| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | """Test suite for statistics module, including helper NumericTestCase and
 | 
					
						
							|  |  |  | approx_equal function. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | """
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import collections | 
					
						
							| 
									
										
										
										
											2017-04-24 09:05:00 +03:00
										 |  |  | import collections.abc | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | import decimal | 
					
						
							|  |  |  | import doctest | 
					
						
							|  |  |  | import math | 
					
						
							|  |  |  | import random | 
					
						
							| 
									
										
										
										
											2013-12-08 18:16:18 +02:00
										 |  |  | import sys | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | import unittest | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from decimal import Decimal | 
					
						
							|  |  |  | from fractions import Fraction | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Module to be tested. | 
					
						
							|  |  |  | import statistics | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # === Helper functions and class === | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  | def sign(x): | 
					
						
							|  |  |  |     """Return -1.0 for negatives, including -0.0, otherwise +1.0.""" | 
					
						
							|  |  |  |     return math.copysign(1, x) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  | def _nan_equal(a, b): | 
					
						
							|  |  |  |     """Return True if a and b are both the same kind of NAN.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> _nan_equal(Decimal('NAN'), Decimal('NAN')) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN')) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> _nan_equal(Decimal('NAN'), Decimal('sNAN')) | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  |     >>> _nan_equal(Decimal(42), Decimal('NAN')) | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> _nan_equal(float('NAN'), float('NAN')) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> _nan_equal(float('NAN'), 0.5) | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> _nan_equal(float('NAN'), Decimal('NAN')) | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     NAN payloads are not compared. | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     if type(a) is not type(b): | 
					
						
							|  |  |  |         return False | 
					
						
							|  |  |  |     if isinstance(a, float): | 
					
						
							|  |  |  |         return math.isnan(a) and math.isnan(b) | 
					
						
							|  |  |  |     aexp = a.as_tuple()[2] | 
					
						
							|  |  |  |     bexp = b.as_tuple()[2] | 
					
						
							|  |  |  |     return (aexp == bexp) and (aexp in ('n', 'N'))  # Both NAN or both sNAN. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | def _calc_errors(actual, expected): | 
					
						
							|  |  |  |     """Return the absolute and relative errors between two numbers.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> _calc_errors(100, 75) | 
					
						
							|  |  |  |     (25, 0.25) | 
					
						
							|  |  |  |     >>> _calc_errors(100, 100) | 
					
						
							|  |  |  |     (0, 0.0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Returns the (absolute error, relative error) between the two arguments. | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     base = max(abs(actual), abs(expected)) | 
					
						
							|  |  |  |     abs_err = abs(actual - expected) | 
					
						
							|  |  |  |     rel_err = abs_err/base if base else float('inf') | 
					
						
							|  |  |  |     return (abs_err, rel_err) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def approx_equal(x, y, tol=1e-12, rel=1e-7): | 
					
						
							|  |  |  |     """approx_equal(x, y [, tol [, rel]]) => True|False
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Return True if numbers x and y are approximately equal, to within some | 
					
						
							|  |  |  |     margin of error, otherwise return False. Numbers which compare equal | 
					
						
							|  |  |  |     will also compare approximately equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     x is approximately equal to y if the difference between them is less than | 
					
						
							|  |  |  |     an absolute error tol or a relative error rel, whichever is bigger. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     If given, both tol and rel must be finite, non-negative numbers. If not | 
					
						
							|  |  |  |     given, default values are tol=1e-12 and rel=1e-7. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0) | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Absolute error is defined as abs(x-y); if that is less than or equal to | 
					
						
							|  |  |  |     tol, x and y are considered approximately equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is | 
					
						
							|  |  |  |     smaller, provided x or y are not zero. If that figure is less than or | 
					
						
							|  |  |  |     equal to rel, x and y are considered approximately equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Complex numbers are not directly supported. If you wish to compare to | 
					
						
							|  |  |  |     complex numbers, extract their real and imaginary parts and compare them | 
					
						
							|  |  |  |     individually. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     NANs always compare unequal, even with themselves. Infinities compare | 
					
						
							|  |  |  |     approximately equal if they have the same sign (both positive or both | 
					
						
							|  |  |  |     negative). Infinities with different signs compare unequal; so do | 
					
						
							|  |  |  |     comparisons of infinities with finite numbers. | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     if tol < 0 or rel < 0: | 
					
						
							|  |  |  |         raise ValueError('error tolerances must be non-negative') | 
					
						
							|  |  |  |     # NANs are never equal to anything, approximately or otherwise. | 
					
						
							|  |  |  |     if math.isnan(x) or math.isnan(y): | 
					
						
							|  |  |  |         return False | 
					
						
							|  |  |  |     # Numbers which compare equal also compare approximately equal. | 
					
						
							|  |  |  |     if x == y: | 
					
						
							|  |  |  |         # This includes the case of two infinities with the same sign. | 
					
						
							|  |  |  |         return True | 
					
						
							|  |  |  |     if math.isinf(x) or math.isinf(y): | 
					
						
							|  |  |  |         # This includes the case of two infinities of opposite sign, or | 
					
						
							|  |  |  |         # one infinity and one finite number. | 
					
						
							|  |  |  |         return False | 
					
						
							|  |  |  |     # Two finite numbers. | 
					
						
							|  |  |  |     actual_error = abs(x - y) | 
					
						
							|  |  |  |     allowed_error = max(tol, rel*max(abs(x), abs(y))) | 
					
						
							|  |  |  |     return actual_error <= allowed_error | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # This class exists only as somewhere to stick a docstring containing | 
					
						
							|  |  |  | # doctests. The following docstring and tests were originally in a separate | 
					
						
							|  |  |  | # module. Now that it has been merged in here, I need somewhere to hang the. | 
					
						
							|  |  |  | # docstring. Ultimately, this class will die, and the information below will | 
					
						
							|  |  |  | # either become redundant, or be moved into more appropriate places. | 
					
						
							|  |  |  | class _DoNothing: | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     When doing numeric work, especially with floats, exact equality is often | 
					
						
							|  |  |  |     not what you want. Due to round-off error, it is often a bad idea to try | 
					
						
							|  |  |  |     to compare floats with equality. Instead the usual procedure is to test | 
					
						
							|  |  |  |     them with some (hopefully small!) allowance for error. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     The ``approx_equal`` function allows you to specify either an absolute | 
					
						
							|  |  |  |     error tolerance, or a relative error, or both. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Absolute error tolerances are simple, but you need to know the magnitude | 
					
						
							|  |  |  |     of the quantities being compared: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> approx_equal(12.345, 12.346, tol=1e-3) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> approx_equal(12.345e6, 12.346e6, tol=1e-3)  # tol is too small. | 
					
						
							|  |  |  |     False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Relative errors are more suitable when the values you are comparing can | 
					
						
							|  |  |  |     vary in magnitude: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> approx_equal(12.345, 12.346, rel=1e-4) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  |     >>> approx_equal(12.345e6, 12.346e6, rel=1e-4) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     but a naive implementation of relative error testing can run into trouble | 
					
						
							|  |  |  |     around zero. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     If you supply both an absolute tolerance and a relative error, the | 
					
						
							|  |  |  |     comparison succeeds if either individual test succeeds: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4) | 
					
						
							|  |  |  |     True | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     pass | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # We prefer this for testing numeric values that may not be exactly equal, | 
					
						
							|  |  |  | # and avoid using TestCase.assertAlmostEqual, because it sucks :-) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class NumericTestCase(unittest.TestCase): | 
					
						
							|  |  |  |     """Unit test class for numeric work.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     This subclasses TestCase. In addition to the standard method | 
					
						
							|  |  |  |     ``TestCase.assertAlmostEqual``,  ``assertApproxEqual`` is provided. | 
					
						
							|  |  |  |     """
 | 
					
						
							|  |  |  |     # By default, we expect exact equality, unless overridden. | 
					
						
							|  |  |  |     tol = rel = 0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def assertApproxEqual( | 
					
						
							|  |  |  |             self, first, second, tol=None, rel=None, msg=None | 
					
						
							|  |  |  |             ): | 
					
						
							|  |  |  |         """Test passes if ``first`` and ``second`` are approximately equal.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         This test passes if ``first`` and ``second`` are equal to | 
					
						
							|  |  |  |         within ``tol``, an absolute error, or ``rel``, a relative error. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         If either ``tol`` or ``rel`` are None or not given, they default to | 
					
						
							|  |  |  |         test attributes of the same name (by default, 0). | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         The objects may be either numbers, or sequences of numbers. Sequences | 
					
						
							|  |  |  |         are tested element-by-element. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         >>> class MyTest(NumericTestCase): | 
					
						
							|  |  |  |         ...     def test_number(self): | 
					
						
							|  |  |  |         ...         x = 1.0/6 | 
					
						
							|  |  |  |         ...         y = sum([x]*6) | 
					
						
							|  |  |  |         ...         self.assertApproxEqual(y, 1.0, tol=1e-15) | 
					
						
							|  |  |  |         ...     def test_sequence(self): | 
					
						
							|  |  |  |         ...         a = [1.001, 1.001e-10, 1.001e10] | 
					
						
							|  |  |  |         ...         b = [1.0, 1e-10, 1e10] | 
					
						
							|  |  |  |         ...         self.assertApproxEqual(a, b, rel=1e-3) | 
					
						
							|  |  |  |         ... | 
					
						
							|  |  |  |         >>> import unittest | 
					
						
							|  |  |  |         >>> from io import StringIO  # Suppress test runner output. | 
					
						
							|  |  |  |         >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest) | 
					
						
							|  |  |  |         >>> unittest.TextTestRunner(stream=StringIO()).run(suite) | 
					
						
							|  |  |  |         <unittest.runner.TextTestResult run=2 errors=0 failures=0> | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         """
 | 
					
						
							|  |  |  |         if tol is None: | 
					
						
							|  |  |  |             tol = self.tol | 
					
						
							|  |  |  |         if rel is None: | 
					
						
							|  |  |  |             rel = self.rel | 
					
						
							|  |  |  |         if ( | 
					
						
							| 
									
										
										
