23, 5), Fraction(7, 2)], [5, 2, 10]), | 
					
						
							|  |  |  |             self.func([Fraction(10, 3)] * 5 + | 
					
						
							|  |  |  |                       [Fraction(23, 5)] * 2 + | 
					
						
							|  |  |  |                       [Fraction(7, 2)] * 10)) | 
					
						
							|  |  |  |         self.assertEqual(self.func([10], [7]), 10)            # n=1 fast path | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             self.func([1, 2, 3], [1, (), 3])                  # non-numeric weight | 
					
						
							|  |  |  |         with self.assertRaises(statistics.StatisticsError): | 
					
						
							|  |  |  |             self.func([1, 2, 3], [1, 2])                      # wrong number of weights | 
					
						
							|  |  |  |         with self.assertRaises(statistics.StatisticsError): | 
					
						
							|  |  |  |             self.func([10], [0])                              # no non-zero weights | 
					
						
							|  |  |  |         with self.assertRaises(statistics.StatisticsError): | 
					
						
							|  |  |  |             self.func([10, 20], [0, 0])                       # no non-zero weights | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | class TestMedian(NumericTestCase, AverageMixin): | 
					
						
							|  |  |  |     # Common tests for median and all median.* functions. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.median | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_data(self): | 
					
						
							|  |  |  |         """Overload method from UnivariateCommonMixin.""" | 
					
						
							|  |  |  |         data = super().prepare_data() | 
					
						
							|  |  |  |         if len(data)%2 != 1: | 
					
						
							|  |  |  |             data.append(2) | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_ints(self): | 
					
						
							|  |  |  |         # Test median with an even number of int data points. | 
					
						
							|  |  |  |         data = [1, 2, 3, 4, 5, 6] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 3.5) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_odd_ints(self): | 
					
						
							|  |  |  |         # Test median with an odd number of int data points. | 
					
						
							|  |  |  |         data = [1, 2, 3, 4, 5, 6, 9] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 4) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_odd_fractions(self): | 
					
						
							|  |  |  |         # Test median works with an odd number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(3, 7)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_fractions(self): | 
					
						
							|  |  |  |         # Test median works with an even number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(1, 2)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_odd_decimals(self): | 
					
						
							|  |  |  |         # Test median works with an odd number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D('4.2')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_decimals(self): | 
					
						
							|  |  |  |         # Test median works with an even number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D('3.65')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestMedianDataType(NumericTestCase, UnivariateTypeMixin): | 
					
						
							|  |  |  |     # Test conservation of data element type for median. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.median | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_data(self): | 
					
						
							|  |  |  |         data = list(range(15)) | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         while data == sorted(data): | 
					
						
							|  |  |  |             random.shuffle(data) | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestMedianLow(TestMedian, UnivariateTypeMixin): | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.median_low | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_ints(self): | 
					
						
							|  |  |  |         # Test median_low with an even number of ints. | 
					
						
							|  |  |  |         data = [1, 2, 3, 4, 5, 6] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 3) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_fractions(self): | 
					
						
							|  |  |  |         # Test median_low works with an even number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(3, 7)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_decimals(self): | 
					
						
							|  |  |  |         # Test median_low works with an even number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D('3.3')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestMedianHigh(TestMedian, UnivariateTypeMixin): | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.median_high | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_ints(self): | 
					
						
							|  |  |  |         # Test median_high with an even number of ints. | 
					
						
							|  |  |  |         data = [1, 2, 3, 4, 5, 6] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 4) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_fractions(self): | 
					
						
							|  |  |  |         # Test median_high works with an even number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(4, 7)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_decimals(self): | 
					
						
							|  |  |  |         # Test median_high works with an even number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D('4.4')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestMedianGrouped(TestMedian): | 
					
						
							|  |  |  |     # Test median_grouped. | 
					
						
							|  |  |  |     # Doesn't conserve data element types, so don't use TestMedianType. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.median_grouped | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_odd_number_repeated(self): | 
					
						
							|  |  |  |         # Test median.grouped with repeated median values. | 
					
						
							|  |  |  |         data = [12, 13, 14, 14, 14, 15, 15] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 14) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [12, 13, 14, 14, 14, 14, 15] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 13.875) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data, 5), 19.375) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_number_repeated(self): | 
					
						
							|  |  |  |         # Test median.grouped with repeated median values. | 
					
						
							|  |  |  |         data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [2, 3, 4, 4, 4, 5] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 4.5) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 4.75) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_repeated_single_value(self): | 
					
						
							|  |  |  |         # Override method from AverageMixin. | 
					
						
							|  |  |  |         # Yet again, failure of median_grouped to conserve the data type | 
					
						
							|  |  |  |         # causes me headaches :-( | 
					
						
							|  |  |  |         for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')): | 
					
						
							|  |  |  |             for count in (2, 5, 10, 20): | 
					
						
							|  |  |  |                 data = [x]*count | 
					
						
							|  |  |  |                 self.assertEqual(self.func(data), float(x)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-05-09 02:08:41 -05:00
										 |  |  |     def test_single_value(self): | 
					
						
							|  |  |  |         # Override method from AverageMixin. | 
					
						
							|  |  |  |         # Average of a single value is the value as a float. | 
					
						
							|  |  |  |         for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')): | 
					
						
							|  |  |  |             self.assertEqual(self.func([x]), float(x)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |     def test_odd_fractions(self): | 
					
						
							|  |  |  |         # Test median_grouped works with an odd number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 3.0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_fractions(self): | 
					
						
							|  |  |  |         # Test median_grouped works with an even number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 3.25) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_odd_decimals(self): | 
					
						
							|  |  |  |         # Test median_grouped works with an odd number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 6.75) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_decimals(self): | 
					
						
							|  |  |  |         # Test median_grouped works with an even number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 6.5) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 7.0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_interval(self): | 
					
						
							|  |  |  |         # Test median_grouped with interval argument. | 
					
						
							|  |  |  |         data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75] | 
					
						
							|  |  |  |         self.assertEqual(self.func(data, 0.25), 2.875) | 
					
						
							|  |  |  |         data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75] | 
					
						
							|  |  |  |         self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8) | 
					
						
							|  |  |  |         data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340] | 
					
						
							|  |  |  |         self.assertEqual(self.func(data, 20), 265.0) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-07-08 02:38:45 +10:00
										 |  |  |     def test_data_type_error(self): | 
					
						
							|  |  |  |         # Test median_grouped with str, bytes data types for data and interval | 
					
						
							|  |  |  |         data = ["", "", ""] | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, data) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [b"", b"", b""] | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, data) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [1, 2, 3] | 
					
						
							|  |  |  |         interval = "" | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, data, interval) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [1, 2, 3] | 
					
						
							|  |  |  |         interval = b"" | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, data, interval) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin): | 
					
						
							|  |  |  |     # Test cases for the discrete version of mode. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.mode | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_data(self): | 
					
						
							|  |  |  |         """Overload method from UnivariateCommonMixin.""" | 
					
						
							|  |  |  |         # Make sure test data has exactly one mode. | 
					
						
							|  |  |  |         return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_range_data(self): | 
					
						
							|  |  |  |         # Override test from UnivariateCommonMixin. | 
					
						
							|  |  |  |         data = range(20, 50, 3) | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |         self.assertEqual(self.func(data), 20) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_nominal_data(self): | 
					
						
							|  |  |  |         # Test mode with nominal data. | 
					
						
							|  |  |  |         data = 'abcbdb' | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 'b') | 
					
						
							|  |  |  |         data = 'fe fi fo fum fi fi'.split() | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 'fi') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_discrete_data(self): | 
					
						
							|  |  |  |         # Test mode with discrete numeric data. | 
					
						
							|  |  |  |         data = list(range(10)) | 
					
						
							|  |  |  |         for i in range(10): | 
					
						
							|  |  |  |             d = data + [i] | 
					
						
							|  |  |  |             random.shuffle(d) | 
					
						
							|  |  |  |             self.assertEqual(self.func(d), i) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_bimodal_data(self): | 
					
						
							|  |  |  |         # Test mode with bimodal data. | 
					
						
							|  |  |  |         data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9] | 
					
						
							|  |  |  |         assert data.count(2) == data.count(6) == 4 | 
					
						
							| 
									
										
										
										
											2019-08-31 06:21:19 +10:00
										 |  |  |         # mode() should return 2, the first encountered mode | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |         self.assertEqual(self.func(data), 2) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |     def test_unique_data(self): | 
					
						
							|  |  |  |         # Test mode when data points are all unique. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         data = list(range(10)) | 
					
						
							| 
									
										
										
										
											2019-08-31 06:21:19 +10:00
										 |  |  |         # mode() should return 0, the first encountered mode | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  |         self.assertEqual(self.func(data), 0) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_none_data(self): | 
					
						
							|  |  |  |         # Test that mode raises TypeError if given None as data. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # This test is necessary because the implementation of mode uses | 
					
						
							|  |  |  |         # collections.Counter, which accepts None and returns an empty dict. | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, None) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-02-08 19:44:16 +10:00
										 |  |  |     def test_counter_data(self): | 
					
						
							|  |  |  |         # Test that a Counter is treated like any other iterable. | 
					
						
							| 
									
										
										
										
											2021-11-20 11:01:09 -06:00
										 |  |  |         # We're making sure mode() first calls iter() on its input. | 
					
						
							|  |  |  |         # The concern is that a Counter of a Counter returns the original | 
					
						
							|  |  |  |         # unchanged rather than counting its keys. | 
					
						
							|  |  |  |         c = collections.Counter(a=1, b=2) | 
					
						
							|  |  |  |         # If iter() is called, mode(c) loops over the keys, ['a', 'b'], | 
					
						
							|  |  |  |         # all the counts will be 1, and the first encountered mode is 'a'. | 
					
						
							|  |  |  |         self.assertEqual(self.func(c), 'a') | 
					
						
							| 
									
										
										
										
											2019-03-12 00:43:27 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestMultiMode(unittest.TestCase): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_basics(self): | 
					
						
							|  |  |  |         multimode = statistics.multimode | 
					
						
							|  |  |  |         self.assertEqual(multimode('aabbbbbbbbcc'), ['b']) | 
					
						
							|  |  |  |         self.assertEqual(multimode('aabbbbccddddeeffffgg'), ['b', 'd', 'f']) | 
					
						
							|  |  |  |         self.assertEqual(multimode(''), []) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-02-08 19:44:16 +10:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-21 15:06:29 -08:00
										 |  |  | class TestFMean(unittest.TestCase): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_basics(self): | 
					
						
							|  |  |  |         fmean = statistics.fmean | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         for data, expected_mean, kind in [ | 
					
						
							|  |  |  |             ([3.5, 4.0, 5.25], 4.25, 'floats'), | 
					
						
							|  |  |  |             ([D('3.5'), D('4.0'), D('5.25')], 4.25, 'decimals'), | 
					
						
							|  |  |  |             ([F(7, 2), F(4, 1), F(21, 4)], 4.25, 'fractions'), | 
					
						
							|  |  |  |             ([True, False, True, True, False], 0.60, 'booleans'), | 
					
						
							|  |  |  |             ([3.5, 4, F(21, 4)], 4.25, 'mixed types'), | 
					
						
							|  |  |  |             ((3.5, 4.0, 5.25), 4.25, 'tuple'), | 
					
						
							|  |  |  |             (iter([3.5, 4.0, 5.25]), 4.25, 'iterator'), | 
					
						
							|  |  |  |                 ]: | 
					
						
							|  |  |  |             actual_mean = fmean(data) | 
					
						
							|  |  |  |             self.assertIs(type(actual_mean), float, kind) | 
					
						
							|  |  |  |             self.assertEqual(actual_mean, expected_mean, kind) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_error_cases(self): | 
					