										
											2017-04-24 09:05:00 +03:00
										 |  |  |                 isinstance(first, collections.abc.Sequence) and | 
					
						
							|  |  |  |                 isinstance(second, collections.abc.Sequence) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             ): | 
					
						
							|  |  |  |             check = self._check_approx_seq | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             check = self._check_approx_num | 
					
						
							|  |  |  |         check(first, second, tol, rel, msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def _check_approx_seq(self, first, second, tol, rel, msg): | 
					
						
							|  |  |  |         if len(first) != len(second): | 
					
						
							|  |  |  |             standardMsg = ( | 
					
						
							|  |  |  |                 "sequences differ in length: %d items != %d items" | 
					
						
							|  |  |  |                 % (len(first), len(second)) | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |             msg = self._formatMessage(msg, standardMsg) | 
					
						
							|  |  |  |             raise self.failureException(msg) | 
					
						
							|  |  |  |         for i, (a,e) in enumerate(zip(first, second)): | 
					
						
							|  |  |  |             self._check_approx_num(a, e, tol, rel, msg, i) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def _check_approx_num(self, first, second, tol, rel, msg, idx=None): | 
					
						
							|  |  |  |         if approx_equal(first, second, tol, rel): | 
					
						
							|  |  |  |             # Test passes. Return early, we are done. | 
					
						
							|  |  |  |             return None | 
					
						
							|  |  |  |         # Otherwise we failed. | 
					
						
							|  |  |  |         standardMsg = self._make_std_err_msg(first, second, tol, rel, idx) | 
					
						
							|  |  |  |         msg = self._formatMessage(msg, standardMsg) | 
					
						
							|  |  |  |         raise self.failureException(msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     @staticmethod | 
					
						
							|  |  |  |     def _make_std_err_msg(first, second, tol, rel, idx): | 
					
						
							|  |  |  |         # Create the standard error message for approx_equal failures. | 
					
						
							|  |  |  |         assert first != second | 
					
						
							|  |  |  |         template = ( | 
					
						
							|  |  |  |             '  %r != %r\n' | 
					
						
							|  |  |  |             '  values differ by more than tol=%r and rel=%r\n' | 
					
						
							|  |  |  |             '  -> absolute error = %r\n' | 
					
						
							|  |  |  |             '  -> relative error = %r' | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         if idx is not None: | 
					
						
							|  |  |  |             header = 'numeric sequences first differ at index %d.\n' % idx | 
					
						
							|  |  |  |             template = header + template | 
					
						
							|  |  |  |         # Calculate actual errors: | 
					
						
							|  |  |  |         abs_err, rel_err = _calc_errors(first, second) | 
					
						
							|  |  |  |         return template % (first, second, tol, rel, abs_err, rel_err) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # ======================== | 
					
						
							|  |  |  | # === Test the helpers === | 
					
						
							|  |  |  | # ======================== | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  | class TestSign(unittest.TestCase): | 
					
						
							|  |  |  |     """Test that the helper function sign() works correctly.""" | 
					
						
							|  |  |  |     def testZeroes(self): | 
					
						
							|  |  |  |         # Test that signed zeroes report their sign correctly. | 
					
						
							|  |  |  |         self.assertEqual(sign(0.0), +1) | 
					
						
							|  |  |  |         self.assertEqual(sign(-0.0), -1) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | # --- Tests for approx_equal --- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ApproxEqualSymmetryTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test symmetry of approx_equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_relative_symmetry(self): | 
					
						
							|  |  |  |         # Check that approx_equal treats relative error symmetrically. | 
					
						
							|  |  |  |         # (a-b)/a is usually not equal to (a-b)/b. Ensure that this | 
					
						
							|  |  |  |         # doesn't matter. | 
					
						
							|  |  |  |         # | 
					
						
							|  |  |  |         #   Note: the reason for this test is that an early version | 
					
						
							|  |  |  |         #   of approx_equal was not symmetric. A relative error test | 
					
						
							|  |  |  |         #   would pass, or fail, depending on which value was passed | 
					
						
							|  |  |  |         #   as the first argument. | 
					
						
							|  |  |  |         # | 
					
						
							|  |  |  |         args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)] | 
					
						
							|  |  |  |         args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)] | 
					
						
							|  |  |  |         assert len(args1) == len(args2) | 
					
						
							|  |  |  |         for a, b in zip(args1, args2): | 
					
						
							|  |  |  |             self.do_relative_symmetry(a, b) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_relative_symmetry(self, a, b): | 
					
						
							|  |  |  |         a, b = min(a, b), max(a, b) | 
					
						
							|  |  |  |         assert a < b | 
					
						
							|  |  |  |         delta = b - a  # The absolute difference between the values. | 
					
						
							|  |  |  |         rel_err1, rel_err2 = abs(delta/a), abs(delta/b) | 
					
						
							|  |  |  |         # Choose an error margin halfway between the two. | 
					
						
							|  |  |  |         rel = (rel_err1 + rel_err2)/2 | 
					
						
							|  |  |  |         # Now see that values a and b compare approx equal regardless of | 
					
						
							|  |  |  |         # which is given first. | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(a, b, tol=0, rel=rel)) | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(b, a, tol=0, rel=rel)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_symmetry(self): | 
					
						
							|  |  |  |         # Test that approx_equal(a, b) == approx_equal(b, a) | 
					
						
							|  |  |  |         args = [-23, -2, 5, 107, 93568] | 
					
						
							|  |  |  |         delta = 2 | 
					
						
							| 
									
										
										
										
											2013-11-26 01:32:15 +01:00
										 |  |  |         for a in args: | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             for type_ in (int, float, Decimal, Fraction): | 
					
						
							| 
									
										
										
										
											2013-11-26 01:32:15 +01:00
										 |  |  |                 x = type_(a)*100 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |                 y = x + delta | 
					
						
							|  |  |  |                 r = abs(delta/max(x, y)) | 
					
						
							|  |  |  |                 # There are five cases to check: | 
					
						
							|  |  |  |                 # 1) actual error <= tol, <= rel | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta, rel=r) | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta+1, rel=2*r) | 
					
						
							|  |  |  |                 # 2) actual error > tol, > rel | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta-1, rel=r/2) | 
					
						
							|  |  |  |                 # 3) actual error <= tol, > rel | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta, rel=r/2) | 
					
						
							|  |  |  |                 # 4) actual error > tol, <= rel | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta-1, rel=r) | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=delta-1, rel=2*r) | 
					
						
							|  |  |  |                 # 5) exact equality test | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, x, tol=0, rel=0) | 
					
						
							|  |  |  |                 self.do_symmetry_test(x, y, tol=0, rel=0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_symmetry_test(self, a, b, tol, rel): | 
					
						
							|  |  |  |         template = "approx_equal comparisons don't match for %r" | 
					
						
							|  |  |  |         flag1 = approx_equal(a, b, tol, rel) | 
					
						
							|  |  |  |         flag2 = approx_equal(b, a, tol, rel) | 
					
						
							|  |  |  |         self.assertEqual(flag1, flag2, template.format((a, b, tol, rel))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ApproxEqualExactTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test the approx_equal function with exactly equal values. | 
					
						
							|  |  |  |     # Equal values should compare as approximately equal. | 
					
						
							|  |  |  |     # Test cases for exactly equal values, which should compare approx | 
					
						
							|  |  |  |     # equal regardless of the error tolerances given. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_exactly_equal_test(self, x, tol, rel): | 
					
						
							|  |  |  |         result = approx_equal(x, x, tol=tol, rel=rel) | 
					
						
							|  |  |  |         self.assertTrue(result, 'equality failure for x=%r' % x) | 
					
						
							|  |  |  |         result = approx_equal(-x, -x, tol=tol, rel=rel) | 
					
						
							|  |  |  |         self.assertTrue(result, 'equality failure for x=%r' % -x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_ints(self): | 
					
						
							|  |  |  |         # Test that equal int values are exactly equal. | 
					
						
							|  |  |  |         for n in [42, 19740, 14974, 230, 1795, 700245, 36587]: | 
					
						
							|  |  |  |             self.do_exactly_equal_test(n, 0, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_floats(self): | 
					
						
							|  |  |  |         # Test that equal float values are exactly equal. | 
					
						
							|  |  |  |         for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]: | 
					
						
							|  |  |  |             self.do_exactly_equal_test(x, 0, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_fractions(self): | 
					
						
							|  |  |  |         # Test that equal Fraction values are exactly equal. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]: | 
					
						
							|  |  |  |             self.do_exactly_equal_test(f, 0, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_decimals(self): | 
					
						
							|  |  |  |         # Test that equal Decimal values are exactly equal. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()): | 
					
						
							|  |  |  |             self.do_exactly_equal_test(d, 0, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_absolute(self): | 
					
						
							|  |  |  |         # Test that equal values are exactly equal with an absolute error. | 
					
						
							|  |  |  |         for n in [16, 1013, 1372, 1198, 971, 4]: | 
					
						
							|  |  |  |             # Test as ints. | 
					
						
							|  |  |  |             self.do_exactly_equal_test(n, 0.01, 0) | 
					
						
							|  |  |  |             # Test as floats. | 
					
						
							|  |  |  |             self.do_exactly_equal_test(n/10, 0.01, 0) | 
					
						
							|  |  |  |             # Test as Fractions. | 
					
						
							|  |  |  |             f = Fraction(n, 1234) | 
					
						
							|  |  |  |             self.do_exactly_equal_test(f, 0.01, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_absolute_decimals(self): | 
					
						
							|  |  |  |         # Test equal Decimal values are exactly equal with an absolute error. | 
					
						
							|  |  |  |         self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0) | 
					
						
							|  |  |  |         self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_relative(self): | 
					
						
							|  |  |  |         # Test that equal values are exactly equal with a relative error. | 
					
						
							|  |  |  |         for x in [8347, 101.3, -7910.28, Fraction(5, 21)]: | 
					
						
							|  |  |  |             self.do_exactly_equal_test(x, 0, 0.01) | 
					
						
							|  |  |  |         self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01")) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_equal_both(self): | 
					
						
							|  |  |  |         # Test that equal values are equal when both tol and rel are given. | 
					
						
							|  |  |  |         for x in [41017, 16.742, -813.02, Fraction(3, 8)]: | 
					
						
							|  |  |  |             self.do_exactly_equal_test(x, 0.1, 0.01) | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01")) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ApproxEqualUnequalTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Unequal values should compare unequal with zero error tolerances. | 
					
						
							|  |  |  |     # Test cases for unequal values, with exact equality test. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_exactly_unequal_test(self, x): | 
					
						
							|  |  |  |         for a in (x, -x): | 
					
						
							|  |  |  |             result = approx_equal(a, a+1, tol=0, rel=0) | 
					
						
							|  |  |  |             self.assertFalse(result, 'inequality failure for x=%r' % a) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_unequal_ints(self): | 
					
						
							|  |  |  |         # Test unequal int values are unequal with zero error tolerance. | 
					
						
							|  |  |  |         for n in [951, 572305, 478, 917, 17240]: | 
					
						
							|  |  |  |             self.do_exactly_unequal_test(n) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_unequal_floats(self): | 
					
						
							|  |  |  |         # Test unequal float values are unequal with zero error tolerance. | 
					
						
							|  |  |  |         for x in [9.51, 5723.05, 47.8, 9.17, 17.24]: | 
					
						
							|  |  |  |             self.do_exactly_unequal_test(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_unequal_fractions(self): | 
					
						
							|  |  |  |         # Test that unequal Fractions are unequal with zero error tolerance. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]: | 
					
						
							|  |  |  |             self.do_exactly_unequal_test(f) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exactly_unequal_decimals(self): | 
					
						
							|  |  |  |         # Test that unequal Decimals are unequal with zero error tolerance. | 
					
						
							|  |  |  |         for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()): | 
					
						
							|  |  |  |             self.do_exactly_unequal_test(d) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ApproxEqualInexactTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Inexact test cases for approx_error. | 
					
						
							|  |  |  |     # Test cases when comparing two values that are not exactly equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # === Absolute error tests === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_approx_equal_abs_test(self, x, delta): | 
					
						
							|  |  |  |         template = "Test failure for x={!r}, y={!r}" | 
					
						
							|  |  |  |         for y in (x + delta, x - delta): | 
					
						
							|  |  |  |             msg = template.format(x, y) | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg) | 
					
						
							|  |  |  |             self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_absolute_ints(self): | 
					
						
							|  |  |  |         # Test approximate equality of ints with an absolute error. | 
					
						
							|  |  |  |         for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]: | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(n, 10) | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(n, 2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_absolute_floats(self): | 
					
						
							|  |  |  |         # Test approximate equality of floats with an absolute error. | 
					