						
							|  |  |  |         fmean = statistics.fmean | 
					
						
							|  |  |  |         StatisticsError = statistics.StatisticsError | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             fmean([])                               # empty input | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             fmean(iter([]))                         # empty iterator | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             fmean(None)                             # non-iterable input | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             fmean([10, None, 20])                   # non-numeric input | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             fmean()                                 # missing data argument | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             fmean([10, 20, 60], 70)                 # too many arguments | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_special_values(self): | 
					
						
							|  |  |  |         # Rules for special values are inherited from math.fsum() | 
					
						
							|  |  |  |         fmean = statistics.fmean | 
					
						
							|  |  |  |         NaN = float('Nan') | 
					
						
							|  |  |  |         Inf = float('Inf') | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(fmean([10, NaN])), 'nan') | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(fmean([NaN, Inf])), 'nan and infinity') | 
					
						
							|  |  |  |         self.assertTrue(math.isinf(fmean([10, Inf])), 'infinity') | 
					
						
							|  |  |  |         with self.assertRaises(ValueError): | 
					
						
							|  |  |  |             fmean([Inf, -Inf]) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:44:16 +10:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-20 20:22:26 -07:00
										 |  |  |     def test_weights(self): | 
					
						
							|  |  |  |         fmean = statistics.fmean | 
					
						
							|  |  |  |         StatisticsError = statistics.StatisticsError | 
					
						
							|  |  |  |         self.assertEqual( | 
					
						
							|  |  |  |             fmean([10, 10, 10, 50], [0.25] * 4), | 
					
						
							|  |  |  |             fmean([10, 10, 10, 50])) | 
					
						
							|  |  |  |         self.assertEqual( | 
					
						
							|  |  |  |             fmean([10, 10, 20], [0.25, 0.25, 0.50]), | 
					
						
							|  |  |  |             fmean([10, 10, 20, 20])) | 
					
						
							|  |  |  |         self.assertEqual(                           # inputs are iterators | 
					
						
							|  |  |  |             fmean(iter([10, 10, 20]), iter([0.25, 0.25, 0.50])), | 
					
						
							|  |  |  |             fmean([10, 10, 20, 20])) | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             fmean([10, 20, 30], [1, 2])             # unequal lengths | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             fmean(iter([10, 20, 30]), iter([1, 2])) # unequal lengths | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             fmean([10, 20], [-1, 1])                # sum of weights is zero | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             fmean(iter([10, 20]), iter([-1, 1]))    # sum of weights is zero | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | # === Tests for variances and standard deviations === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class VarianceStdevMixin(UnivariateCommonMixin): | 
					
						
							|  |  |  |     # Mixin class holding common tests for variance and std dev. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Subclasses should inherit from this before NumericTestClass, in order | 
					
						
							|  |  |  |     # to see the rel attribute below. See testShiftData for an explanation. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     rel = 1e-12 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_single_value(self): | 
					
						
							|  |  |  |         # Deviation of a single value is zero. | 
					
						
							|  |  |  |         for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')): | 
					
						
							|  |  |  |             self.assertEqual(self.func([x]), 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_repeated_single_value(self): | 
					
						
							|  |  |  |         # The deviation of a single repeated value is zero. | 
					
						
							|  |  |  |         for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')): | 
					
						
							|  |  |  |             for count in (2, 3, 5, 15): | 
					
						
							|  |  |  |                 data = [x]*count | 
					
						
							|  |  |  |                 self.assertEqual(self.func(data), 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_domain_error_regression(self): | 
					
						
							|  |  |  |         # Regression test for a domain error exception. | 
					
						
							|  |  |  |         # (Thanks to Geremy Condra.) | 
					
						
							|  |  |  |         data = [0.123456789012345]*10000 | 
					
						
							|  |  |  |         # All the items are identical, so variance should be exactly zero. | 
					
						
							|  |  |  |         # We allow some small round-off error, but not much. | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertApproxEqual(result, 0.0, tol=5e-17) | 
					
						
							|  |  |  |         self.assertGreaterEqual(result, 0)  # A negative result must fail. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_shift_data(self): | 
					
						
							|  |  |  |         # Test that shifting the data by a constant amount does not affect | 
					
						
							|  |  |  |         # the variance or stdev. Or at least not much. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Due to rounding, this test should be considered an ideal. We allow | 
					
						
							|  |  |  |         # some tolerance away from "no change at all" by setting tol and/or rel | 
					
						
							|  |  |  |         # attributes. Subclasses may set tighter or looser error tolerances. | 
					
						
							|  |  |  |         raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78] | 
					
						
							|  |  |  |         expected = self.func(raw) | 
					
						
							|  |  |  |         # Don't set shift too high, the bigger it is, the more rounding error. | 
					
						
							|  |  |  |         shift = 1e5 | 
					
						
							|  |  |  |         data = [x + shift for x in raw] | 
					
						
							|  |  |  |         self.assertApproxEqual(self.func(data), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_shift_data_exact(self): | 
					
						
							|  |  |  |         # Like test_shift_data, but result is always exact. | 
					
						
							|  |  |  |         raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16] | 
					
						
							|  |  |  |         assert all(x==int(x) for x in raw) | 
					
						
							|  |  |  |         expected = self.func(raw) | 
					
						
							|  |  |  |         shift = 10**9 | 
					
						
							|  |  |  |         data = [x + shift for x in raw] | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_iter_list_same(self): | 
					
						
							|  |  |  |         # Test that iter data and list data give the same result. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # This is an explicit test that iterators and lists are treated the | 
					
						
							|  |  |  |         # same; justification for this test over and above the similar test | 
					
						
							|  |  |  |         # in UnivariateCommonMixin is that an earlier design had variance and | 
					
						
							|  |  |  |         # friends swap between one- and two-pass algorithms, which would | 
					
						
							|  |  |  |         # sometimes give different results. | 
					
						
							|  |  |  |         data = [random.uniform(-3, 8) for _ in range(1000)] | 
					
						
							|  |  |  |         expected = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(iter(data)), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin): | 
					
						
							|  |  |  |     # Tests for population variance. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.pvariance | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exact_uniform(self): | 
					
						
							|  |  |  |         # Test the variance against an exact result for uniform data. | 
					
						
							|  |  |  |         data = list(range(10000)) | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         expected = (10000**2 - 1)/12  # Exact value. | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_ints(self): | 
					
						
							|  |  |  |         # Test population variance with int data. | 
					
						
							|  |  |  |         data = [4, 7, 13, 16] | 
					
						
							|  |  |  |         exact = 22.5 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), exact) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fractions(self): | 
					
						
							|  |  |  |         # Test population variance with Fraction data. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)] | 
					
						
							|  |  |  |         exact = F(3, 8) | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(result, exact) | 
					
						
							|  |  |  |         self.assertIsInstance(result, Fraction) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimals(self): | 
					
						
							|  |  |  |         # Test population variance with Decimal data. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")] | 
					
						
							|  |  |  |         exact = D('0.096875') | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(result, exact) | 
					
						
							|  |  |  |         self.assertIsInstance(result, Decimal) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-09-08 22:00:12 -05:00
										 |  |  |     def test_accuracy_bug_20499(self): | 
					
						
							|  |  |  |         data = [0, 0, 1] | 
					
						
							|  |  |  |         exact = 2 / 9 | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(result, exact) | 
					
						
							|  |  |  |         self.assertIsInstance(result, float) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin): | 
					
						
							|  |  |  |     # Tests for sample variance. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.variance | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_single_value(self): | 
					
						
							|  |  |  |         # Override method from VarianceStdevMixin. | 
					
						
							|  |  |  |         for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')): | 
					
						
							|  |  |  |             self.assertRaises(statistics.StatisticsError, self.func, [x]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_ints(self): | 
					
						
							|  |  |  |         # Test sample variance with int data. | 
					
						
							|  |  |  |         data = [4, 7, 13, 16] | 
					
						
							|  |  |  |         exact = 30 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), exact) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fractions(self): | 
					
						
							|  |  |  |         # Test sample variance with Fraction data. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)] | 
					
						
							|  |  |  |         exact = F(1, 2) | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(result, exact) | 
					
						
							|  |  |  |         self.assertIsInstance(result, Fraction) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimals(self): | 
					
						
							|  |  |  |         # Test sample variance with Decimal data. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D(2), D(2), D(7), D(9)] | 
					
						
							|  |  |  |         exact = 4*D('9.5')/D(3) | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(result, exact) | 
					
						
							|  |  |  |         self.assertIsInstance(result, Decimal) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-06-13 15:55:52 -07:00
										 |  |  |     def test_center_not_at_mean(self): | 
					
						
							|  |  |  |         data = (1.0, 2.0) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 0.5) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data, xbar=2.0), 1.0) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-09-08 22:00:12 -05:00
										 |  |  |     def test_accuracy_bug_20499(self): | 
					
						
							|  |  |  |         data = [0, 0, 2] | 
					
						
							|  |  |  |         exact = 4 / 3 | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(result, exact) | 
					
						
							|  |  |  |         self.assertIsInstance(result, float) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | class TestPStdev(VarianceStdevMixin, NumericTestCase): | 
					
						
							|  |  |  |     # Tests for population standard deviation. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.pstdev | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_compare_to_variance(self): | 
					
						
							|  |  |  |         # Test that stdev is, in fact, the square root of variance. | 
					
						
							|  |  |  |         data = [random.uniform(-17, 24) for _ in range(1000)] | 
					
						
							|  |  |  |         expected = math.sqrt(statistics.pvariance(data)) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-06-13 15:55:52 -07:00
										 |  |  |     def test_center_not_at_mean(self): | 
					
						
							|  |  |  |         # See issue: 40855 | 
					
						
							|  |  |  |         data = (3, 6, 7, 10) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 2.5) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data, mu=0.5), 6.5) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  | class TestSqrtHelpers(unittest.TestCase): | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 |  |  |     def test_integer_sqrt_of_frac_rto(self): | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  |         for n, m in itertools.product(range(100), range(1, 1000)): | 
					
						
							| 
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 |  |  |             r = statistics._integer_sqrt_of_frac_rto(n, m) | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  |             self.assertIsInstance(r, int) | 
					
						
							|  |  |  |             if r*r*m == n: | 
					
						
							|  |  |  |                 # Root is exact | 
					
						
							|  |  |  |                 continue | 
					
						
							|  |  |  |             # Inexact, so the root should be odd | 
					
						
							|  |  |  |             self.assertEqual(r&1, 1) | 
					
						
							|  |  |  |             # Verify correct rounding | 
					
						
							|  |  |  |             self.assertTrue(m * (r - 1)**2 < n < m * (r + 1)**2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     @requires_IEEE_754 | 
					
						
							| 
									
										
										