						
							|  |  |  |         for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]: | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(x, 1.5) | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(x, 0.01) | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(x, 0.0001) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_absolute_fractions(self): | 
					
						
							|  |  |  |         # Test approximate equality of Fractions with an absolute error. | 
					
						
							|  |  |  |         delta = Fraction(1, 29) | 
					
						
							|  |  |  |         numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71] | 
					
						
							|  |  |  |         for f in (Fraction(n, 29) for n in numerators): | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(f, delta) | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(f, float(delta)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_absolute_decimals(self): | 
					
						
							|  |  |  |         # Test approximate equality of Decimals with an absolute error. | 
					
						
							|  |  |  |         delta = Decimal("0.01") | 
					
						
							|  |  |  |         for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()): | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(d, delta) | 
					
						
							|  |  |  |             self.do_approx_equal_abs_test(-d, delta) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_cross_zero(self): | 
					
						
							|  |  |  |         # Test for the case of the two values having opposite signs. | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # === Relative error tests === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_approx_equal_rel_test(self, x, delta): | 
					
						
							|  |  |  |         template = "Test failure for x={!r}, y={!r}" | 
					
						
							|  |  |  |         for y in (x*(1+delta), x*(1-delta)): | 
					
						
							|  |  |  |             msg = template.format(x, y) | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg) | 
					
						
							|  |  |  |             self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_relative_ints(self): | 
					
						
							|  |  |  |         # Test approximate equality of ints with a relative error. | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36)) | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37)) | 
					
						
							|  |  |  |         # --- | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125)) | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125)) | 
					
						
							|  |  |  |         self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_relative_floats(self): | 
					
						
							|  |  |  |         # Test approximate equality of floats with a relative error. | 
					
						
							|  |  |  |         for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]: | 
					
						
							|  |  |  |             self.do_approx_equal_rel_test(x, 0.02) | 
					
						
							|  |  |  |             self.do_approx_equal_rel_test(x, 0.0001) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_relative_fractions(self): | 
					
						
							|  |  |  |         # Test approximate equality of Fractions with a relative error. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         delta = Fraction(3, 8) | 
					
						
							|  |  |  |         for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]: | 
					
						
							|  |  |  |             for d in (delta, float(delta)): | 
					
						
							|  |  |  |                 self.do_approx_equal_rel_test(f, d) | 
					
						
							|  |  |  |                 self.do_approx_equal_rel_test(-f, d) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_relative_decimals(self): | 
					
						
							|  |  |  |         # Test approximate equality of Decimals with a relative error. | 
					
						
							|  |  |  |         for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()): | 
					
						
							|  |  |  |             self.do_approx_equal_rel_test(d, Decimal("0.001")) | 
					
						
							|  |  |  |             self.do_approx_equal_rel_test(-d, Decimal("0.05")) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # === Both absolute and relative error tests === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # There are four cases to consider: | 
					
						
							|  |  |  |     #   1) actual error <= both absolute and relative error | 
					
						
							|  |  |  |     #   2) actual error <= absolute error but > relative error | 
					
						
							|  |  |  |     #   3) actual error <= relative error but > absolute error | 
					
						
							|  |  |  |     #   4) actual error > both absolute and relative error | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag): | 
					
						
							|  |  |  |         check = self.assertTrue if tol_flag else self.assertFalse | 
					
						
							|  |  |  |         check(approx_equal(a, b, tol=tol, rel=0)) | 
					
						
							|  |  |  |         check = self.assertTrue if rel_flag else self.assertFalse | 
					
						
							|  |  |  |         check(approx_equal(a, b, tol=0, rel=rel)) | 
					
						
							|  |  |  |         check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse | 
					
						
							|  |  |  |         check(approx_equal(a, b, tol=tol, rel=rel)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_both1(self): | 
					
						
							|  |  |  |         # Test actual error <= both absolute and relative error. | 
					
						
							|  |  |  |         self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True) | 
					
						
							|  |  |  |         self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_both2(self): | 
					
						
							|  |  |  |         # Test actual error <= absolute error but > relative error. | 
					
						
							|  |  |  |         self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_both3(self): | 
					
						
							|  |  |  |         # Test actual error <= relative error but > absolute error. | 
					
						
							|  |  |  |         self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_approx_equal_both4(self): | 
					
						
							|  |  |  |         # Test actual error > both absolute and relative error. | 
					
						
							|  |  |  |         self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False) | 
					
						
							|  |  |  |         self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ApproxEqualSpecialsTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test approx_equal with NANs and INFs and zeroes. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_inf(self): | 
					
						
							|  |  |  |         for type_ in (float, Decimal): | 
					
						
							|  |  |  |             inf = type_('inf') | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(inf, inf)) | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(inf, inf, 0, 0)) | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(inf, inf, 1, 0.01)) | 
					
						
							|  |  |  |             self.assertTrue(approx_equal(-inf, -inf)) | 
					
						
							|  |  |  |             self.assertFalse(approx_equal(inf, -inf)) | 
					
						
							|  |  |  |             self.assertFalse(approx_equal(inf, 1000)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         for type_ in (float, Decimal): | 
					
						
							|  |  |  |             nan = type_('nan') | 
					
						
							|  |  |  |             for other in (nan, type_('inf'), 1000): | 
					
						
							|  |  |  |                 self.assertFalse(approx_equal(nan, other)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float_zeroes(self): | 
					
						
							|  |  |  |         nzero = math.copysign(0.0, -1) | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal_zeroes(self): | 
					
						
							|  |  |  |         nzero = Decimal("-0.0") | 
					
						
							|  |  |  |         self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestApproxEqualErrors(unittest.TestCase): | 
					
						
							|  |  |  |     # Test error conditions of approx_equal. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_bad_tol(self): | 
					
						
							|  |  |  |         # Test negative tol raises. | 
					
						
							|  |  |  |         self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_bad_rel(self): | 
					
						
							|  |  |  |         # Test negative rel raises. | 
					
						
							|  |  |  |         self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --- Tests for NumericTestCase --- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # The formatting routine that generates the error messages is complex enough | 
					
						
							|  |  |  | # that it too needs testing. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestNumericTestCase(unittest.TestCase): | 
					
						
							|  |  |  |     # The exact wording of NumericTestCase error messages is *not* guaranteed, | 
					
						
							|  |  |  |     # but we need to give them some sort of test to ensure that they are | 
					
						
							|  |  |  |     # generated correctly. As a compromise, we look for specific substrings | 
					
						
							|  |  |  |     # that are expected to be found even if the overall error message changes. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_test(self, args): | 
					
						
							|  |  |  |         actual_msg = NumericTestCase._make_std_err_msg(*args) | 
					
						
							|  |  |  |         expected = self.generate_substrings(*args) | 
					
						
							|  |  |  |         for substring in expected: | 
					
						
							|  |  |  |             self.assertIn(substring, actual_msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_numerictestcase_is_testcase(self): | 
					
						
							|  |  |  |         # Ensure that NumericTestCase actually is a TestCase. | 
					
						
							|  |  |  |         self.assertTrue(issubclass(NumericTestCase, unittest.TestCase)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_error_msg_numeric(self): | 
					
						
							|  |  |  |         # Test the error message generated for numeric comparisons. | 
					
						
							|  |  |  |         args = (2.5, 4.0, 0.5, 0.25, None) | 
					
						
							|  |  |  |         self.do_test(args) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_error_msg_sequence(self): | 
					
						
							|  |  |  |         # Test the error message generated for sequence comparisons. | 
					
						
							|  |  |  |         args = (3.75, 8.25, 1.25, 0.5, 7) | 
					
						
							|  |  |  |         self.do_test(args) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def generate_substrings(self, first, second, tol, rel, idx): | 
					
						
							|  |  |  |         """Return substrings we expect to see in error messages.""" | 
					
						
							|  |  |  |         abs_err, rel_err = _calc_errors(first, second) | 
					
						
							|  |  |  |         substrings = [ | 
					
						
							|  |  |  |                 'tol=%r' % tol, | 
					
						
							|  |  |  |                 'rel=%r' % rel, | 
					
						
							|  |  |  |                 'absolute error = %r' % abs_err, | 
					
						
							|  |  |  |                 'relative error = %r' % rel_err, | 
					
						
							|  |  |  |                 ] | 
					
						
							|  |  |  |         if idx is not None: | 
					
						
							|  |  |  |             substrings.append('differ at index %d' % idx) | 
					
						
							|  |  |  |         return substrings | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # ======================================= | 
					
						
							|  |  |  | # === Tests for the statistics module === | 
					
						
							|  |  |  | # ======================================= | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class GlobalsTest(unittest.TestCase): | 
					
						
							|  |  |  |     module = statistics | 
					
						
							|  |  |  |     expected_metadata = ["__doc__", "__all__"] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_meta(self): | 
					
						
							|  |  |  |         # Test for the existence of metadata. | 
					
						
							|  |  |  |         for meta in self.expected_metadata: | 
					
						
							|  |  |  |             self.assertTrue(hasattr(self.module, meta), | 
					
						
							|  |  |  |                             "%s not present" % meta) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_check_all(self): | 
					
						
							|  |  |  |         # Check everything in __all__ exists and is public. | 
					
						
							|  |  |  |         module = self.module | 
					
						
							|  |  |  |         for name in module.__all__: | 
					
						
							|  |  |  |             # No private names in __all__: | 
					
						
							|  |  |  |             self.assertFalse(name.startswith("_"), | 
					
						
							|  |  |  |                              'private name "%s" in __all__' % name) | 
					
						
							|  |  |  |             # And anything in __all__ must exist: | 
					
						
							|  |  |  |             self.assertTrue(hasattr(module, name), | 
					
						
							|  |  |  |                             'missing name "%s" in __all__' % name) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class DocTests(unittest.TestCase): | 
					
						
							| 
									
										
										
										
											2013-12-08 18:16:18 +02:00
										 |  |  |     @unittest.skipIf(sys.flags.optimize >= 2, | 
					
						
							|  |  |  |                      "Docstrings are omitted with -OO and above") | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |     def test_doc_tests(self): | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |         failed, tried = doctest.testmod(statistics, optionflags=doctest.ELLIPSIS) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         self.assertGreater(tried, 0) | 
					
						
							|  |  |  |         self.assertEqual(failed, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class StatisticsErrorTest(unittest.TestCase): | 
					
						
							|  |  |  |     def test_has_exception(self): | 
					
						
							|  |  |  |         errmsg = ( | 
					
						
							|  |  |  |                 "Expected StatisticsError to be a ValueError, but got a" | 
					
						
							|  |  |  |                 " subclass of %r instead." | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  |         self.assertTrue(hasattr(statistics, 'StatisticsError')) | 
					
						
							|  |  |  |         self.assertTrue( | 
					
						
							|  |  |  |                 issubclass(statistics.StatisticsError, ValueError), | 
					
						
							|  |  |  |                 errmsg % statistics.StatisticsError.__base__ | 
					
						
							|  |  |  |                 ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # === Tests for private utility functions === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ExactRatioTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test _exact_ratio utility. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_int(self): | 
					
						
							|  |  |  |         for i in (-20, -3, 0, 5, 99, 10**20): | 
					
						
							|  |  |  |             self.assertEqual(statistics._exact_ratio(i), (i, 1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fraction(self): | 
					
						
							|  |  |  |         numerators = (-5, 1, 12, 38) | 
					
						
							|  |  |  |         for n in numerators: | 
					
						
							|  |  |  |             f = Fraction(n, 37) | 
					
						
							|  |  |  |             self.assertEqual(statistics._exact_ratio(f), (n, 37)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float(self): | 
					
						
							|  |  |  |         self.assertEqual(statistics._exact_ratio(0.125), (1, 8)) | 
					
						
							|  |  |  |         self.assertEqual(statistics._exact_ratio(1.125), (9, 8)) | 
					
						
							|  |  |  |         data = [random.uniform(-100, 100) for _ in range(100)] | 
					
						
							|  |  |  |         for x in data: | 
					
						
							|  |  |  |             num, den = statistics._exact_ratio(x) | 
					
						
							|  |  |  |             self.assertEqual(x, num/den) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal(self): | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         _exact_ratio = statistics._exact_ratio | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         self.assertEqual(_exact_ratio(D("0.125")), (1, 8)) | 
					
						
							|  |  |  |         self.assertEqual(_exact_ratio(D("12.345")), (2469, 200)) | 
					
						
							|  |  |  |         self.assertEqual(_exact_ratio(D("-1.98")), (-99, 50)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_inf(self): | 
					
						
							|  |  |  |         INF = float("INF") | 
					
						
							|  |  |  |         class MyFloat(float): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         class MyDecimal(Decimal): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         for inf in (INF, -INF): | 
					
						
							|  |  |  |             for type_ in (float, MyFloat, Decimal, MyDecimal): | 
					
						
							|  |  |  |                 x = type_(inf) | 
					
						
							|  |  |  |                 ratio = statistics._exact_ratio(x) | 
					
						
							|  |  |  |                 self.assertEqual(ratio, (x, None)) | 
					
						
							|  |  |  |                 self.assertEqual(type(ratio[0]), type_) | 
					
						
							|  |  |  |                 self.assertTrue(math.isinf(ratio[0])) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float_nan(self): | 
					
						
							|  |  |  |         NAN = float("NAN") | 
					
						
							|  |  |  |         class MyFloat(float): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         for nan in (NAN, MyFloat(NAN)): | 
					
						
							|  |  |  |             ratio = statistics._exact_ratio(nan) | 
					
						
							|  |  |  |             self.assertTrue(math.isnan(ratio[0])) | 
					
						
							|  |  |  |             self.assertIs(ratio[1], None) | 
					
						
							|  |  |  |             self.assertEqual(type(ratio[0]), type(nan)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal_nan(self): | 
					
						
							|  |  |  |         NAN = Decimal("NAN") | 
					
						
							|  |  |  |         sNAN = Decimal("sNAN") | 
					
						
							|  |  |  |         class MyDecimal(Decimal): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)): | 
					
						
							|  |  |  |             ratio = statistics._exact_ratio(nan) | 
					
						
							|  |  |  |             self.assertTrue(_nan_equal(ratio[0], nan)) | 
					
						
							|  |  |  |             self.assertIs(ratio[1], None) | 
					
						
							|  |  |  |             self.assertEqual(type(ratio[0]), type(nan)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | class DecimalToRatioTest(unittest.TestCase): | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |     # Test _exact_ratio private function. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_infinity(self): | 
					
						
							|  |  |  |         # Test that INFs are handled correctly. | 
					
						
							|  |  |  |         inf = Decimal('INF') | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         self.assertEqual(statistics._exact_ratio(inf), (inf, None)) | 
					
						
							|  |  |  |         self.assertEqual(statistics._exact_ratio(-inf), (-inf, None)) | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         # Test that NANs are handled correctly. | 
					
						
							|  |  |  |         for nan in (Decimal('NAN'), Decimal('sNAN')): | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |             num, den = statistics._exact_ratio(nan) | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |             # Because NANs always compare non-equal, we cannot use assertEqual. | 
					
						
							|  |  |  |             # Nor can we use an identity test, as we don't guarantee anything | 
					
						
							|  |  |  |             # about the object identity. | 
					
						
							|  |  |  |             self.assertTrue(_nan_equal(num, nan)) | 
					
						
							|  |  |  |             self.assertIs(den, None) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |     def test_sign(self): | 
					
						
							|  |  |  |         # Test sign is calculated correctly. | 
					
						
							|  |  |  |         numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")] | 
					
						
							|  |  |  |         for d in numbers: | 
					
						
							|  |  |  |             # First test positive decimals. | 
					
						
							|  |  |  |             assert d > 0 | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |             num, den = statistics._exact_ratio(d) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |             self.assertGreaterEqual(num, 0) | 
					
						
							|  |  |  |             self.assertGreater(den, 0) | 
					
						
							|  |  |  |             # Then test negative decimals. | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |             num, den = statistics._exact_ratio(-d) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |             self.assertLessEqual(num, 0) | 
					
						
							|  |  |  |             self.assertGreater(den, 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_negative_exponent(self): | 
					
						
							|  |  |  |         # Test result when the exponent is negative. | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         t = statistics._exact_ratio(Decimal("0.1234")) | 
					
						
							|  |  |  |         self.assertEqual(t, (617, 5000)) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_positive_exponent(self): | 
					
						
							|  |  |  |         # Test results when the exponent is positive. | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         t = statistics._exact_ratio(Decimal("1.234e7")) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |         self.assertEqual(t, (12340000, 1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_regression_20536(self): | 
					
						
							|  |  |  |         # Regression test for issue 20536. | 
					
						
							|  |  |  |         # See http://bugs.python.org/issue20536 | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         t = statistics._exact_ratio(Decimal("1e2")) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |         self.assertEqual(t, (100, 1)) | 
					
						
							| 
									
										
										
										
											2016-05-05 03:54:29 +10:00
										 |  |  |         t = statistics._exact_ratio(Decimal("1.47e5")) | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |         self.assertEqual(t, (147000, 1)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  | class IsFiniteTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test _isfinite private function. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_finite(self): | 
					
						
							|  |  |  |         # Test that finite numbers are recognised as finite. | 
					
						
							|  |  |  |         for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")): | 
					
						
							|  |  |  |             self.assertTrue(statistics._isfinite(x)) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_infinity(self): | 
					
						
							|  |  |  |         # Test that INFs are not recognised as finite. | 
					
						
							|  |  |  |         for x in (float("inf"), Decimal("inf")): | 
					
						
							|  |  |  |             self.assertFalse(statistics._isfinite(x)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         # Test that NANs are not recognised as finite. | 
					
						
							|  |  |  |         for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")): | 
					
						
							|  |  |  |             self.assertFalse(statistics._isfinite(x)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class CoerceTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test that private function _coerce correctly deals with types. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # The coercion rules are currently an implementation detail, although at | 
					
						
							|  |  |  |     # some point that should change. The tests and comments here define the | 
					
						
							|  |  |  |     # correct implementation. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Pre-conditions of _coerce: | 
					
						
							|  |  |  |     # | 
					
						
							|  |  |  |     #   - The first time _sum calls _coerce, the | 
					
						
							|  |  |  |     #   - coerce(T, S) will never be called with bool as the first argument; | 
					
						
							|  |  |  |     #     this is a pre-condition, guarded with an assertion. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # | 
					
						
							|  |  |  |     #   - coerce(T, T) will always return T; we assume T is a valid numeric | 
					
						
							|  |  |  |     #     type. Violate this assumption at your own risk. | 
					
						
							|  |  |  |     # | 
					
						
							|  |  |  |     #   - Apart from as above, bool is treated as if it were actually int. | 
					
						
							|  |  |  |     # | 
					
						
							|  |  |  |     #   - coerce(int, X) and coerce(X, int) return X. | 
					
						
							|  |  |  |     #   - | 
					
						
							|  |  |  |     def test_bool(self): | 
					
						
							|  |  |  |         # bool is somewhat special, due to the pre-condition that it is | 
					
						
							|  |  |  |         # never given as the first argument to _coerce, and that it cannot | 
					
						
							|  |  |  |         # be subclassed. So we test it specially. | 
					
						
							|  |  |  |         for T in (int, float, Fraction, Decimal): | 
					
						
							|  |  |  |             self.assertIs(statistics._coerce(T, bool), T) | 
					
						
							|  |  |  |             class MyClass(T): pass | 
					
						
							|  |  |  |             self.assertIs(statistics._coerce(MyClass, bool), MyClass) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def assertCoerceTo(self, A, B): | 
					
						
							|  |  |  |         """Assert that type A coerces to B.""" | 
					
						
							|  |  |  |         self.assertIs(statistics._coerce(A, B), B) | 
					
						
							|  |  |  |         self.assertIs(statistics._coerce(B, A), B) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def check_coerce_to(self, A, B): | 
					
						
							|  |  |  |         """Checks that type A coerces to B, including subclasses.""" | 
					
						
							|  |  |  |         # Assert that type A is coerced to B. | 
					
						
							|  |  |  |         self.assertCoerceTo(A, B) | 
					
						
							|  |  |  |         # Subclasses of A are also coerced to B. | 
					
						
							|  |  |  |         class SubclassOfA(A): pass | 
					
						
							|  |  |  |         self.assertCoerceTo(SubclassOfA, B) | 
					
						
							|  |  |  |         # A, and subclasses of A, are coerced to subclasses of B. | 
					
						
							|  |  |  |         class SubclassOfB(B): pass | 
					
						
							|  |  |  |         self.assertCoerceTo(A, SubclassOfB) | 
					
						
							|  |  |  |         self.assertCoerceTo(SubclassOfA, SubclassOfB) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def assertCoerceRaises(self, A, B): | 
					
						
							|  |  |  |         """Assert that coercing A to B, or vice versa, raises TypeError.""" | 
					
						
							|  |  |  |         self.assertRaises(TypeError, statistics._coerce, (A, B)) | 
					
						
							|  |  |  |         self.assertRaises(TypeError, statistics._coerce, (B, A)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def check_type_coercions(self, T): | 
					
						
							|  |  |  |         """Check that type T coerces correctly with subclasses of itself.""" | 
					
						
							|  |  |  |         assert T is not bool | 
					
						
							|  |  |  |         # Coercing a type with itself returns the same type. | 
					
						
							|  |  |  |         self.assertIs(statistics._coerce(T, T), T) | 
					
						
							|  |  |  |         # Coercing a type with a subclass of itself returns the subclass. | 
					
						
							|  |  |  |         class U(T): pass | 
					
						
							|  |  |  |         class V(T): pass | 
					
						
							|  |  |  |         class W(U): pass | 
					
						
							|  |  |  |         for typ in (U, V, W): | 
					
						
							|  |  |  |             self.assertCoerceTo(T, typ) | 
					
						
							|  |  |  |         self.assertCoerceTo(U, W) | 
					
						
							|  |  |  |         # Coercing two subclasses that aren't parent/child is an error. | 
					
						
							|  |  |  |         self.assertCoerceRaises(U, V) | 
					
						
							|  |  |  |         self.assertCoerceRaises(V, W) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_int(self): | 
					
						
							|  |  |  |         # Check that int coerces correctly. | 
					
						
							|  |  |  |         self.check_type_coercions(int) | 
					
						
							|  |  |  |         for typ in (float, Fraction, Decimal): | 
					
						
							|  |  |  |             self.check_coerce_to(int, typ) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_fraction(self): | 
					
						
							|  |  |  |         # Check that Fraction coerces correctly. | 
					
						
							|  |  |  |         self.check_type_coercions(Fraction) | 
					
						
							|  |  |  |         self.check_coerce_to(Fraction, float) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal(self): | 
					