										
											2023-09-02 07:45:34 +03:00
										 |  |  |     @support.requires_resource('cpu') | 
					
						
							| 
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 |  |  |     def test_float_sqrt_of_frac(self): | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |         def is_root_correctly_rounded(x: Fraction, root: float) -> bool: | 
					
						
							|  |  |  |             if not x: | 
					
						
							|  |  |  |                 return root == 0.0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Extract adjacent representable floats | 
					
						
							|  |  |  |             r_up: float = math.nextafter(root, math.inf) | 
					
						
							|  |  |  |             r_down: float = math.nextafter(root, -math.inf) | 
					
						
							|  |  |  |             assert r_down < root < r_up | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Convert to fractions for exact arithmetic | 
					
						
							|  |  |  |             frac_root: Fraction = Fraction(root) | 
					
						
							|  |  |  |             half_way_up: Fraction = (frac_root + Fraction(r_up)) / 2 | 
					
						
							|  |  |  |             half_way_down: Fraction = (frac_root + Fraction(r_down)) / 2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Check a closed interval. | 
					
						
							|  |  |  |             # Does not test for a midpoint rounding rule. | 
					
						
							|  |  |  |             return half_way_down ** 2 <= x <= half_way_up ** 2 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         randrange = random.randrange | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for i in range(60_000): | 
					
						
							|  |  |  |             numerator: int = randrange(10 ** randrange(50)) | 
					
						
							|  |  |  |             denonimator: int = randrange(10 ** randrange(50)) + 1 | 
					
						
							|  |  |  |             with self.subTest(numerator=numerator, denonimator=denonimator): | 
					
						
							|  |  |  |                 x: Fraction = Fraction(numerator, denonimator) | 
					
						
							| 
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 |  |  |                 root: float = statistics._float_sqrt_of_frac(numerator, denonimator) | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  |                 self.assertTrue(is_root_correctly_rounded(x, root)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Verify that corner cases and error handling match math.sqrt() | 
					
						
							| 
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 |  |  |         self.assertEqual(statistics._float_sqrt_of_frac(0, 1), 0.0) | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  |         with self.assertRaises(ValueError): | 
					
						
							| 
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 |  |  |             statistics._float_sqrt_of_frac(-1, 1) | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  |         with self.assertRaises(ValueError): | 
					
						
							| 
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 |  |  |             statistics._float_sqrt_of_frac(1, -1) | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # Error handling for zero denominator matches that for Fraction(1, 0) | 
					
						
							|  |  |  |         with self.assertRaises(ZeroDivisionError): | 
					
						
							| 
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 |  |  |             statistics._float_sqrt_of_frac(1, 0) | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # The result is well defined if both inputs are negative | 
					
						
							| 
									
										
										
										
											2021-11-30 18:20:08 -06:00
										 |  |  |         self.assertEqual(statistics._float_sqrt_of_frac(-2, -1), statistics._float_sqrt_of_frac(2, 1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal_sqrt_of_frac(self): | 
					
						
							|  |  |  |         root: Decimal | 
					
						
							|  |  |  |         numerator: int | 
					
						
							|  |  |  |         denominator: int | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for root, numerator, denominator in [ | 
					
						
							|  |  |  |             (Decimal('0.4481904599041192673635338663'), 200874688349065940678243576378, 1000000000000000000000000000000),  # No adj | 
					
						
							|  |  |  |             (Decimal('0.7924949131383786609961759598'), 628048187350206338833590574929, 1000000000000000000000000000000),  # Adj up | 
					
						
							|  |  |  |             (Decimal('0.8500554152289934068192208727'), 722594208960136395984391238251, 1000000000000000000000000000000),  # Adj down | 
					
						
							|  |  |  |         ]: | 
					
						
							|  |  |  |             with decimal.localcontext(decimal.DefaultContext): | 
					
						
							|  |  |  |                 self.assertEqual(statistics._decimal_sqrt_of_frac(numerator, denominator), root) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Confirm expected root with a quad precision decimal computation | 
					
						
							|  |  |  |             with decimal.localcontext(decimal.DefaultContext) as ctx: | 
					
						
							|  |  |  |                 ctx.prec *= 4 | 
					
						
							|  |  |  |                 high_prec_ratio = Decimal(numerator) / Decimal(denominator) | 
					
						
							|  |  |  |                 ctx.rounding = decimal.ROUND_05UP | 
					
						
							|  |  |  |                 high_prec_root = high_prec_ratio.sqrt() | 
					
						
							|  |  |  |             with decimal.localcontext(decimal.DefaultContext): | 
					
						
							|  |  |  |                 target_root = +high_prec_root | 
					
						
							|  |  |  |             self.assertEqual(root, target_root) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Verify that corner cases and error handling match Decimal.sqrt() | 
					
						
							|  |  |  |         self.assertEqual(statistics._decimal_sqrt_of_frac(0, 1), 0.0) | 
					
						
							|  |  |  |         with self.assertRaises(decimal.InvalidOperation): | 
					
						
							|  |  |  |             statistics._decimal_sqrt_of_frac(-1, 1) | 
					
						
							|  |  |  |         with self.assertRaises(decimal.InvalidOperation): | 
					
						
							|  |  |  |             statistics._decimal_sqrt_of_frac(1, -1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Error handling for zero denominator matches that for Fraction(1, 0) | 
					
						
							|  |  |  |         with self.assertRaises(ZeroDivisionError): | 
					
						
							|  |  |  |             statistics._decimal_sqrt_of_frac(1, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # The result is well defined if both inputs are negative | 
					
						
							|  |  |  |         self.assertEqual(statistics._decimal_sqrt_of_frac(-2, -1), statistics._decimal_sqrt_of_frac(2, 1)) | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | class TestStdev(VarianceStdevMixin, NumericTestCase): | 
					
						
							|  |  |  |     # Tests for sample standard deviation. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.stdev | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_single_value(self): | 
					
						
							|  |  |  |         # Override method from VarianceStdevMixin. | 
					
						
							|  |  |  |         for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')): | 
					
						
							|  |  |  |             self.assertRaises(statistics.StatisticsError, self.func, [x]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_compare_to_variance(self): | 
					
						
							|  |  |  |         # Test that stdev is, in fact, the square root of variance. | 
					
						
							|  |  |  |         data = [random.uniform(-2, 9) for _ in range(1000)] | 
					
						
							|  |  |  |         expected = math.sqrt(statistics.variance(data)) | 
					
						
							| 
									
										
										
										
											2021-11-26 22:54:50 -07:00
										 |  |  |         self.assertAlmostEqual(self.func(data), expected) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-06-13 15:55:52 -07:00
										 |  |  |     def test_center_not_at_mean(self): | 
					
						
							|  |  |  |         data = (1.0, 2.0) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data, xbar=2.0), 1.0) | 
					
						
							| 
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-07 09:20:03 -07:00
										 |  |  | class TestGeometricMean(unittest.TestCase): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_basics(self): | 
					
						
							|  |  |  |         geometric_mean = statistics.geometric_mean | 
					
						
							|  |  |  |         self.assertAlmostEqual(geometric_mean([54, 24, 36]), 36.0) | 
					
						
							|  |  |  |         self.assertAlmostEqual(geometric_mean([4.0, 9.0]), 6.0) | 
					
						
							|  |  |  |         self.assertAlmostEqual(geometric_mean([17.625]), 17.625) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         random.seed(86753095551212) | 
					
						
							|  |  |  |         for rng in [ | 
					
						
							|  |  |  |                 range(1, 100), | 
					
						
							|  |  |  |                 range(1, 1_000), | 
					
						
							|  |  |  |                 range(1, 10_000), | 
					
						
							|  |  |  |                 range(500, 10_000, 3), | 
					
						
							|  |  |  |                 range(10_000, 500, -3), | 
					
						
							|  |  |  |                 [12, 17, 13, 5, 120, 7], | 
					
						
							|  |  |  |                 [random.expovariate(50.0) for i in range(1_000)], | 
					
						
							|  |  |  |                 [random.lognormvariate(20.0, 3.0) for i in range(2_000)], | 
					
						
							|  |  |  |                 [random.triangular(2000, 3000, 2200) for i in range(3_000)], | 
					
						
							|  |  |  |             ]: | 
					
						
							|  |  |  |             gm_decimal = math.prod(map(Decimal, rng)) ** (Decimal(1) / len(rng)) | 
					
						
							|  |  |  |             gm_float = geometric_mean(rng) | 
					
						
							|  |  |  |             self.assertTrue(math.isclose(gm_float, float(gm_decimal))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_various_input_types(self): | 
					
						
							|  |  |  |         geometric_mean = statistics.geometric_mean | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         # https://www.wolframalpha.com/input/?i=geometric+mean+3.5,+4.0,+5.25 | 
					
						
							|  |  |  |         expected_mean = 4.18886 | 
					
						
							|  |  |  |         for data, kind in [ | 
					
						
							|  |  |  |             ([3.5, 4.0, 5.25], 'floats'), | 
					
						
							|  |  |  |             ([D('3.5'), D('4.0'), D('5.25')], 'decimals'), | 
					
						
							|  |  |  |             ([F(7, 2), F(4, 1), F(21, 4)], 'fractions'), | 
					
						
							|  |  |  |             ([3.5, 4, F(21, 4)], 'mixed types'), | 
					
						
							|  |  |  |             ((3.5, 4.0, 5.25), 'tuple'), | 
					
						
							|  |  |  |             (iter([3.5, 4.0, 5.25]), 'iterator'), | 
					
						
							|  |  |  |                 ]: | 
					
						
							|  |  |  |             actual_mean = geometric_mean(data) | 
					
						
							|  |  |  |             self.assertIs(type(actual_mean), float, kind) | 
					
						
							|  |  |  |             self.assertAlmostEqual(actual_mean, expected_mean, places=5) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_big_and_small(self): | 
					
						
							|  |  |  |         geometric_mean = statistics.geometric_mean | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Avoid overflow to infinity | 
					
						
							|  |  |  |         large = 2.0 ** 1000 | 
					
						
							|  |  |  |         big_gm = geometric_mean([54.0 * large, 24.0 * large, 36.0 * large]) | 
					
						
							|  |  |  |         self.assertTrue(math.isclose(big_gm, 36.0 * large)) | 
					
						
							|  |  |  |         self.assertFalse(math.isinf(big_gm)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Avoid underflow to zero | 
					
						
							|  |  |  |         small = 2.0 ** -1000 | 
					
						
							|  |  |  |         small_gm = geometric_mean([54.0 * small, 24.0 * small, 36.0 * small]) | 
					
						
							|  |  |  |         self.assertTrue(math.isclose(small_gm, 36.0 * small)) | 
					
						
							|  |  |  |         self.assertNotEqual(small_gm, 0.0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_error_cases(self): | 
					
						
							|  |  |  |         geometric_mean = statistics.geometric_mean | 
					
						
							|  |  |  |         StatisticsError = statistics.StatisticsError | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             geometric_mean([])                      # empty input | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             geometric_mean([3.5, -4.0, 5.25])       # negative input | 
					
						
							| 
									
										
										
										
											2023-12-08 12:05:56 -06:00
										 |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             geometric_mean([0.0, -4.0, 5.25])       # negative input with zero | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             geometric_mean([3.5, -math.inf, 5.25])  # negative infinity | 
					
						
							| 
									
										
										
										
											2019-04-07 09:20:03 -07:00
										 |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             geometric_mean(iter([]))                # empty iterator | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             geometric_mean(None)                    # non-iterable input | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             geometric_mean([10, None, 20])          # non-numeric input | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             geometric_mean()                        # missing data argument | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             geometric_mean([10, 20, 60], 70)        # too many arguments | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_special_values(self): | 
					
						
							|  |  |  |         # Rules for special values are inherited from math.fsum() | 
					
						
							|  |  |  |         geometric_mean = statistics.geometric_mean | 
					
						
							|  |  |  |         NaN = float('Nan') | 
					
						
							|  |  |  |         Inf = float('Inf') | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(geometric_mean([10, NaN])), 'nan') | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(geometric_mean([NaN, Inf])), 'nan and infinity') | 
					
						
							|  |  |  |         self.assertTrue(math.isinf(geometric_mean([10, Inf])), 'infinity') | 
					
						
							|  |  |  |         with self.assertRaises(ValueError): | 
					
						
							|  |  |  |             geometric_mean([Inf, -Inf]) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-12-08 12:05:56 -06:00
										 |  |  |         # Cases with zero | 
					
						
							|  |  |  |         self.assertEqual(geometric_mean([3, 0.0, 5]), 0.0)         # Any zero gives a zero | 
					
						
							|  |  |  |         self.assertEqual(geometric_mean([3, -0.0, 5]), 0.0)        # Negative zero allowed | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(geometric_mean([0, NaN])))      # NaN beats zero | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(geometric_mean([0, Inf])))      # Because 0.0 * Inf -> NaN | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-08-20 14:08:21 +01:00
										 |  |  |     def test_mixed_int_and_float(self): | 
					
						
							|  |  |  |         # Regression test for b.p.o. issue #28327 | 
					
						
							|  |  |  |         geometric_mean = statistics.geometric_mean | 
					
						
							|  |  |  |         expected_mean = 3.80675409583932 | 
					
						
							|  |  |  |         values = [ | 
					
						
							|  |  |  |             [2, 3, 5, 7], | 
					
						
							|  |  |  |             [2, 3, 5, 7.0], | 
					
						
							|  |  |  |             [2, 3, 5.0, 7.0], | 
					
						
							|  |  |  |             [2, 3.0, 5.0, 7.0], | 
					
						
							|  |  |  |             [2.0, 3.0, 5.0, 7.0], | 
					
						
							|  |  |  |         ] | 
					
						
							|  |  |  |         for v in values: | 
					
						
							|  |  |  |             with self.subTest(v=v): | 
					
						
							|  |  |  |                 actual_mean = geometric_mean(v) | 
					
						
							|  |  |  |                 self.assertAlmostEqual(actual_mean, expected_mean, places=5) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | class TestQuantiles(unittest.TestCase): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_specific_cases(self): | 
					
						
							|  |  |  |         # Match results computed by hand and cross-checked | 
					
						
							|  |  |  |         # against the PERCENTILE.EXC function in MS Excel. | 
					
						
							|  |  |  |         quantiles = statistics.quantiles | 
					
						
							|  |  |  |         data = [120, 200, 250, 320, 350] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         for n, expected in [ | 
					
						
							|  |  |  |             (1, []), | 
					
						
							|  |  |  |             (2, [250.0]), | 
					
						
							|  |  |  |             (3, [200.0, 320.0]), | 
					
						
							|  |  |  |             (4, [160.0, 250.0, 335.0]), | 
					
						
							|  |  |  |             (5, [136.0, 220.0, 292.0, 344.0]), | 
					
						
							|  |  |  |             (6, [120.0, 200.0, 250.0, 320.0, 350.0]), | 
					
						
							|  |  |  |             (8, [100.0, 160.0, 212.5, 250.0, 302.5, 335.0, 357.5]), | 
					
						
							|  |  |  |             (10, [88.0, 136.0, 184.0, 220.0, 250.0, 292.0, 326.0, 344.0, 362.0]), | 
					
						
							|  |  |  |             (12, [80.0, 120.0, 160.0, 200.0, 225.0, 250.0, 285.0, 320.0, 335.0, | 
					
						
							|  |  |  |                   350.0, 365.0]), | 
					
						
							|  |  |  |             (15, [72.0, 104.0, 136.0, 168.0, 200.0, 220.0, 240.0, 264.0, 292.0, | 
					
						
							|  |  |  |                   320.0, 332.0, 344.0, 356.0, 368.0]), | 
					
						
							|  |  |  |                 ]: | 
					
						
							|  |  |  |             self.assertEqual(expected, quantiles(data, n=n)) | 
					
						
							|  |  |  |             self.assertEqual(len(quantiles(data, n=n)), n - 1) | 
					
						
							| 
									
										
										
										
											2019-04-28 21:31:55 -07:00
										 |  |  |             # Preserve datatype when possible | 
					
						
							|  |  |  |             for datatype in (float, Decimal, Fraction): | 
					
						
							|  |  |  |                 result = quantiles(map(datatype, data), n=n) | 
					
						
							|  |  |  |                 self.assertTrue(all(type(x) == datatype) for x in result) | 
					
						
							|  |  |  |                 self.assertEqual(result, list(map(datatype, expected))) | 
					
						
							| 
									
										
										
										
											2019-04-29 23:47:33 -07:00
										 |  |  |             # Quantiles should be idempotent | 
					
						
							|  |  |  |             if len(expected) >= 2: | 
					
						
							|  |  |  |                 self.assertEqual(quantiles(expected, n=n), expected) | 
					
						
							| 
									
										
										
										
											2019-05-18 10:18:29 -07:00
										 |  |  |             # Cross-check against method='inclusive' which should give | 
					
						
							|  |  |  |             # the same result after adding in minimum and maximum values | 
					
						
							|  |  |  |             # extrapolated from the two lowest and two highest points. | 
					
						
							|  |  |  |             sdata = sorted(data) | 
					
						
							|  |  |  |             lo = 2 * sdata[0] - sdata[1] | 
					
						
							|  |  |  |             hi = 2 * sdata[-1] - sdata[-2] | 
					
						
							|  |  |  |             padded_data = data + [lo, hi] | 
					
						
							|  |  |  |             self.assertEqual( | 
					
						
							|  |  |  |                 quantiles(data, n=n), | 
					
						
							|  |  |  |                 quantiles(padded_data, n=n, method='inclusive'), | 
					
						
							|  |  |  |                 (n, data), | 
					
						
							|  |  |  |             ) | 
					
						
							| 
									
										
										
										
											2019-12-10 04:42:17 +11:00
										 |  |  |             # Invariant under translation and scaling | 
					
						
							| 
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 |  |  |             def f(x): | 
					
						
							|  |  |  |                 return 3.5 * x - 1234.675 | 
					
						
							|  |  |  |             exp = list(map(f, expected)) | 
					
						
							|  |  |  |             act = quantiles(map(f, data), n=n) | 
					
						
							|  |  |  |             self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act))) | 
					
						
							| 
									
										
										
										
											2019-05-18 10:18:29 -07:00
										 |  |  |         # Q2 agrees with median() | 
					
						
							|  |  |  |         for k in range(2, 60): | 
					
						
							|  |  |  |             data = random.choices(range(100), k=k) | 
					
						
							|  |  |  |             q1, q2, q3 = quantiles(data) | 
					
						
							|  |  |  |             self.assertEqual(q2, statistics.median(data)) | 
					
						
							| 
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_specific_cases_inclusive(self): | 
					
						
							|  |  |  |         # Match results computed by hand and cross-checked | 
					
						
							|  |  |  |         # against the PERCENTILE.INC function in MS Excel | 
					
						
							| 
									
										
										
										
											2019-05-02 23:50:59 +05:30
										 |  |  |         # and against the quantile() function in SciPy. | 
					
						
							| 
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 |  |  |         quantiles = statistics.quantiles | 
					
						
							|  |  |  |         data = [100, 200, 400, 800] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         for n, expected in [ | 
					
						
							|  |  |  |             (1, []), | 
					
						
							|  |  |  |             (2, [300.0]), | 
					
						
							|  |  |  |             (3, [200.0, 400.0]), | 
					
						
							|  |  |  |             (4, [175.0, 300.0, 500.0]), | 
					
						
							|  |  |  |             (5, [160.0, 240.0, 360.0, 560.0]), | 
					
						
							|  |  |  |             (6, [150.0, 200.0, 300.0, 400.0, 600.0]), | 
					
						
							|  |  |  |             (8, [137.5, 175, 225.0, 300.0, 375.0, 500.0,650.0]), | 
					
						
							|  |  |  |             (10, [130.0, 160.0, 190.0, 240.0, 300.0, 360.0, 440.0, 560.0, 680.0]), | 
					
						
							|  |  |  |             (12, [125.0, 150.0, 175.0, 200.0, 250.0, 300.0, 350.0, 400.0, | 
					
						
							|  |  |  |                   500.0, 600.0, 700.0]), | 
					
						
							|  |  |  |             (15, [120.0, 140.0, 160.0, 180.0, 200.0, 240.0, 280.0, 320.0, 360.0, | 
					
						
							|  |  |  |                   400.0, 480.0, 560.0, 640.0, 720.0]), | 
					
						
							|  |  |  |                 ]: | 
					
						
							|  |  |  |             self.assertEqual(expected, quantiles(data, n=n, method="inclusive")) | 
					
						
							|  |  |  |             self.assertEqual(len(quantiles(data, n=n, method="inclusive")), n - 1) | 
					
						
							| 
									
										
										
										
											2019-04-28 21:31:55 -07:00
										 |  |  |             # Preserve datatype when possible | 
					
						
							|  |  |  |             for datatype in (float, Decimal, Fraction): | 
					
						
							|  |  |  |                 result = quantiles(map(datatype, data), n=n, method="inclusive") | 
					
						
							|  |  |  |                 self.assertTrue(all(type(x) == datatype) for x in result) | 
					
						
							|  |  |  |                 self.assertEqual(result, list(map(datatype, expected))) | 
					
						
							| 
									
										
										
										
											2019-12-10 04:42:17 +11:00
										 |  |  |             # Invariant under translation and scaling | 
					
						
							| 
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 |  |  |             def f(x): | 
					
						
							|  |  |  |                 return 3.5 * x - 1234.675 | 
					
						
							|  |  |  |             exp = list(map(f, expected)) | 
					
						
							|  |  |  |             act = quantiles(map(f, data), n=n, method="inclusive") | 
					
						
							|  |  |  |             self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act))) | 
					
						
							| 
									
										
										
										
											2019-05-18 10:18:29 -07:00
										 |  |  |         # Natural deciles | 
					
						
							|  |  |  |         self.assertEqual(quantiles([0, 100], n=10, method='inclusive'), | 
					
						
							|  |  |  |                          [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0]) | 
					
						
							|  |  |  |         self.assertEqual(quantiles(range(0, 101), n=10, method='inclusive'), | 
					
						
							|  |  |  |                          [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0]) | 
					
						
							| 
									
										
										
										
											2019-04-29 23:47:33 -07:00
										 |  |  |         # Whenever n is smaller than the number of data points, running | 
					
						
							|  |  |  |         # method='inclusive' should give the same result as method='exclusive' | 
					
						
							|  |  |  |         # after the two included extreme points are removed. | 
					
						
							|  |  |  |         data = [random.randrange(10_000) for i in range(501)] | 
					
						
							|  |  |  |         actual = quantiles(data, n=32, method='inclusive') | 
					
						
							|  |  |  |         data.remove(min(data)) | 
					
						
							|  |  |  |         data.remove(max(data)) | 
					
						
							|  |  |  |         expected = quantiles(data, n=32) | 
					
						
							|  |  |  |         self.assertEqual(expected, actual) | 
					
						
							| 
									
										
										
										
											2019-05-18 10:18:29 -07:00
										 |  |  |         # Q2 agrees with median() | 
					
						
							|  |  |  |         for k in range(2, 60): | 
					
						
							|  |  |  |             data = random.choices(range(100), k=k) | 
					
						
							|  |  |  |             q1, q2, q3 = quantiles(data, method='inclusive') | 
					
						
							|  |  |  |             self.assertEqual(q2, statistics.median(data)) | 
					
						
							| 
									
										
										