						
							|  |  |  |         # Check that Decimal coerces correctly. | 
					
						
							|  |  |  |         self.check_type_coercions(Decimal) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float(self): | 
					
						
							|  |  |  |         # Check that float coerces correctly. | 
					
						
							|  |  |  |         self.check_type_coercions(float) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_non_numeric_types(self): | 
					
						
							|  |  |  |         for bad_type in (str, list, type(None), tuple, dict): | 
					
						
							|  |  |  |             for good_type in (int, float, Fraction, Decimal): | 
					
						
							|  |  |  |                 self.assertCoerceRaises(good_type, bad_type) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_incompatible_types(self): | 
					
						
							|  |  |  |         # Test that incompatible types raise. | 
					
						
							|  |  |  |         for T in (float, Fraction): | 
					
						
							|  |  |  |             class MySubclass(T): pass | 
					
						
							|  |  |  |             self.assertCoerceRaises(T, Decimal) | 
					
						
							|  |  |  |             self.assertCoerceRaises(MySubclass, Decimal) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class ConvertTest(unittest.TestCase): | 
					
						
							|  |  |  |     # Test private _convert function. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def check_exact_equal(self, x, y): | 
					
						
							|  |  |  |         """Check that x equals y, and has the same type as well.""" | 
					
						
							|  |  |  |         self.assertEqual(x, y) | 
					
						
							|  |  |  |         self.assertIs(type(x), type(y)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_int(self): | 
					
						
							|  |  |  |         # Test conversions to int. | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(71), int) | 
					
						
							|  |  |  |         self.check_exact_equal(x, 71) | 
					
						
							|  |  |  |         class MyInt(int): pass | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(17), MyInt) | 
					
						
							|  |  |  |         self.check_exact_equal(x, MyInt(17)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fraction(self): | 
					
						
							|  |  |  |         # Test conversions to Fraction. | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(95, 99), Fraction) | 
					
						
							|  |  |  |         self.check_exact_equal(x, Fraction(95, 99)) | 
					
						
							|  |  |  |         class MyFraction(Fraction): | 
					
						
							|  |  |  |             def __truediv__(self, other): | 
					
						
							|  |  |  |                 return self.__class__(super().__truediv__(other)) | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(71, 13), MyFraction) | 
					
						
							|  |  |  |         self.check_exact_equal(x, MyFraction(71, 13)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float(self): | 
					
						
							|  |  |  |         # Test conversions to float. | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(-1, 2), float) | 
					
						
							|  |  |  |         self.check_exact_equal(x, -0.5) | 
					
						
							|  |  |  |         class MyFloat(float): | 
					
						
							|  |  |  |             def __truediv__(self, other): | 
					
						
							|  |  |  |                 return self.__class__(super().__truediv__(other)) | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(9, 8), MyFloat) | 
					
						
							|  |  |  |         self.check_exact_equal(x, MyFloat(1.125)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal(self): | 
					
						
							|  |  |  |         # Test conversions to Decimal. | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(1, 40), Decimal) | 
					
						
							|  |  |  |         self.check_exact_equal(x, Decimal("0.025")) | 
					
						
							|  |  |  |         class MyDecimal(Decimal): | 
					
						
							|  |  |  |             def __truediv__(self, other): | 
					
						
							|  |  |  |                 return self.__class__(super().__truediv__(other)) | 
					
						
							|  |  |  |         x = statistics._convert(Fraction(-15, 16), MyDecimal) | 
					
						
							|  |  |  |         self.check_exact_equal(x, MyDecimal("-0.9375")) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_inf(self): | 
					
						
							|  |  |  |         for INF in (float('inf'), Decimal('inf')): | 
					
						
							|  |  |  |             for inf in (INF, -INF): | 
					
						
							|  |  |  |                 x = statistics._convert(inf, type(inf)) | 
					
						
							|  |  |  |                 self.check_exact_equal(x, inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')): | 
					
						
							|  |  |  |             x = statistics._convert(nan, type(nan)) | 
					
						
							|  |  |  |             self.assertTrue(_nan_equal(x, nan)) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  | class FailNegTest(unittest.TestCase): | 
					
						
							|  |  |  |     """Test _fail_neg private function.""" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_pass_through(self): | 
					
						
							|  |  |  |         # Test that values are passed through unchanged. | 
					
						
							|  |  |  |         values = [1, 2.0, Fraction(3), Decimal(4)] | 
					
						
							|  |  |  |         new = list(statistics._fail_neg(values)) | 
					
						
							|  |  |  |         self.assertEqual(values, new) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_negatives_raise(self): | 
					
						
							|  |  |  |         # Test that negatives raise an exception. | 
					
						
							|  |  |  |         for x in [1, 2.0, Fraction(3), Decimal(4)]: | 
					
						
							|  |  |  |             seq = [-x] | 
					
						
							|  |  |  |             it = statistics._fail_neg(seq) | 
					
						
							|  |  |  |             self.assertRaises(statistics.StatisticsError, next, it) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_error_msg(self): | 
					
						
							|  |  |  |         # Test that a given error message is used. | 
					
						
							|  |  |  |         msg = "badness #%d" % random.randint(10000, 99999) | 
					
						
							|  |  |  |         try: | 
					
						
							|  |  |  |             next(statistics._fail_neg([-1], msg)) | 
					
						
							|  |  |  |         except statistics.StatisticsError as e: | 
					
						
							|  |  |  |             errmsg = e.args[0] | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             self.fail("expected exception, but it didn't happen") | 
					
						
							|  |  |  |         self.assertEqual(errmsg, msg) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | # === Tests for public functions === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class UnivariateCommonMixin: | 
					
						
							|  |  |  |     # Common tests for most univariate functions that take a data argument. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_no_args(self): | 
					
						
							|  |  |  |         # Fail if given no arguments. | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_empty_data(self): | 
					
						
							|  |  |  |         # Fail when the data argument (first argument) is empty. | 
					
						
							|  |  |  |         for empty in ([], (), iter([])): | 
					
						
							|  |  |  |             self.assertRaises(statistics.StatisticsError, self.func, empty) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_data(self): | 
					
						
							|  |  |  |         """Return int data for various tests.""" | 
					
						
							|  |  |  |         data = list(range(10)) | 
					
						
							|  |  |  |         while data == sorted(data): | 
					
						
							|  |  |  |             random.shuffle(data) | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_no_inplace_modifications(self): | 
					
						
							|  |  |  |         # Test that the function does not modify its input data. | 
					
						
							|  |  |  |         data = self.prepare_data() | 
					
						
							|  |  |  |         assert len(data) != 1  # Necessary to avoid infinite loop. | 
					
						
							|  |  |  |         assert data != sorted(data) | 
					
						
							|  |  |  |         saved = data[:] | 
					
						
							|  |  |  |         assert data is not saved | 
					
						
							|  |  |  |         _ = self.func(data) | 
					
						
							|  |  |  |         self.assertListEqual(data, saved, "data has been modified") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_order_doesnt_matter(self): | 
					
						
							|  |  |  |         # Test that the order of data points doesn't change the result. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # CAUTION: due to floating point rounding errors, the result actually | 
					
						
							|  |  |  |         # may depend on the order. Consider this test representing an ideal. | 
					
						
							|  |  |  |         # To avoid this test failing, only test with exact values such as ints | 
					
						
							|  |  |  |         # or Fractions. | 
					
						
							|  |  |  |         data = [1, 2, 3, 3, 3, 4, 5, 6]*100 | 
					
						
							|  |  |  |         expected = self.func(data) | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         actual = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(expected, actual) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_type_of_data_collection(self): | 
					
						
							|  |  |  |         # Test that the type of iterable data doesn't effect the result. | 
					
						
							|  |  |  |         class MyList(list): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         class MyTuple(tuple): | 
					
						
							|  |  |  |             pass | 
					
						
							|  |  |  |         def generator(data): | 
					
						
							|  |  |  |             return (obj for obj in data) | 
					
						
							|  |  |  |         data = self.prepare_data() | 
					
						
							|  |  |  |         expected = self.func(data) | 
					
						
							|  |  |  |         for kind in (list, tuple, iter, MyList, MyTuple, generator): | 
					
						
							|  |  |  |             result = self.func(kind(data)) | 
					
						
							|  |  |  |             self.assertEqual(result, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_range_data(self): | 
					
						
							|  |  |  |         # Test that functions work with range objects. | 
					
						
							|  |  |  |         data = range(20, 50, 3) | 
					
						
							|  |  |  |         expected = self.func(list(data)) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_bad_arg_types(self): | 
					
						
							|  |  |  |         # Test that function raises when given data of the wrong type. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Don't roll the following into a loop like this: | 
					
						
							|  |  |  |         #   for bad in list_of_bad: | 
					
						
							|  |  |  |         #       self.check_for_type_error(bad) | 
					
						
							|  |  |  |         # | 
					
						
							|  |  |  |         # Since assertRaises doesn't show the arguments that caused the test | 
					
						
							|  |  |  |         # failure, it is very difficult to debug these test failures when the | 
					
						
							|  |  |  |         # following are in a loop. | 
					
						
							|  |  |  |         self.check_for_type_error(None) | 
					
						
							|  |  |  |         self.check_for_type_error(23) | 
					
						
							|  |  |  |         self.check_for_type_error(42.0) | 
					
						
							|  |  |  |         self.check_for_type_error(object()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def check_for_type_error(self, *args): | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, *args) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_type_of_data_element(self): | 
					
						
							|  |  |  |         # Check the type of data elements doesn't affect the numeric result. | 
					
						
							|  |  |  |         # This is a weaker test than UnivariateTypeMixin.testTypesConserved, | 
					
						
							|  |  |  |         # because it checks the numeric result by equality, but not by type. | 
					
						
							|  |  |  |         class MyFloat(float): | 
					
						
							|  |  |  |             def __truediv__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__truediv__(other)) | 
					
						
							|  |  |  |             def __add__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__add__(other)) | 
					
						
							|  |  |  |             __radd__ = __add__ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         raw = self.prepare_data() | 
					
						
							|  |  |  |         expected = self.func(raw) | 
					
						
							|  |  |  |         for kind in (float, MyFloat, Decimal, Fraction): | 
					
						
							|  |  |  |             data = [kind(x) for x in raw] | 
					
						
							|  |  |  |             result = type(expected)(self.func(data)) | 
					
						
							|  |  |  |             self.assertEqual(result, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class UnivariateTypeMixin: | 
					
						
							|  |  |  |     """Mixin class for type-conserving functions.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     This mixin class holds test(s) for functions which conserve the type of | 
					
						
							|  |  |  |     individual data points. E.g. the mean of a list of Fractions should itself | 
					
						
							|  |  |  |     be a Fraction. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Not all tests to do with types need go in this class. Only those that | 
					
						
							|  |  |  |     rely on the function returning the same type as its input data. | 
					
						
							|  |  |  |     """
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |     def prepare_types_for_conservation_test(self): | 
					
						
							|  |  |  |         """Return the types which are expected to be conserved.""" | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         class MyFloat(float): | 
					
						
							|  |  |  |             def __truediv__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__truediv__(other)) | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |             def __rtruediv__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__rtruediv__(other)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             def __sub__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__sub__(other)) | 
					
						
							|  |  |  |             def __rsub__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__rsub__(other)) | 
					