										
											2023-09-30 23:35:54 -05:00
										 |  |  |         # Base case with a single data point:  When estimating quantiles from | 
					
						
							|  |  |  |         # a sample, we want to be able to add one sample point at a time, | 
					
						
							|  |  |  |         # getting increasingly better estimates. | 
					
						
							|  |  |  |         self.assertEqual(quantiles([10], n=4), [10.0, 10.0, 10.0]) | 
					
						
							|  |  |  |         self.assertEqual(quantiles([10], n=4, method='exclusive'), [10.0, 10.0, 10.0]) | 
					
						
							| 
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-28 21:31:55 -07:00
										 |  |  |     def test_equal_inputs(self): | 
					
						
							|  |  |  |         quantiles = statistics.quantiles | 
					
						
							|  |  |  |         for n in range(2, 10): | 
					
						
							|  |  |  |             data = [10.0] * n | 
					
						
							|  |  |  |             self.assertEqual(quantiles(data), [10.0, 10.0, 10.0]) | 
					
						
							|  |  |  |             self.assertEqual(quantiles(data, method='inclusive'), | 
					
						
							|  |  |  |                             [10.0, 10.0, 10.0]) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 |  |  |     def test_equal_sized_groups(self): | 
					
						
							|  |  |  |         quantiles = statistics.quantiles | 
					
						
							|  |  |  |         total = 10_000 | 
					
						
							|  |  |  |         data = [random.expovariate(0.2) for i in range(total)] | 
					
						
							|  |  |  |         while len(set(data)) != total: | 
					
						
							|  |  |  |             data.append(random.expovariate(0.2)) | 
					
						
							|  |  |  |         data.sort() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Cases where the group size exactly divides the total | 
					
						
							|  |  |  |         for n in (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000): | 
					
						
							|  |  |  |             group_size = total // n | 
					
						
							|  |  |  |             self.assertEqual( | 
					
						
							|  |  |  |                 [bisect.bisect(data, q) for q in quantiles(data, n=n)], | 
					
						
							|  |  |  |                 list(range(group_size, total, group_size))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # When the group sizes can't be exactly equal, they should | 
					
						
							|  |  |  |         # differ by no more than one | 
					
						
							|  |  |  |         for n in (13, 19, 59, 109, 211, 571, 1019, 1907, 5261, 9769): | 
					
						
							|  |  |  |             group_sizes = {total // n, total // n + 1} | 
					
						
							|  |  |  |             pos = [bisect.bisect(data, q) for q in quantiles(data, n=n)] | 
					
						
							|  |  |  |             sizes = {q - p for p, q in zip(pos, pos[1:])} | 
					
						
							|  |  |  |             self.assertTrue(sizes <= group_sizes) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_error_cases(self): | 
					
						
							|  |  |  |         quantiles = statistics.quantiles | 
					
						
							|  |  |  |         StatisticsError = statistics.StatisticsError | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             quantiles()                         # Missing arguments | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             quantiles([10, 20, 30], 13, n=4)    # Too many arguments | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             quantiles([10, 20, 30], 4)          # n is a positional argument | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             quantiles([10, 20, 30], n=0)        # n is zero | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							|  |  |  |             quantiles([10, 20, 30], n=-1)       # n is negative | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             quantiles([10, 20, 30], n=1.5)      # n is not an integer | 
					
						
							|  |  |  |         with self.assertRaises(ValueError): | 
					
						
							|  |  |  |             quantiles([10, 20, 30], method='X') # method is unknown | 
					
						
							|  |  |  |         with self.assertRaises(StatisticsError): | 
					
						
							| 
									
										
										
										
											2023-09-30 23:35:54 -05:00
										 |  |  |             quantiles([], n=4)                  # not enough data points | 
					
						
							| 
									
										
										
										
											2019-04-23 00:06:35 -07:00
										 |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             quantiles([10, None, 30], n=4)      # data is non-numeric | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 |  |  | class TestBivariateStatistics(unittest.TestCase): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_unequal_size_error(self): | 
					
						
							|  |  |  |         for x, y in [ | 
					
						
							|  |  |  |             ([1, 2, 3], [1, 2]), | 
					
						
							|  |  |  |             ([1, 2], [1, 2, 3]), | 
					
						
							|  |  |  |         ]: | 
					
						
							|  |  |  |             with self.assertRaises(statistics.StatisticsError): | 
					
						
							|  |  |  |                 statistics.covariance(x, y) | 
					
						
							|  |  |  |             with self.assertRaises(statistics.StatisticsError): | 
					
						
							|  |  |  |                 statistics.correlation(x, y) | 
					
						
							|  |  |  |             with self.assertRaises(statistics.StatisticsError): | 
					
						
							|  |  |  |                 statistics.linear_regression(x, y) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_small_sample_error(self): | 
					
						
							|  |  |  |         for x, y in [ | 
					
						
							|  |  |  |             ([], []), | 
					
						
							|  |  |  |             ([], [1, 2,]), | 
					
						
							|  |  |  |             ([1, 2,], []), | 
					
						
							|  |  |  |             ([1,], [1,]), | 
					
						
							|  |  |  |             ([1,], [1, 2,]), | 
					
						
							|  |  |  |             ([1, 2,], [1,]), | 
					
						
							|  |  |  |         ]: | 
					
						
							|  |  |  |             with self.assertRaises(statistics.StatisticsError): | 
					
						
							|  |  |  |                 statistics.covariance(x, y) | 
					
						
							|  |  |  |             with self.assertRaises(statistics.StatisticsError): | 
					
						
							|  |  |  |                 statistics.correlation(x, y) | 
					
						
							|  |  |  |             with self.assertRaises(statistics.StatisticsError): | 
					
						
							|  |  |  |                 statistics.linear_regression(x, y) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestCorrelationAndCovariance(unittest.TestCase): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_results(self): | 
					
						
							|  |  |  |         for x, y, result in [ | 
					
						
							|  |  |  |             ([1, 2, 3], [1, 2, 3], 1), | 
					
						
							|  |  |  |             ([1, 2, 3], [-1, -2, -3], -1), | 
					
						
							|  |  |  |             ([1, 2, 3], [3, 2, 1], -1), | 
					
						
							|  |  |  |             ([1, 2, 3], [1, 2, 1], 0), | 
					
						
							|  |  |  |             ([1, 2, 3], [1, 3, 2], 0.5), | 
					
						
							|  |  |  |         ]: | 
					
						
							|  |  |  |             self.assertAlmostEqual(statistics.correlation(x, y), result) | 
					
						
							|  |  |  |             self.assertAlmostEqual(statistics.covariance(x, y), result) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_different_scales(self): | 
					
						
							|  |  |  |         x = [1, 2, 3] | 
					
						
							|  |  |  |         y = [10, 30, 20] | 
					
						
							|  |  |  |         self.assertAlmostEqual(statistics.correlation(x, y), 0.5) | 
					
						
							|  |  |  |         self.assertAlmostEqual(statistics.covariance(x, y), 5) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         y = [.1, .2, .3] | 
					
						
							|  |  |  |         self.assertAlmostEqual(statistics.correlation(x, y), 1) | 
					
						
							|  |  |  |         self.assertAlmostEqual(statistics.covariance(x, y), 0.1) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-08-11 17:19:19 +01:00
										 |  |  |     def test_sqrtprod_helper_function_fundamentals(self): | 
					
						
							|  |  |  |         # Verify that results are close to sqrt(x * y) | 
					
						
							|  |  |  |         for i in range(100): | 
					
						
							|  |  |  |             x = random.expovariate() | 
					
						
							|  |  |  |             y = random.expovariate() | 
					
						
							|  |  |  |             expected = math.sqrt(x * y) | 
					
						
							|  |  |  |             actual = statistics._sqrtprod(x, y) | 
					
						
							|  |  |  |             with self.subTest(x=x, y=y, expected=expected, actual=actual): | 
					
						
							|  |  |  |                 self.assertAlmostEqual(expected, actual) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         x, y, target = 0.8035720646477457, 0.7957468097636939, 0.7996498651651661 | 
					
						
							|  |  |  |         self.assertEqual(statistics._sqrtprod(x, y), target) | 
					
						
							|  |  |  |         self.assertNotEqual(math.sqrt(x * y), target) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Test that range extremes avoid underflow and overflow | 
					
						
							|  |  |  |         smallest = sys.float_info.min * sys.float_info.epsilon | 
					
						
							|  |  |  |         self.assertEqual(statistics._sqrtprod(smallest, smallest), smallest) | 
					
						
							|  |  |  |         biggest = sys.float_info.max | 
					
						
							|  |  |  |         self.assertEqual(statistics._sqrtprod(biggest, biggest), biggest) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Check special values and the sign of the result | 
					
						
							|  |  |  |         special_values = [0.0, -0.0, 1.0, -1.0, 4.0, -4.0, | 
					
						
							|  |  |  |                           math.nan, -math.nan, math.inf, -math.inf] | 
					
						
							|  |  |  |         for x, y in itertools.product(special_values, repeat=2): | 
					
						
							|  |  |  |             try: | 
					
						
							|  |  |  |                 expected = math.sqrt(x * y) | 
					
						
							|  |  |  |             except ValueError: | 
					
						
							|  |  |  |                 expected = 'ValueError' | 
					
						
							|  |  |  |             try: | 
					
						
							|  |  |  |                 actual = statistics._sqrtprod(x, y) | 
					
						
							|  |  |  |             except ValueError: | 
					
						
							|  |  |  |                 actual = 'ValueError' | 
					
						
							|  |  |  |             with self.subTest(x=x, y=y, expected=expected, actual=actual): | 
					
						
							|  |  |  |                 if isinstance(expected, str) and expected == 'ValueError': | 
					
						
							|  |  |  |                     self.assertEqual(actual, 'ValueError') | 
					
						
							|  |  |  |                     continue | 
					
						
							|  |  |  |                 self.assertIsInstance(actual, float) | 
					
						
							|  |  |  |                 if math.isnan(expected): | 
					
						
							|  |  |  |                     self.assertTrue(math.isnan(actual)) | 
					
						
							|  |  |  |                     continue | 
					
						
							|  |  |  |                 self.assertEqual(actual, expected) | 
					
						
							|  |  |  |                 self.assertEqual(sign(actual), sign(expected)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     @requires_IEEE_754 | 
					
						
							|  |  |  |     @unittest.skipIf(HAVE_DOUBLE_ROUNDING, | 
					
						
							|  |  |  |                      "accuracy not guaranteed on machines with double rounding") | 
					
						
							|  |  |  |     @support.cpython_only    # Allow for a weaker sumprod() implmentation | 
					
						
							|  |  |  |     def test_sqrtprod_helper_function_improved_accuracy(self): | 
					
						
							|  |  |  |         # Test a known example where accuracy is improved | 
					
						
							|  |  |  |         x, y, target = 0.8035720646477457, 0.7957468097636939, 0.7996498651651661 | 
					
						
							|  |  |  |         self.assertEqual(statistics._sqrtprod(x, y), target) | 
					
						
							|  |  |  |         self.assertNotEqual(math.sqrt(x * y), target) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         def reference_value(x: float, y: float) -> float: | 
					
						
							|  |  |  |             x = decimal.Decimal(x) | 
					
						
							|  |  |  |             y = decimal.Decimal(y) | 
					
						
							|  |  |  |             with decimal.localcontext() as ctx: | 
					
						
							|  |  |  |                 ctx.prec = 200 | 
					
						
							|  |  |  |                 return float((x * y).sqrt()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Verify that the new function with improved accuracy | 
					
						
							|  |  |  |         # agrees with a reference value more often than old version. | 
					
						
							|  |  |  |         new_agreements = 0 | 
					
						
							|  |  |  |         old_agreements = 0 | 
					
						
							|  |  |  |         for i in range(10_000): | 
					
						
							|  |  |  |             x = random.expovariate() | 
					
						
							|  |  |  |             y = random.expovariate() | 
					
						
							|  |  |  |             new = statistics._sqrtprod(x, y) | 
					
						
							|  |  |  |             old = math.sqrt(x * y) | 
					
						
							|  |  |  |             ref = reference_value(x, y) | 
					
						
							|  |  |  |             new_agreements += (new == ref) | 
					
						
							|  |  |  |             old_agreements += (old == ref) | 
					
						
							|  |  |  |         self.assertGreater(new_agreements, old_agreements) | 
					
						
							| 
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-08-18 13:48:27 -05:00
										 |  |  |     def test_correlation_spearman(self): | 
					
						
							|  |  |  |         # https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide-2.php | 
					
						
							|  |  |  |         # Compare with: | 
					
						
							|  |  |  |         #     >>> import scipy.stats.mstats | 
					
						
							|  |  |  |         #     >>> scipy.stats.mstats.spearmanr(reading, mathematics) | 
					
						
							|  |  |  |         #     SpearmanrResult(correlation=0.6686960980480712, pvalue=0.03450954165178532) | 
					
						
							|  |  |  |         # And Wolfram Alpha gives: 0.668696 | 
					
						
							|  |  |  |         #     https://www.wolframalpha.com/input?i=SpearmanRho%5B%7B56%2C+75%2C+45%2C+71%2C+61%2C+64%2C+58%2C+80%2C+76%2C+61%7D%2C+%7B66%2C+70%2C+40%2C+60%2C+65%2C+56%2C+59%2C+77%2C+67%2C+63%7D%5D | 
					
						
							|  |  |  |         reading = [56, 75, 45, 71, 61, 64, 58, 80, 76, 61] | 
					
						
							|  |  |  |         mathematics = [66, 70, 40, 60, 65, 56, 59, 77, 67, 63] | 
					
						
							|  |  |  |         self.assertAlmostEqual(statistics.correlation(reading, mathematics, method='ranked'), | 
					
						
							|  |  |  |                                0.6686960980480712) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         with self.assertRaises(ValueError): | 
					
						
							|  |  |  |             statistics.correlation(reading, mathematics, method='bad_method') | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 |  |  | class TestLinearRegression(unittest.TestCase): | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_constant_input_error(self): | 
					
						
							|  |  |  |         x = [1, 1, 1,] | 
					
						
							|  |  |  |         y = [1, 2, 3,] | 
					
						
							|  |  |  |         with self.assertRaises(statistics.StatisticsError): | 
					
						
							|  |  |  |             statistics.linear_regression(x, y) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_results(self): | 
					
						
							|  |  |  |         for x, y, true_intercept, true_slope in [ | 
					
						
							|  |  |  |             ([1, 2, 3], [0, 0, 0], 0, 0), | 
					
						
							|  |  |  |             ([1, 2, 3], [1, 2, 3], 0, 1), | 
					
						
							|  |  |  |             ([1, 2, 3], [100, 100, 100], 100, 0), | 
					
						
							|  |  |  |             ([1, 2, 3], [12, 14, 16], 10, 2), | 
					
						
							|  |  |  |             ([1, 2, 3], [-1, -2, -3], 0, -1), | 
					
						
							|  |  |  |             ([1, 2, 3], [21, 22, 23], 20, 1), | 
					
						
							|  |  |  |             ([1, 2, 3], [5.1, 5.2, 5.3], 5, 0.1), | 
					
						
							|  |  |  |         ]: | 
					
						
							| 
									
										
										
										
											2021-05-24 20:30:58 -04:00
										 |  |  |             slope, intercept = statistics.linear_regression(x, y) | 
					
						
							| 
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 |  |  |             self.assertAlmostEqual(intercept, true_intercept) | 
					
						
							|  |  |  |             self.assertAlmostEqual(slope, true_slope) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-21 08:39:26 -06:00
										 |  |  |     def test_proportional(self): | 
					
						
							|  |  |  |         x = [10, 20, 30, 40] | 
					
						
							|  |  |  |         y = [180, 398, 610, 799] | 
					
						
							|  |  |  |         slope, intercept = statistics.linear_regression(x, y, proportional=True) | 
					
						
							|  |  |  |         self.assertAlmostEqual(slope, 20 + 1/150) | 
					
						
							|  |  |  |         self.assertEqual(intercept, 0.0) | 
					
						
							| 
									
										
										
										
											2021-04-25 13:45:09 +02:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-13 20:06:43 -05:00
										 |  |  |     def test_float_output(self): | 
					
						
							|  |  |  |         x = [Fraction(2, 3), Fraction(3, 4)] | 
					
						
							|  |  |  |         y = [Fraction(4, 5), Fraction(5, 6)] | 
					
						
							|  |  |  |         slope, intercept = statistics.linear_regression(x, y) | 
					
						
							|  |  |  |         self.assertTrue(isinstance(slope, float)) | 
					
						
							|  |  |  |         self.assertTrue(isinstance(intercept, float)) | 
					
						
							|  |  |  |         slope, intercept = statistics.linear_regression(x, y, proportional=True) | 
					
						
							|  |  |  |         self.assertTrue(isinstance(slope, float)) | 
					
						
							|  |  |  |         self.assertTrue(isinstance(intercept, float)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  | class TestNormalDist: | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |     # General note on precision: The pdf(), cdf(), and overlap() methods | 
					
						
							|  |  |  |     # depend on functions in the math libraries that do not make | 
					
						
							|  |  |  |     # explicit accuracy guarantees.  Accordingly, some of the accuracy | 
					
						
							|  |  |  |     # tests below may fail if the underlying math functions are | 
					
						
							|  |  |  |     # inaccurate.  There isn't much we can do about this short of | 
					
						
							|  |  |  |     # implementing our own implementations from scratch. | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |     def test_slots(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         nd = self.module.NormalDist(300, 23) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             vars(nd) | 
					
						
							| 
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 |  |  |         self.assertEqual(tuple(nd.__slots__), ('_mu', '_sigma')) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_instantiation_and_attributes(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         nd = self.module.NormalDist(500, 17) | 
					
						
							| 
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 |  |  |         self.assertEqual(nd.mean, 500) | 
					
						
							|  |  |  |         self.assertEqual(nd.stdev, 17) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         self.assertEqual(nd.variance, 17**2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # default arguments | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         nd = self.module.NormalDist() | 
					
						
							| 
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 |  |  |         self.assertEqual(nd.mean, 0) | 
					
						
							|  |  |  |         self.assertEqual(nd.stdev, 1) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         self.assertEqual(nd.variance, 1**2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # error case: negative sigma | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							|  |  |  |             self.module.NormalDist(500, -10) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |         # verify that subclass type is honored | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         class NewNormalDist(self.module.NormalDist): | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |             pass | 
					
						
							|  |  |  |         nnd = NewNormalDist(200, 5) | 
					
						
							|  |  |  |         self.assertEqual(type(nnd), NewNormalDist) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |     def test_alternative_constructor(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         NormalDist = self.module.NormalDist | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         data = [96, 107, 90, 92, 110] | 
					
						
							|  |  |  |         # list input | 
					
						
							|  |  |  |         self.assertEqual(NormalDist.from_samples(data), NormalDist(99, 9)) | 
					
						
							|  |  |  |         # tuple input | 
					
						
							|  |  |  |         self.assertEqual(NormalDist.from_samples(tuple(data)), NormalDist(99, 9)) | 
					
						
							|  |  |  |         # iterator input | 
					
						
							|  |  |  |         self.assertEqual(NormalDist.from_samples(iter(data)), NormalDist(99, 9)) | 
					
						
							|  |  |  |         # error cases | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |             NormalDist.from_samples([])                      # empty input | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |             NormalDist.from_samples([10])                    # only one input | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |         # verify that subclass type is honored | 
					
						
							|  |  |  |         class NewNormalDist(NormalDist): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         nnd = NewNormalDist.from_samples(data) | 
					
						
							|  |  |  |         self.assertEqual(type(nnd), NewNormalDist) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |     def test_sample_generation(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         NormalDist = self.module.NormalDist | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         mu, sigma = 10_000, 3.0 | 
					
						
							|  |  |  |         X = NormalDist(mu, sigma) | 
					
						
							|  |  |  |         n = 1_000 | 
					
						
							|  |  |  |         data = X.samples(n) | 
					
						
							|  |  |  |         self.assertEqual(len(data), n) | 
					
						
							|  |  |  |         self.assertEqual(set(map(type, data)), {float}) | 
					
						
							|  |  |  |         # mean(data) expected to fall within 8 standard deviations | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         xbar = self.module.mean(data) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         self.assertTrue(mu - sigma*8 <= xbar <= mu + sigma*8) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # verify that seeding makes reproducible sequences | 
					
						
							|  |  |  |         n = 100 | 
					
						
							|  |  |  |         data1 = X.samples(n, seed='happiness and joy') | 
					
						
							|  |  |  |         data2 = X.samples(n, seed='trouble and despair') | 
					
						
							|  |  |  |         data3 = X.samples(n, seed='happiness and joy') | 
					
						
							|  |  |  |         data4 = X.samples(n, seed='trouble and despair') | 
					
						
							|  |  |  |         self.assertEqual(data1, data3) | 
					
						
							|  |  |  |         self.assertEqual(data2, data4) | 
					
						
							|  |  |  |         self.assertNotEqual(data1, data2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_pdf(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         NormalDist = self.module.NormalDist | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         X = NormalDist(100, 15) | 
					
						
							|  |  |  |         # Verify peak around center | 
					
						
							|  |  |  |         self.assertLess(X.pdf(99), X.pdf(100)) | 
					
						
							|  |  |  |         self.assertLess(X.pdf(101), X.pdf(100)) | 
					
						
							|  |  |  |         # Test symmetry | 
					
						
							| 
									
										
										
										
											2019-03-06 02:31:14 -08:00
										 |  |  |         for i in range(50): | 
					
						
							|  |  |  |             self.assertAlmostEqual(X.pdf(100 - i), X.pdf(100 + i)) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         # Test vs CDF | 
					
						
							|  |  |  |         dx = 2.0 ** -10 | 
					
						
							|  |  |  |         for x in range(90, 111): | 
					
						
							|  |  |  |             est_pdf = (X.cdf(x + dx) - X.cdf(x)) / dx | 
					
						
							|  |  |  |             self.assertAlmostEqual(X.pdf(x), est_pdf, places=4) | 
					
						
							| 
									
										
										
										
											2019-03-06 02:31:14 -08:00
										 |  |  |         # Test vs table of known values -- CRC 26th Edition | 
					
						
							|  |  |  |         Z = NormalDist() | 
					
						
							|  |  |  |         for x, px in enumerate([ | 
					
						
							|  |  |  |             0.3989, 0.3989, 0.3989, 0.3988, 0.3986, | 
					
						
							|  |  |  |             0.3984, 0.3982, 0.3980, 0.3977, 0.3973, | 
					
						
							|  |  |  |             0.3970, 0.3965, 0.3961, 0.3956, 0.3951, | 
					
						
							|  |  |  |             0.3945, 0.3939, 0.3932, 0.3925, 0.3918, | 
					
						
							|  |  |  |             0.3910, 0.3902, 0.3894, 0.3885, 0.3876, | 
					
						
							|  |  |  |             0.3867, 0.3857, 0.3847, 0.3836, 0.3825, | 
					
						
							|  |  |  |             0.3814, 0.3802, 0.3790, 0.3778, 0.3765, | 
					
						
							|  |  |  |             0.3752, 0.3739, 0.3725, 0.3712, 0.3697, | 
					
						
							|  |  |  |             0.3683, 0.3668, 0.3653, 0.3637, 0.3621, | 
					
						
							|  |  |  |             0.3605, 0.3589, 0.3572, 0.3555, 0.3538, | 
					
						
							|  |  |  |         ]): | 
					
						
							|  |  |  |             self.assertAlmostEqual(Z.pdf(x / 100.0), px, places=4) | 
					
						
							| 
									
										
										