						
							|  |  |  |             def __pow__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__pow__(other)) | 
					
						
							|  |  |  |             def __add__(self, other): | 
					
						
							|  |  |  |                 return type(self)(super().__add__(other)) | 
					
						
							|  |  |  |             __radd__ = __add__ | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |         return (float, Decimal, Fraction, MyFloat) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |     def test_types_conserved(self): | 
					
						
							|  |  |  |         # Test that functions keeps the same type as their data points. | 
					
						
							|  |  |  |         # (Excludes mixed data types.) This only tests the type of the return | 
					
						
							|  |  |  |         # result, not the value. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         data = self.prepare_data() | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |         for kind in self.prepare_types_for_conservation_test(): | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             d = [kind(x) for x in data] | 
					
						
							|  |  |  |             result = self.func(d) | 
					
						
							|  |  |  |             self.assertIs(type(result), kind) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  | class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin): | 
					
						
							|  |  |  |     # Common test cases for statistics._sum() function. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # This test suite looks only at the numeric value returned by _sum, | 
					
						
							|  |  |  |     # after conversion to the appropriate type. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         def simplified_sum(*args): | 
					
						
							|  |  |  |             T, value, n = statistics._sum(*args) | 
					
						
							|  |  |  |             return statistics._coerce(value, T) | 
					
						
							|  |  |  |         self.func = simplified_sum | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestSum(NumericTestCase): | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |     # Test cases for statistics._sum() function. | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     # These tests look at the entire three value tuple returned by _sum. | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics._sum | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_empty_data(self): | 
					
						
							|  |  |  |         # Override test for empty data. | 
					
						
							|  |  |  |         for data in ([], (), iter([])): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |             self.assertEqual(self.func(data), (int, Fraction(0), 0)) | 
					
						
							|  |  |  |             self.assertEqual(self.func(data, 23), (int, Fraction(23), 0)) | 
					
						
							|  |  |  |             self.assertEqual(self.func(data, 2.3), (float, Fraction(2.3), 0)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_ints(self): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]), | 
					
						
							|  |  |  |                          (int, Fraction(60), 8)) | 
					
						
							|  |  |  |         self.assertEqual(self.func([4, 2, 3, -8, 7], 1000), | 
					
						
							|  |  |  |                          (int, Fraction(1008), 5)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_floats(self): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertEqual(self.func([0.25]*20), | 
					
						
							|  |  |  |                          (float, Fraction(5.0), 20)) | 
					
						
							|  |  |  |         self.assertEqual(self.func([0.125, 0.25, 0.5, 0.75], 1.5), | 
					
						
							|  |  |  |                          (float, Fraction(3.125), 4)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_fractions(self): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertEqual(self.func([Fraction(1, 1000)]*500), | 
					
						
							|  |  |  |                          (Fraction, Fraction(1, 2), 500)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_decimals(self): | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"), | 
					
						
							|  |  |  |                 D("3.974"), D("2.328"), D("4.617"), D("2.843"), | 
					
						
							|  |  |  |                 ] | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertEqual(self.func(data), | 
					
						
							|  |  |  |                          (Decimal, Decimal("20.686"), 8)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_compare_with_math_fsum(self): | 
					
						
							|  |  |  |         # Compare with the math.fsum function. | 
					
						
							|  |  |  |         # Ideally we ought to get the exact same result, but sometimes | 
					
						
							|  |  |  |         # we differ by a very slight amount :-( | 
					
						
							|  |  |  |         data = [random.uniform(-100, 1000) for _ in range(1000)] | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_start_argument(self): | 
					
						
							|  |  |  |         # Test that the optional start argument works correctly. | 
					
						
							|  |  |  |         data = [random.uniform(1, 1000) for _ in range(100)] | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         t = self.func(data)[1] | 
					
						
							|  |  |  |         self.assertEqual(t+42, self.func(data, 42)[1]) | 
					
						
							|  |  |  |         self.assertEqual(t-23, self.func(data, -23)[1]) | 
					
						
							|  |  |  |         self.assertEqual(t+Fraction(1e20), self.func(data, 1e20)[1]) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_strings_fail(self): | 
					
						
							|  |  |  |         # Sum of strings should fail. | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, [1, 2, 3], '999') | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, [1, 2, 3, '999']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_bytes_fail(self): | 
					
						
							|  |  |  |         # Sum of bytes should fail. | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, [1, 2, 3], b'999') | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, [1, 2, 3, b'999']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_mixed_sum(self): | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  |         # Mixed input types are not (currently) allowed. | 
					
						
							|  |  |  |         # Check that mixed data types fail. | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)]) | 
					
						
							| 
									
										
										
										
											2014-02-08 19:58:04 +10:00
										 |  |  |         # And so does mixed start argument. | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1)) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class SumTortureTest(NumericTestCase): | 
					
						
							|  |  |  |     def test_torture(self): | 
					
						
							|  |  |  |         # Tim Peters' torture test for sum, and variants of same. | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000), | 
					
						
							|  |  |  |                          (float, Fraction(20000.0), 40000)) | 
					
						
							|  |  |  |         self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000), | 
					
						
							|  |  |  |                          (float, Fraction(20000.0), 40000)) | 
					
						
							|  |  |  |         T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000) | 
					
						
							|  |  |  |         self.assertIs(T, float) | 
					
						
							|  |  |  |         self.assertEqual(count, 40000) | 
					
						
							|  |  |  |         self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class SumSpecialValues(NumericTestCase): | 
					
						
							|  |  |  |     # Test that sum works correctly with IEEE-754 special values. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         for type_ in (float, Decimal): | 
					
						
							|  |  |  |             nan = type_('nan') | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |             result = statistics._sum([1, nan, 2])[1] | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             self.assertIs(type(result), type_) | 
					
						
							|  |  |  |             self.assertTrue(math.isnan(result)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def check_infinity(self, x, inf): | 
					
						
							|  |  |  |         """Check x is an infinity of the same type and sign as inf.""" | 
					
						
							|  |  |  |         self.assertTrue(math.isinf(x)) | 
					
						
							|  |  |  |         self.assertIs(type(x), type(inf)) | 
					
						
							|  |  |  |         self.assertEqual(x > 0, inf > 0) | 
					
						
							|  |  |  |         assert x == inf | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def do_test_inf(self, inf): | 
					
						
							|  |  |  |         # Adding a single infinity gives infinity. | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         result = statistics._sum([1, 2, inf, 3])[1] | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         self.check_infinity(result, inf) | 
					
						
							|  |  |  |         # Adding two infinities of the same sign also gives infinity. | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         result = statistics._sum([1, 2, inf, 3, inf, 4])[1] | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         self.check_infinity(result, inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float_inf(self): | 
					
						
							|  |  |  |         inf = float('inf') | 
					
						
							|  |  |  |         for sign in (+1, -1): | 
					
						
							|  |  |  |             self.do_test_inf(sign*inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal_inf(self): | 
					
						
							|  |  |  |         inf = Decimal('inf') | 
					
						
							|  |  |  |         for sign in (+1, -1): | 
					
						
							|  |  |  |             self.do_test_inf(sign*inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_float_mismatched_infs(self): | 
					
						
							|  |  |  |         # Test that adding two infinities of opposite sign gives a NAN. | 
					
						
							|  |  |  |         inf = float('inf') | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |         result = statistics._sum([1, 2, inf, 3, -inf, 4])[1] | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         self.assertTrue(math.isnan(result)) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-09-24 15:03:25 +03:00
										 |  |  |     def test_decimal_extendedcontext_mismatched_infs_to_nan(self): | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         # Test adding Decimal INFs with opposite sign returns NAN. | 
					
						
							|  |  |  |         inf = Decimal('inf') | 
					
						
							|  |  |  |         data = [1, 2, inf, 3, -inf, 4] | 
					
						
							|  |  |  |         with decimal.localcontext(decimal.ExtendedContext): | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |             self.assertTrue(math.isnan(statistics._sum(data)[1])) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-09-24 15:03:25 +03:00
										 |  |  |     def test_decimal_basiccontext_mismatched_infs_to_nan(self): | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         # Test adding Decimal INFs with opposite sign raises InvalidOperation. | 
					
						
							|  |  |  |         inf = Decimal('inf') | 
					
						
							|  |  |  |         data = [1, 2, inf, 3, -inf, 4] | 
					
						
							|  |  |  |         with decimal.localcontext(decimal.BasicContext): | 
					
						
							|  |  |  |             self.assertRaises(decimal.InvalidOperation, statistics._sum, data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimal_snan_raises(self): | 
					
						
							|  |  |  |         # Adding sNAN should raise InvalidOperation. | 
					
						
							|  |  |  |         sNAN = Decimal('sNAN') | 
					
						
							|  |  |  |         data = [1, sNAN, 2] | 
					
						
							|  |  |  |         self.assertRaises(decimal.InvalidOperation, statistics._sum, data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # === Tests for averages === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class AverageMixin(UnivariateCommonMixin): | 
					
						
							|  |  |  |     # Mixin class holding common tests for averages. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_single_value(self): | 
					
						
							|  |  |  |         # Average of a single value is the value itself. | 
					
						
							|  |  |  |         for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')): | 
					
						
							|  |  |  |             self.assertEqual(self.func([x]), x) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |     def prepare_values_for_repeated_single_test(self): | 
					
						
							|  |  |  |         return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712')) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |     def test_repeated_single_value(self): | 
					
						
							|  |  |  |         # The average of a single repeated value is the value itself. | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |         for x in self.prepare_values_for_repeated_single_test(): | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |             for count in (2, 5, 10, 20): | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |                 with self.subTest(x=x, count=count): | 
					
						
							|  |  |  |                     data = [x]*count | 
					
						
							|  |  |  |                     self.assertEqual(self.func(data), x) | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin): | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.mean | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_torture_pep(self): | 
					
						
							|  |  |  |         # "Torture Test" from PEP-450. | 
					
						
							|  |  |  |         self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_ints(self): | 
					
						
							|  |  |  |         # Test mean with ints. | 
					
						
							|  |  |  |         data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 4.8125) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_floats(self): | 
					
						
							|  |  |  |         # Test mean with floats. | 
					
						
							|  |  |  |         data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 22.015625) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimals(self): | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  |         # Test mean with Decimals. | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D("3.5896")) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fractions(self): | 
					
						
							|  |  |  |         # Test mean with Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(1479, 1960)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_inf(self): | 
					
						
							|  |  |  |         # Test mean with infinities. | 
					
						
							|  |  |  |         raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later. | 
					
						
							|  |  |  |         for kind in (float, Decimal): | 
					
						
							|  |  |  |             for sign in (1, -1): | 
					
						
							|  |  |  |                 inf = kind("inf")*sign | 
					
						
							|  |  |  |                 data = raw + [inf] | 
					
						
							|  |  |  |                 result = self.func(data) | 
					
						
							|  |  |  |                 self.assertTrue(math.isinf(result)) | 
					
						
							|  |  |  |                 self.assertEqual(result, inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_mismatched_infs(self): | 
					
						
							|  |  |  |         # Test mean with infinities of opposite sign. | 
					
						
							|  |  |  |         data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')] | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(result)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         # Test mean with NANs. | 
					
						
							|  |  |  |         raw = [1, 3, 5, 7, 9]  # Use only ints, to avoid TypeError later. | 
					