										
											2019-03-06 23:23:55 -08:00
										 |  |  |             self.assertAlmostEqual(Z.pdf(-x / 100.0), px, places=4) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         # Error case: variance is zero | 
					
						
							|  |  |  |         Y = NormalDist(100, 0) | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |             Y.pdf(90) | 
					
						
							| 
									
										
										
										
											2019-02-28 09:16:25 -08:00
										 |  |  |         # Special values | 
					
						
							|  |  |  |         self.assertEqual(X.pdf(float('-Inf')), 0.0) | 
					
						
							|  |  |  |         self.assertEqual(X.pdf(float('Inf')), 0.0) | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(X.pdf(float('NaN')))) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_cdf(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         NormalDist = self.module.NormalDist | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         X = NormalDist(100, 15) | 
					
						
							|  |  |  |         cdfs = [X.cdf(x) for x in range(1, 200)] | 
					
						
							|  |  |  |         self.assertEqual(set(map(type, cdfs)), {float}) | 
					
						
							|  |  |  |         # Verify montonic | 
					
						
							|  |  |  |         self.assertEqual(cdfs, sorted(cdfs)) | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |         # Verify center (should be exact) | 
					
						
							|  |  |  |         self.assertEqual(X.cdf(100), 0.50) | 
					
						
							| 
									
										
										
										
											2019-03-06 02:31:14 -08:00
										 |  |  |         # Check against a table of known values | 
					
						
							|  |  |  |         # https://en.wikipedia.org/wiki/Standard_normal_table#Cumulative | 
					
						
							|  |  |  |         Z = NormalDist() | 
					
						
							|  |  |  |         for z, cum_prob in [ | 
					
						
							|  |  |  |             (0.00, 0.50000), (0.01, 0.50399), (0.02, 0.50798), | 
					
						
							|  |  |  |             (0.14, 0.55567), (0.29, 0.61409), (0.33, 0.62930), | 
					
						
							|  |  |  |             (0.54, 0.70540), (0.60, 0.72575), (1.17, 0.87900), | 
					
						
							|  |  |  |             (1.60, 0.94520), (2.05, 0.97982), (2.89, 0.99807), | 
					
						
							|  |  |  |             (3.52, 0.99978), (3.98, 0.99997), (4.07, 0.99998), | 
					
						
							|  |  |  |             ]: | 
					
						
							|  |  |  |             self.assertAlmostEqual(Z.cdf(z), cum_prob, places=5) | 
					
						
							|  |  |  |             self.assertAlmostEqual(Z.cdf(-z), 1.0 - cum_prob, places=5) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         # Error case: variance is zero | 
					
						
							|  |  |  |         Y = NormalDist(100, 0) | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |             Y.cdf(90) | 
					
						
							| 
									
										
										
										
											2019-02-28 09:16:25 -08:00
										 |  |  |         # Special values | 
					
						
							|  |  |  |         self.assertEqual(X.cdf(float('-Inf')), 0.0) | 
					
						
							|  |  |  |         self.assertEqual(X.cdf(float('Inf')), 1.0) | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(X.cdf(float('NaN')))) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-07-30 11:08:18 -07:00
										 |  |  |     @support.skip_if_pgo_task | 
					
						
							| 
									
										
										
										
											2023-09-02 07:45:34 +03:00
										 |  |  |     @support.requires_resource('cpu') | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |     def test_inv_cdf(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         NormalDist = self.module.NormalDist | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # Center case should be exact. | 
					
						
							|  |  |  |         iq = NormalDist(100, 15) | 
					
						
							|  |  |  |         self.assertEqual(iq.inv_cdf(0.50), iq.mean) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Test versus a published table of known percentage points. | 
					
						
							|  |  |  |         # See the second table at the bottom of the page here: | 
					
						
							|  |  |  |         # http://people.bath.ac.uk/masss/tables/normaltable.pdf | 
					
						
							|  |  |  |         Z = NormalDist() | 
					
						
							|  |  |  |         pp = {5.0: (0.000, 1.645, 2.576, 3.291, 3.891, | 
					
						
							|  |  |  |                     4.417, 4.892, 5.327, 5.731, 6.109), | 
					
						
							|  |  |  |               2.5: (0.674, 1.960, 2.807, 3.481, 4.056, | 
					
						
							|  |  |  |                     4.565, 5.026, 5.451, 5.847, 6.219), | 
					
						
							|  |  |  |               1.0: (1.282, 2.326, 3.090, 3.719, 4.265, | 
					
						
							|  |  |  |                     4.753, 5.199, 5.612, 5.998, 6.361)} | 
					
						
							|  |  |  |         for base, row in pp.items(): | 
					
						
							|  |  |  |             for exp, x in enumerate(row, start=1): | 
					
						
							|  |  |  |                 p = base * 10.0 ** (-exp) | 
					
						
							|  |  |  |                 self.assertAlmostEqual(-Z.inv_cdf(p), x, places=3) | 
					
						
							|  |  |  |                 p = 1.0 - p | 
					
						
							|  |  |  |                 self.assertAlmostEqual(Z.inv_cdf(p), x, places=3) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Match published example for MS Excel | 
					
						
							|  |  |  |         # https://support.office.com/en-us/article/norm-inv-function-54b30935-fee7-493c-bedb-2278a9db7e13 | 
					
						
							|  |  |  |         self.assertAlmostEqual(NormalDist(40, 1.5).inv_cdf(0.908789), 42.000002) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # One million equally spaced probabilities | 
					
						
							|  |  |  |         n = 2**20 | 
					
						
							|  |  |  |         for p in range(1, n): | 
					
						
							|  |  |  |             p /= n | 
					
						
							|  |  |  |             self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # One hundred ever smaller probabilities to test tails out to | 
					
						
							|  |  |  |         # extreme probabilities: 1 / 2**50 and (2**50-1) / 2 ** 50 | 
					
						
							|  |  |  |         for e in range(1, 51): | 
					
						
							|  |  |  |             p = 2.0 ** (-e) | 
					
						
							|  |  |  |             self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p) | 
					
						
							|  |  |  |             p = 1.0 - p | 
					
						
							|  |  |  |             self.assertAlmostEqual(iq.cdf(iq.inv_cdf(p)), p) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |         # Now apply cdf() first.  Near the tails, the round-trip loses | 
					
						
							|  |  |  |         # precision and is ill-conditioned (small changes in the inputs | 
					
						
							|  |  |  |         # give large changes in the output), so only check to 5 places. | 
					
						
							|  |  |  |         for x in range(200): | 
					
						
							|  |  |  |             self.assertAlmostEqual(iq.inv_cdf(iq.cdf(x)), x, places=5) | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # Error cases: | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |             iq.inv_cdf(0.0)                         # p is zero | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |             iq.inv_cdf(-0.1)                        # p under zero | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |             iq.inv_cdf(1.0)                         # p is one | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  |             iq.inv_cdf(1.1)                         # p over one | 
					
						
							| 
									
										
										
										
											2022-07-26 02:23:33 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # Supported case: | 
					
						
							|  |  |  |         iq = NormalDist(100, 0)                     # sigma is zero | 
					
						
							|  |  |  |         self.assertEqual(iq.inv_cdf(0.5), 100) | 
					
						
							| 
									
										
										
										
											2019-03-18 20:17:14 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |         # Special values | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(Z.inv_cdf(float('NaN')))) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-09-08 16:57:58 -07:00
										 |  |  |     def test_quantiles(self): | 
					
						
							|  |  |  |         # Quartiles of a standard normal distribution | 
					
						
							|  |  |  |         Z = self.module.NormalDist() | 
					
						
							|  |  |  |         for n, expected in [ | 
					
						
							|  |  |  |             (1, []), | 
					
						
							|  |  |  |             (2, [0.0]), | 
					
						
							|  |  |  |             (3, [-0.4307, 0.4307]), | 
					
						
							|  |  |  |             (4 ,[-0.6745, 0.0, 0.6745]), | 
					
						
							|  |  |  |                 ]: | 
					
						
							|  |  |  |             actual = Z.quantiles(n=n) | 
					
						
							|  |  |  |             self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001) | 
					
						
							|  |  |  |                             for e, a in zip(expected, actual))) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 |  |  |     def test_overlap(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         NormalDist = self.module.NormalDist | 
					
						
							| 
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # Match examples from Imman and Bradley | 
					
						
							|  |  |  |         for X1, X2, published_result in [ | 
					
						
							|  |  |  |                 (NormalDist(0.0, 2.0), NormalDist(1.0, 2.0), 0.80258), | 
					
						
							|  |  |  |                 (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0), 0.60993), | 
					
						
							|  |  |  |             ]: | 
					
						
							|  |  |  |             self.assertAlmostEqual(X1.overlap(X2), published_result, places=4) | 
					
						
							|  |  |  |             self.assertAlmostEqual(X2.overlap(X1), published_result, places=4) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Check against integration of the PDF | 
					
						
							|  |  |  |         def overlap_numeric(X, Y, *, steps=8_192, z=5): | 
					
						
							|  |  |  |             'Numerical integration cross-check for overlap() ' | 
					
						
							|  |  |  |             fsum = math.fsum | 
					
						
							| 
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 |  |  |             center = (X.mean + Y.mean) / 2.0 | 
					
						
							|  |  |  |             width = z * max(X.stdev, Y.stdev) | 
					
						
							| 
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 |  |  |             start = center - width | 
					
						
							|  |  |  |             dx = 2.0 * width / steps | 
					
						
							|  |  |  |             x_arr = [start + i*dx for i in range(steps)] | 
					
						
							|  |  |  |             xp = list(map(X.pdf, x_arr)) | 
					
						
							|  |  |  |             yp = list(map(Y.pdf, x_arr)) | 
					
						
							|  |  |  |             total = max(fsum(xp), fsum(yp)) | 
					
						
							|  |  |  |             return fsum(map(min, xp, yp)) / total | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for X1, X2 in [ | 
					
						
							|  |  |  |                 # Examples from Imman and Bradley | 
					
						
							|  |  |  |                 (NormalDist(0.0, 2.0), NormalDist(1.0, 2.0)), | 
					
						
							|  |  |  |                 (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0)), | 
					
						
							|  |  |  |                 # Example from https://www.rasch.org/rmt/rmt101r.htm | 
					
						
							|  |  |  |                 (NormalDist(0.0, 1.0), NormalDist(1.0, 2.0)), | 
					
						
							|  |  |  |                 # Gender heights from http://www.usablestats.com/lessons/normal | 
					
						
							|  |  |  |                 (NormalDist(70, 4), NormalDist(65, 3.5)), | 
					
						
							|  |  |  |                 # Misc cases with equal standard deviations | 
					
						
							|  |  |  |                 (NormalDist(100, 15), NormalDist(110, 15)), | 
					
						
							|  |  |  |                 (NormalDist(-100, 15), NormalDist(110, 15)), | 
					
						
							|  |  |  |                 (NormalDist(-100, 15), NormalDist(-110, 15)), | 
					
						
							|  |  |  |                 # Misc cases with unequal standard deviations | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |                 (NormalDist(100, 12), NormalDist(100, 15)), | 
					
						
							| 
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 |  |  |                 (NormalDist(100, 12), NormalDist(110, 15)), | 
					
						
							|  |  |  |                 (NormalDist(100, 12), NormalDist(150, 15)), | 
					
						
							|  |  |  |                 (NormalDist(100, 12), NormalDist(150, 35)), | 
					
						
							|  |  |  |                 # Misc cases with small values | 
					
						
							|  |  |  |                 (NormalDist(1.000, 0.002), NormalDist(1.001, 0.003)), | 
					
						
							|  |  |  |                 (NormalDist(1.000, 0.002), NormalDist(1.006, 0.0003)), | 
					
						
							|  |  |  |                 (NormalDist(1.000, 0.002), NormalDist(1.001, 0.099)), | 
					
						
							|  |  |  |             ]: | 
					
						
							|  |  |  |             self.assertAlmostEqual(X1.overlap(X2), overlap_numeric(X1, X2), places=5) | 
					
						
							|  |  |  |             self.assertAlmostEqual(X2.overlap(X1), overlap_numeric(X1, X2), places=5) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Error cases | 
					
						
							|  |  |  |         X = NormalDist() | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             X.overlap()                             # too few arguments | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             X.overlap(X, X)                         # too may arguments | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             X.overlap(None)                         # right operand not a NormalDist | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							| 
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 |  |  |             X.overlap(NormalDist(1, 0))             # right operand sigma is zero | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							| 
									