						
							|  |  |  |         for kind in (float, Decimal): | 
					
						
							|  |  |  |             inf = kind("nan") | 
					
						
							|  |  |  |             data = raw + [inf] | 
					
						
							|  |  |  |             result = self.func(data) | 
					
						
							|  |  |  |             self.assertTrue(math.isnan(result)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_big_data(self): | 
					
						
							|  |  |  |         # Test adding a large constant to every data point. | 
					
						
							|  |  |  |         c = 1e9 | 
					
						
							|  |  |  |         data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4] | 
					
						
							|  |  |  |         expected = self.func(data) + c | 
					
						
							|  |  |  |         assert expected != c | 
					
						
							|  |  |  |         result = self.func([x+c for x in data]) | 
					
						
							|  |  |  |         self.assertEqual(result, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_doubled_data(self): | 
					
						
							|  |  |  |         # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z]. | 
					
						
							|  |  |  |         data = [random.uniform(-3, 5) for _ in range(1000)] | 
					
						
							|  |  |  |         expected = self.func(data) | 
					
						
							|  |  |  |         actual = self.func(data*2) | 
					
						
							|  |  |  |         self.assertApproxEqual(actual, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-02-08 23:55:14 +10:00
										 |  |  |     def test_regression_20561(self): | 
					
						
							|  |  |  |         # Regression test for issue 20561. | 
					
						
							|  |  |  |         # See http://bugs.python.org/issue20561 | 
					
						
							|  |  |  |         d = Decimal('1e4') | 
					
						
							|  |  |  |         self.assertEqual(statistics.mean([d]), d) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-12-01 19:59:53 +11:00
										 |  |  |     def test_regression_25177(self): | 
					
						
							|  |  |  |         # Regression test for issue 25177. | 
					
						
							|  |  |  |         # Ensure very big and very small floats don't overflow. | 
					
						
							|  |  |  |         # See http://bugs.python.org/issue25177. | 
					
						
							|  |  |  |         self.assertEqual(statistics.mean( | 
					
						
							|  |  |  |             [8.988465674311579e+307, 8.98846567431158e+307]), | 
					
						
							|  |  |  |             8.98846567431158e+307) | 
					
						
							|  |  |  |         big = 8.98846567431158e+307 | 
					
						
							|  |  |  |         tiny = 5e-324 | 
					
						
							|  |  |  |         for n in (2, 3, 5, 200): | 
					
						
							|  |  |  |             self.assertEqual(statistics.mean([big]*n), big) | 
					
						
							|  |  |  |             self.assertEqual(statistics.mean([tiny]*n), tiny) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  | class TestHarmonicMean(NumericTestCase, AverageMixin, UnivariateTypeMixin): | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.harmonic_mean | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_data(self): | 
					
						
							|  |  |  |         # Override mixin method. | 
					
						
							|  |  |  |         values = super().prepare_data() | 
					
						
							|  |  |  |         values.remove(0) | 
					
						
							|  |  |  |         return values | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_values_for_repeated_single_test(self): | 
					
						
							|  |  |  |         # Override mixin method. | 
					
						
							|  |  |  |         return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.125')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_zero(self): | 
					
						
							|  |  |  |         # Test that harmonic mean returns zero when given zero. | 
					
						
							|  |  |  |         values = [1, 0, 2] | 
					
						
							|  |  |  |         self.assertEqual(self.func(values), 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_negative_error(self): | 
					
						
							|  |  |  |         # Test that harmonic mean raises when given a negative value. | 
					
						
							|  |  |  |         exc = statistics.StatisticsError | 
					
						
							|  |  |  |         for values in ([-1], [1, -2, 3]): | 
					
						
							|  |  |  |             with self.subTest(values=values): | 
					
						
							|  |  |  |                 self.assertRaises(exc, self.func, values) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_ints(self): | 
					
						
							|  |  |  |         # Test harmonic mean with ints. | 
					
						
							|  |  |  |         data = [2, 4, 4, 8, 16, 16] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 6*4/5) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_floats_exact(self): | 
					
						
							|  |  |  |         # Test harmonic mean with some carefully chosen floats. | 
					
						
							|  |  |  |         data = [1/8, 1/4, 1/4, 1/2, 1/2] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 1/4) | 
					
						
							|  |  |  |         self.assertEqual(self.func([0.25, 0.5, 1.0, 1.0]), 0.5) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_singleton_lists(self): | 
					
						
							|  |  |  |         # Test that harmonic mean([x]) returns (approximately) x. | 
					
						
							|  |  |  |         for x in range(1, 101): | 
					
						
							| 
									
										
										
										
											2016-08-09 13:19:48 +10:00
										 |  |  |             self.assertEqual(self.func([x]), x) | 
					
						
							| 
									
										
										
										
											2016-08-09 12:49:01 +10:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_decimals_exact(self): | 
					
						
							|  |  |  |         # Test harmonic mean with some carefully chosen Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         self.assertEqual(self.func([D(15), D(30), D(60), D(60)]), D(30)) | 
					
						
							|  |  |  |         data = [D("0.05"), D("0.10"), D("0.20"), D("0.20")] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D("0.10")) | 
					
						
							|  |  |  |         data = [D("1.68"), D("0.32"), D("5.94"), D("2.75")] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D(66528)/70723) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fractions(self): | 
					
						
							|  |  |  |         # Test harmonic mean with Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)] | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(7*420, 4029)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_inf(self): | 
					
						
							|  |  |  |         # Test harmonic mean with infinity. | 
					
						
							|  |  |  |         values = [2.0, float('inf'), 1.0] | 
					
						
							|  |  |  |         self.assertEqual(self.func(values), 2.0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nan(self): | 
					
						
							|  |  |  |         # Test harmonic mean with NANs. | 
					
						
							|  |  |  |         values = [2.0, float('nan'), 1.0] | 
					
						
							|  |  |  |         self.assertTrue(math.isnan(self.func(values))) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_multiply_data_points(self): | 
					
						
							|  |  |  |         # Test multiplying every data point by a constant. | 
					
						
							|  |  |  |         c = 111 | 
					
						
							|  |  |  |         data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4] | 
					
						
							|  |  |  |         expected = self.func(data)*c | 
					
						
							|  |  |  |         result = self.func([x*c for x in data]) | 
					
						
							|  |  |  |         self.assertEqual(result, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_doubled_data(self): | 
					
						
							|  |  |  |         # Harmonic mean of [a,b...z] should be same as for [a,a,b,b...z,z]. | 
					
						
							|  |  |  |         data = [random.uniform(1, 5) for _ in range(1000)] | 
					
						
							|  |  |  |         expected = self.func(data) | 
					
						
							|  |  |  |         actual = self.func(data*2) | 
					
						
							|  |  |  |         self.assertApproxEqual(actual, expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | class TestMedian(NumericTestCase, AverageMixin): | 
					
						
							|  |  |  |     # Common tests for median and all median.* functions. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.median | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_data(self): | 
					
						
							|  |  |  |         """Overload method from UnivariateCommonMixin.""" | 
					
						
							|  |  |  |         data = super().prepare_data() | 
					
						
							|  |  |  |         if len(data)%2 != 1: | 
					
						
							|  |  |  |             data.append(2) | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_ints(self): | 
					
						
							|  |  |  |         # Test median with an even number of int data points. | 
					
						
							|  |  |  |         data = [1, 2, 3, 4, 5, 6] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 3.5) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_odd_ints(self): | 
					
						
							|  |  |  |         # Test median with an odd number of int data points. | 
					
						
							|  |  |  |         data = [1, 2, 3, 4, 5, 6, 9] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 4) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_odd_fractions(self): | 
					
						
							|  |  |  |         # Test median works with an odd number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(3, 7)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_fractions(self): | 
					
						
							|  |  |  |         # Test median works with an even number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(1, 2)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_odd_decimals(self): | 
					
						
							|  |  |  |         # Test median works with an odd number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D('4.2')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_decimals(self): | 
					
						
							|  |  |  |         # Test median works with an even number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D('3.65')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestMedianDataType(NumericTestCase, UnivariateTypeMixin): | 
					
						
							|  |  |  |     # Test conservation of data element type for median. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.median | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_data(self): | 
					
						
							|  |  |  |         data = list(range(15)) | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         while data == sorted(data): | 
					
						
							|  |  |  |             random.shuffle(data) | 
					
						
							|  |  |  |         return data | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestMedianLow(TestMedian, UnivariateTypeMixin): | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.median_low | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_ints(self): | 
					
						
							|  |  |  |         # Test median_low with an even number of ints. | 
					
						
							|  |  |  |         data = [1, 2, 3, 4, 5, 6] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 3) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_fractions(self): | 
					
						
							|  |  |  |         # Test median_low works with an even number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(3, 7)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_decimals(self): | 
					
						
							|  |  |  |         # Test median_low works with an even number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D('3.3')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestMedianHigh(TestMedian, UnivariateTypeMixin): | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.median_high | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_ints(self): | 
					
						
							|  |  |  |         # Test median_high with an even number of ints. | 
					
						
							|  |  |  |         data = [1, 2, 3, 4, 5, 6] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 4) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_fractions(self): | 
					
						
							|  |  |  |         # Test median_high works with an even number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), F(4, 7)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_decimals(self): | 
					
						
							|  |  |  |         # Test median_high works with an even number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), D('4.4')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestMedianGrouped(TestMedian): | 
					
						
							|  |  |  |     # Test median_grouped. | 
					
						
							|  |  |  |     # Doesn't conserve data element types, so don't use TestMedianType. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.median_grouped | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_odd_number_repeated(self): | 
					
						
							|  |  |  |         # Test median.grouped with repeated median values. | 
					
						
							|  |  |  |         data = [12, 13, 14, 14, 14, 15, 15] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 14) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [12, 13, 14, 14, 14, 14, 15] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 13.875) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data, 5), 19.375) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_number_repeated(self): | 
					
						
							|  |  |  |         # Test median.grouped with repeated median values. | 
					
						
							|  |  |  |         data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [2, 3, 4, 4, 4, 5] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 4.5) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 4.75) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_repeated_single_value(self): | 
					
						
							|  |  |  |         # Override method from AverageMixin. | 
					
						
							|  |  |  |         # Yet again, failure of median_grouped to conserve the data type | 
					
						
							|  |  |  |         # causes me headaches :-( | 
					
						
							|  |  |  |         for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')): | 
					
						
							|  |  |  |             for count in (2, 5, 10, 20): | 
					
						
							|  |  |  |                 data = [x]*count | 
					
						
							|  |  |  |                 self.assertEqual(self.func(data), float(x)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_odd_fractions(self): | 
					
						
							|  |  |  |         # Test median_grouped works with an odd number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 3.0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_fractions(self): | 
					
						
							|  |  |  |         # Test median_grouped works with an even number of Fractions. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 3.25) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_odd_decimals(self): | 
					
						
							|  |  |  |         # Test median_grouped works with an odd number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')] | 
					
						
							|  |  |  |         assert len(data)%2 == 1 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 6.75) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_even_decimals(self): | 
					
						
							|  |  |  |         # Test median_grouped works with an even number of Decimals. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 6.5) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')] | 
					
						
							|  |  |  |         assert len(data)%2 == 0 | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 7.0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_interval(self): | 
					
						
							|  |  |  |         # Test median_grouped with interval argument. | 
					
						
							|  |  |  |         data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75] | 
					
						
							|  |  |  |         self.assertEqual(self.func(data, 0.25), 2.875) | 
					
						
							|  |  |  |         data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75] | 
					