										
										
										
											2019-03-06 22:59:40 -08:00
										 |  |  |             NormalDist(1, 0).overlap(X)             # left operand sigma is zero | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-04-16 10:25:14 -07:00
										 |  |  |     def test_zscore(self): | 
					
						
							|  |  |  |         NormalDist = self.module.NormalDist | 
					
						
							|  |  |  |         X = NormalDist(100, 15) | 
					
						
							|  |  |  |         self.assertEqual(X.zscore(142), 2.8) | 
					
						
							|  |  |  |         self.assertEqual(X.zscore(58), -2.8) | 
					
						
							|  |  |  |         self.assertEqual(X.zscore(100), 0.0) | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             X.zscore()                              # too few arguments | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             X.zscore(1, 1)                          # too may arguments | 
					
						
							|  |  |  |         with self.assertRaises(TypeError): | 
					
						
							|  |  |  |             X.zscore(None)                          # non-numeric type | 
					
						
							|  |  |  |         with self.assertRaises(self.module.StatisticsError): | 
					
						
							|  |  |  |             NormalDist(1, 0).zscore(100)            # sigma is zero | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-24 11:44:55 -08:00
										 |  |  |     def test_properties(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         X = self.module.NormalDist(100, 15) | 
					
						
							| 
									
										
										
										
											2019-02-24 11:44:55 -08:00
										 |  |  |         self.assertEqual(X.mean, 100) | 
					
						
							| 
									
										
										
										
											2019-09-08 16:57:58 -07:00
										 |  |  |         self.assertEqual(X.median, 100) | 
					
						
							|  |  |  |         self.assertEqual(X.mode, 100) | 
					
						
							| 
									
										
										
										
											2019-02-24 11:44:55 -08:00
										 |  |  |         self.assertEqual(X.stdev, 15) | 
					
						
							|  |  |  |         self.assertEqual(X.variance, 225) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |     def test_same_type_addition_and_subtraction(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         NormalDist = self.module.NormalDist | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         X = NormalDist(100, 12) | 
					
						
							|  |  |  |         Y = NormalDist(40, 5) | 
					
						
							|  |  |  |         self.assertEqual(X + Y, NormalDist(140, 13))        # __add__ | 
					
						
							|  |  |  |         self.assertEqual(X - Y, NormalDist(60, 13))         # __sub__ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_translation_and_scaling(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         NormalDist = self.module.NormalDist | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         X = NormalDist(100, 15) | 
					
						
							|  |  |  |         y = 10 | 
					
						
							|  |  |  |         self.assertEqual(+X, NormalDist(100, 15))           # __pos__ | 
					
						
							|  |  |  |         self.assertEqual(-X, NormalDist(-100, 15))          # __neg__ | 
					
						
							|  |  |  |         self.assertEqual(X + y, NormalDist(110, 15))        # __add__ | 
					
						
							|  |  |  |         self.assertEqual(y + X, NormalDist(110, 15))        # __radd__ | 
					
						
							|  |  |  |         self.assertEqual(X - y, NormalDist(90, 15))         # __sub__ | 
					
						
							|  |  |  |         self.assertEqual(y - X, NormalDist(-90, 15))        # __rsub__ | 
					
						
							|  |  |  |         self.assertEqual(X * y, NormalDist(1000, 150))      # __mul__ | 
					
						
							|  |  |  |         self.assertEqual(y * X, NormalDist(1000, 150))      # __rmul__ | 
					
						
							|  |  |  |         self.assertEqual(X / y, NormalDist(10, 1.5))        # __truediv__ | 
					
						
							| 
									
										
										
										
											2019-03-06 23:23:55 -08:00
										 |  |  |         with self.assertRaises(TypeError):                  # __rtruediv__ | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |             y / X | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |     def test_unary_operations(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         NormalDist = self.module.NormalDist | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |         X = NormalDist(100, 12) | 
					
						
							|  |  |  |         Y = +X | 
					
						
							|  |  |  |         self.assertIsNot(X, Y) | 
					
						
							| 
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 |  |  |         self.assertEqual(X.mean, Y.mean) | 
					
						
							|  |  |  |         self.assertEqual(X.stdev, Y.stdev) | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |         Y = -X | 
					
						
							|  |  |  |         self.assertIsNot(X, Y) | 
					
						
							| 
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 |  |  |         self.assertEqual(X.mean, -Y.mean) | 
					
						
							|  |  |  |         self.assertEqual(X.stdev, Y.stdev) | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |     def test_equality(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         NormalDist = self.module.NormalDist | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         nd1 = NormalDist() | 
					
						
							|  |  |  |         nd2 = NormalDist(2, 4) | 
					
						
							|  |  |  |         nd3 = NormalDist() | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |         nd4 = NormalDist(2, 4) | 
					
						
							| 
									
										
										
										
											2019-10-18 14:20:35 -07:00
										 |  |  |         nd5 = NormalDist(2, 8) | 
					
						
							|  |  |  |         nd6 = NormalDist(8, 4) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         self.assertNotEqual(nd1, nd2) | 
					
						
							|  |  |  |         self.assertEqual(nd1, nd3) | 
					
						
							| 
									
										
										
										
											2019-03-20 13:28:59 -07:00
										 |  |  |         self.assertEqual(nd2, nd4) | 
					
						
							| 
									
										
										
										
											2019-10-18 14:20:35 -07:00
										 |  |  |         self.assertNotEqual(nd2, nd5) | 
					
						
							|  |  |  |         self.assertNotEqual(nd2, nd6) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         # Test NotImplemented when types are different | 
					
						
							|  |  |  |         class A: | 
					
						
							|  |  |  |             def __eq__(self, other): | 
					
						
							|  |  |  |                 return 10 | 
					
						
							|  |  |  |         a = A() | 
					
						
							|  |  |  |         self.assertEqual(nd1.__eq__(a), NotImplemented) | 
					
						
							|  |  |  |         self.assertEqual(nd1 == a, 10) | 
					
						
							|  |  |  |         self.assertEqual(a == nd1, 10) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # All subclasses to compare equal giving the same behavior | 
					
						
							|  |  |  |         # as list, tuple, int, float, complex, str, dict, set, etc. | 
					
						
							|  |  |  |         class SizedNormalDist(NormalDist): | 
					
						
							|  |  |  |             def __init__(self, mu, sigma, n): | 
					
						
							|  |  |  |                 super().__init__(mu, sigma) | 
					
						
							|  |  |  |                 self.n = n | 
					
						
							|  |  |  |         s = SizedNormalDist(100, 15, 57) | 
					
						
							|  |  |  |         nd4 = NormalDist(100, 15) | 
					
						
							|  |  |  |         self.assertEqual(s, nd4) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Don't allow duck type equality because we wouldn't | 
					
						
							|  |  |  |         # want a lognormal distribution to compare equal | 
					
						
							|  |  |  |         # to a normal distribution with the same parameters | 
					
						
							|  |  |  |         class LognormalDist: | 
					
						
							|  |  |  |             def __init__(self, mu, sigma): | 
					
						
							|  |  |  |                 self.mu = mu | 
					
						
							|  |  |  |                 self.sigma = sigma | 
					
						
							|  |  |  |         lnd = LognormalDist(100, 15) | 
					
						
							|  |  |  |         nd = NormalDist(100, 15) | 
					
						
							|  |  |  |         self.assertNotEqual(nd, lnd) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-11-07 05:56:41 +03:00
										 |  |  |     def test_copy(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         nd = self.module.NormalDist(37.5, 5.625) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         nd1 = copy.copy(nd) | 
					
						
							|  |  |  |         self.assertEqual(nd, nd1) | 
					
						
							|  |  |  |         nd2 = copy.deepcopy(nd) | 
					
						
							|  |  |  |         self.assertEqual(nd, nd2) | 
					
						
							| 
									
										
										
										
											2022-11-07 05:56:41 +03:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_pickle(self): | 
					
						
							|  |  |  |         nd = self.module.NormalDist(37.5, 5.625) | 
					
						
							|  |  |  |         for proto in range(pickle.HIGHEST_PROTOCOL + 1): | 
					
						
							|  |  |  |             with self.subTest(proto=proto): | 
					
						
							|  |  |  |                 pickled = pickle.loads(pickle.dumps(nd, protocol=proto)) | 
					
						
							|  |  |  |                 self.assertEqual(nd, pickled) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 |  |  |     def test_hashability(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         ND = self.module.NormalDist | 
					
						
							| 
									
										
										
										
											2019-07-21 00:34:47 -07:00
										 |  |  |         s = {ND(100, 15), ND(100.0, 15.0), ND(100, 10), ND(95, 15), ND(100, 15)} | 
					
						
							|  |  |  |         self.assertEqual(len(s), 3) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |     def test_repr(self): | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  |         nd = self.module.NormalDist(37.5, 5.625) | 
					
						
							| 
									
										
										
										
											2019-02-23 14:44:07 -08:00
										 |  |  |         self.assertEqual(repr(nd), 'NormalDist(mu=37.5, sigma=5.625)') | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-08-25 02:51:20 +09:00
										 |  |  | # Swapping the sys.modules['statistics'] is to solving the | 
					
						
							|  |  |  | # _pickle.PicklingError: | 
					
						
							|  |  |  | # Can't pickle <class 'statistics.NormalDist'>: | 
					
						
							|  |  |  | # it's not the same object as statistics.NormalDist | 
					
						
							|  |  |  | class TestNormalDistPython(unittest.TestCase, TestNormalDist): | 
					
						
							|  |  |  |     module = py_statistics | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         sys.modules['statistics'] = self.module | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def tearDown(self): | 
					
						
							|  |  |  |         sys.modules['statistics'] = statistics | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | @unittest.skipUnless(c_statistics, 'requires _statistics') | 
					
						
							|  |  |  | class TestNormalDistC(unittest.TestCase, TestNormalDist): | 
					
						
							|  |  |  |     module = c_statistics | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         sys.modules['statistics'] = self.module | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def tearDown(self): | 
					
						
							|  |  |  |         sys.modules['statistics'] = statistics | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | # === Run tests === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def load_tests(loader, tests, ignore): | 
					
						
							|  |  |  |     """Used for doctest/unittest integration.""" | 
					
						
							|  |  |  |     tests.addTests(doctest.DocTestSuite()) | 
					
						
							| 
									
										
										
										
											2023-09-07 23:08:55 +03:00
										 |  |  |     tests.addTests(doctest.DocTestSuite(statistics)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |     return tests | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  |     unittest.main() |