						
							|  |  |  |         self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8) | 
					
						
							|  |  |  |         data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340] | 
					
						
							|  |  |  |         self.assertEqual(self.func(data, 20), 265.0) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-07-08 02:38:45 +10:00
										 |  |  |     def test_data_type_error(self): | 
					
						
							|  |  |  |         # Test median_grouped with str, bytes data types for data and interval | 
					
						
							|  |  |  |         data = ["", "", ""] | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, data) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [b"", b"", b""] | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, data) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [1, 2, 3] | 
					
						
							|  |  |  |         interval = "" | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, data, interval) | 
					
						
							|  |  |  |         #--- | 
					
						
							|  |  |  |         data = [1, 2, 3] | 
					
						
							|  |  |  |         interval = b"" | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, data, interval) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin): | 
					
						
							|  |  |  |     # Test cases for the discrete version of mode. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.mode | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def prepare_data(self): | 
					
						
							|  |  |  |         """Overload method from UnivariateCommonMixin.""" | 
					
						
							|  |  |  |         # Make sure test data has exactly one mode. | 
					
						
							|  |  |  |         return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_range_data(self): | 
					
						
							|  |  |  |         # Override test from UnivariateCommonMixin. | 
					
						
							|  |  |  |         data = range(20, 50, 3) | 
					
						
							|  |  |  |         self.assertRaises(statistics.StatisticsError, self.func, data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_nominal_data(self): | 
					
						
							|  |  |  |         # Test mode with nominal data. | 
					
						
							|  |  |  |         data = 'abcbdb' | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 'b') | 
					
						
							|  |  |  |         data = 'fe fi fo fum fi fi'.split() | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), 'fi') | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_discrete_data(self): | 
					
						
							|  |  |  |         # Test mode with discrete numeric data. | 
					
						
							|  |  |  |         data = list(range(10)) | 
					
						
							|  |  |  |         for i in range(10): | 
					
						
							|  |  |  |             d = data + [i] | 
					
						
							|  |  |  |             random.shuffle(d) | 
					
						
							|  |  |  |             self.assertEqual(self.func(d), i) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_bimodal_data(self): | 
					
						
							|  |  |  |         # Test mode with bimodal data. | 
					
						
							|  |  |  |         data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9] | 
					
						
							|  |  |  |         assert data.count(2) == data.count(6) == 4 | 
					
						
							|  |  |  |         # Check for an exception. | 
					
						
							|  |  |  |         self.assertRaises(statistics.StatisticsError, self.func, data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_unique_data_failure(self): | 
					
						
							|  |  |  |         # Test mode exception when data points are all unique. | 
					
						
							|  |  |  |         data = list(range(10)) | 
					
						
							|  |  |  |         self.assertRaises(statistics.StatisticsError, self.func, data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_none_data(self): | 
					
						
							|  |  |  |         # Test that mode raises TypeError if given None as data. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # This test is necessary because the implementation of mode uses | 
					
						
							|  |  |  |         # collections.Counter, which accepts None and returns an empty dict. | 
					
						
							|  |  |  |         self.assertRaises(TypeError, self.func, None) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-02-08 19:44:16 +10:00
										 |  |  |     def test_counter_data(self): | 
					
						
							|  |  |  |         # Test that a Counter is treated like any other iterable. | 
					
						
							|  |  |  |         data = collections.Counter([1, 1, 1, 2]) | 
					
						
							|  |  |  |         # Since the keys of the counter are treated as data points, not the | 
					
						
							|  |  |  |         # counts, this should raise. | 
					
						
							|  |  |  |         self.assertRaises(statistics.StatisticsError, self.func, data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-10-19 11:50:09 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | # === Tests for variances and standard deviations === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class VarianceStdevMixin(UnivariateCommonMixin): | 
					
						
							|  |  |  |     # Mixin class holding common tests for variance and std dev. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Subclasses should inherit from this before NumericTestClass, in order | 
					
						
							|  |  |  |     # to see the rel attribute below. See testShiftData for an explanation. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     rel = 1e-12 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_single_value(self): | 
					
						
							|  |  |  |         # Deviation of a single value is zero. | 
					
						
							|  |  |  |         for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')): | 
					
						
							|  |  |  |             self.assertEqual(self.func([x]), 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_repeated_single_value(self): | 
					
						
							|  |  |  |         # The deviation of a single repeated value is zero. | 
					
						
							|  |  |  |         for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')): | 
					
						
							|  |  |  |             for count in (2, 3, 5, 15): | 
					
						
							|  |  |  |                 data = [x]*count | 
					
						
							|  |  |  |                 self.assertEqual(self.func(data), 0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_domain_error_regression(self): | 
					
						
							|  |  |  |         # Regression test for a domain error exception. | 
					
						
							|  |  |  |         # (Thanks to Geremy Condra.) | 
					
						
							|  |  |  |         data = [0.123456789012345]*10000 | 
					
						
							|  |  |  |         # All the items are identical, so variance should be exactly zero. | 
					
						
							|  |  |  |         # We allow some small round-off error, but not much. | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertApproxEqual(result, 0.0, tol=5e-17) | 
					
						
							|  |  |  |         self.assertGreaterEqual(result, 0)  # A negative result must fail. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_shift_data(self): | 
					
						
							|  |  |  |         # Test that shifting the data by a constant amount does not affect | 
					
						
							|  |  |  |         # the variance or stdev. Or at least not much. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Due to rounding, this test should be considered an ideal. We allow | 
					
						
							|  |  |  |         # some tolerance away from "no change at all" by setting tol and/or rel | 
					
						
							|  |  |  |         # attributes. Subclasses may set tighter or looser error tolerances. | 
					
						
							|  |  |  |         raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78] | 
					
						
							|  |  |  |         expected = self.func(raw) | 
					
						
							|  |  |  |         # Don't set shift too high, the bigger it is, the more rounding error. | 
					
						
							|  |  |  |         shift = 1e5 | 
					
						
							|  |  |  |         data = [x + shift for x in raw] | 
					
						
							|  |  |  |         self.assertApproxEqual(self.func(data), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_shift_data_exact(self): | 
					
						
							|  |  |  |         # Like test_shift_data, but result is always exact. | 
					
						
							|  |  |  |         raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16] | 
					
						
							|  |  |  |         assert all(x==int(x) for x in raw) | 
					
						
							|  |  |  |         expected = self.func(raw) | 
					
						
							|  |  |  |         shift = 10**9 | 
					
						
							|  |  |  |         data = [x + shift for x in raw] | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_iter_list_same(self): | 
					
						
							|  |  |  |         # Test that iter data and list data give the same result. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # This is an explicit test that iterators and lists are treated the | 
					
						
							|  |  |  |         # same; justification for this test over and above the similar test | 
					
						
							|  |  |  |         # in UnivariateCommonMixin is that an earlier design had variance and | 
					
						
							|  |  |  |         # friends swap between one- and two-pass algorithms, which would | 
					
						
							|  |  |  |         # sometimes give different results. | 
					
						
							|  |  |  |         data = [random.uniform(-3, 8) for _ in range(1000)] | 
					
						
							|  |  |  |         expected = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(self.func(iter(data)), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin): | 
					
						
							|  |  |  |     # Tests for population variance. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.pvariance | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_exact_uniform(self): | 
					
						
							|  |  |  |         # Test the variance against an exact result for uniform data. | 
					
						
							|  |  |  |         data = list(range(10000)) | 
					
						
							|  |  |  |         random.shuffle(data) | 
					
						
							|  |  |  |         expected = (10000**2 - 1)/12  # Exact value. | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_ints(self): | 
					
						
							|  |  |  |         # Test population variance with int data. | 
					
						
							|  |  |  |         data = [4, 7, 13, 16] | 
					
						
							|  |  |  |         exact = 22.5 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), exact) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fractions(self): | 
					
						
							|  |  |  |         # Test population variance with Fraction data. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)] | 
					
						
							|  |  |  |         exact = F(3, 8) | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(result, exact) | 
					
						
							|  |  |  |         self.assertIsInstance(result, Fraction) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimals(self): | 
					
						
							|  |  |  |         # Test population variance with Decimal data. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")] | 
					
						
							|  |  |  |         exact = D('0.096875') | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(result, exact) | 
					
						
							|  |  |  |         self.assertIsInstance(result, Decimal) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin): | 
					
						
							|  |  |  |     # Tests for sample variance. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.variance | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_single_value(self): | 
					
						
							|  |  |  |         # Override method from VarianceStdevMixin. | 
					
						
							|  |  |  |         for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')): | 
					
						
							|  |  |  |             self.assertRaises(statistics.StatisticsError, self.func, [x]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_ints(self): | 
					
						
							|  |  |  |         # Test sample variance with int data. | 
					
						
							|  |  |  |         data = [4, 7, 13, 16] | 
					
						
							|  |  |  |         exact = 30 | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), exact) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fractions(self): | 
					
						
							|  |  |  |         # Test sample variance with Fraction data. | 
					
						
							|  |  |  |         F = Fraction | 
					
						
							|  |  |  |         data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)] | 
					
						
							|  |  |  |         exact = F(1, 2) | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(result, exact) | 
					
						
							|  |  |  |         self.assertIsInstance(result, Fraction) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_decimals(self): | 
					
						
							|  |  |  |         # Test sample variance with Decimal data. | 
					
						
							|  |  |  |         D = Decimal | 
					
						
							|  |  |  |         data = [D(2), D(2), D(7), D(9)] | 
					
						
							|  |  |  |         exact = 4*D('9.5')/D(3) | 
					
						
							|  |  |  |         result = self.func(data) | 
					
						
							|  |  |  |         self.assertEqual(result, exact) | 
					
						
							|  |  |  |         self.assertIsInstance(result, Decimal) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestPStdev(VarianceStdevMixin, NumericTestCase): | 
					
						
							|  |  |  |     # Tests for population standard deviation. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.pstdev | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_compare_to_variance(self): | 
					
						
							|  |  |  |         # Test that stdev is, in fact, the square root of variance. | 
					
						
							|  |  |  |         data = [random.uniform(-17, 24) for _ in range(1000)] | 
					
						
							|  |  |  |         expected = math.sqrt(statistics.pvariance(data)) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TestStdev(VarianceStdevMixin, NumericTestCase): | 
					
						
							|  |  |  |     # Tests for sample standard deviation. | 
					
						
							|  |  |  |     def setUp(self): | 
					
						
							|  |  |  |         self.func = statistics.stdev | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_single_value(self): | 
					
						
							|  |  |  |         # Override method from VarianceStdevMixin. | 
					
						
							|  |  |  |         for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')): | 
					
						
							|  |  |  |             self.assertRaises(statistics.StatisticsError, self.func, [x]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_compare_to_variance(self): | 
					
						
							|  |  |  |         # Test that stdev is, in fact, the square root of variance. | 
					
						
							|  |  |  |         data = [random.uniform(-2, 9) for _ in range(1000)] | 
					
						
							|  |  |  |         expected = math.sqrt(statistics.variance(data)) | 
					
						
							|  |  |  |         self.assertEqual(self.func(data), expected) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # === Run tests === | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def load_tests(loader, tests, ignore): | 
					
						
							|  |  |  |     """Used for doctest/unittest integration.""" | 
					
						
							|  |  |  |     tests.addTests(doctest.DocTestSuite()) | 
					
						
							|  |  |  |     return tests | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  |     unittest.main() |