mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 15:41:43 +00:00 
			
		
		
		
	
		
			
	
	
		
			251 lines
		
	
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			251 lines
		
	
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								# Copyright (c) 2010 Python Software Foundation. All Rights Reserved.
							 | 
						||
| 
								 | 
							
								# Adapted from Python's Lib/test/test_strtod.py (by Mark Dickinson)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# More test cases for deccheck.py.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import random
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								TEST_SIZE = 2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_short_halfway_cases():
							 | 
						||
| 
								 | 
							
								    # exact halfway cases with a small number of significant digits
							 | 
						||
| 
								 | 
							
								    for k in 0, 5, 10, 15, 20:
							 | 
						||
| 
								 | 
							
								        # upper = smallest integer >= 2**54/5**k
							 | 
						||
| 
								 | 
							
								        upper = -(-2**54//5**k)
							 | 
						||
| 
								 | 
							
								        # lower = smallest odd number >= 2**53/5**k
							 | 
						||
| 
								 | 
							
								        lower = -(-2**53//5**k)
							 | 
						||
| 
								 | 
							
								        if lower % 2 == 0:
							 | 
						||
| 
								 | 
							
								            lower += 1
							 | 
						||
| 
								 | 
							
								        for i in range(10 * TEST_SIZE):
							 | 
						||
| 
								 | 
							
								            # Select a random odd n in [2**53/5**k,
							 | 
						||
| 
								 | 
							
								            # 2**54/5**k). Then n * 10**k gives a halfway case
							 | 
						||
| 
								 | 
							
								            # with small number of significant digits.
							 | 
						||
| 
								 | 
							
								            n, e = random.randrange(lower, upper, 2), k
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            # Remove any additional powers of 5.
							 | 
						||
| 
								 | 
							
								            while n % 5 == 0:
							 | 
						||
| 
								 | 
							
								                n, e = n // 5, e + 1
							 | 
						||
| 
								 | 
							
								            assert n % 10 in (1, 3, 7, 9)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            # Try numbers of the form n * 2**p2 * 10**e, p2 >= 0,
							 | 
						||
| 
								 | 
							
								            # until n * 2**p2 has more than 20 significant digits.
							 | 
						||
| 
								 | 
							
								            digits, exponent = n, e
							 | 
						||
| 
								 | 
							
								            while digits < 10**20:
							 | 
						||
| 
								 | 
							
								                s = '{}e{}'.format(digits, exponent)
							 | 
						||
| 
								 | 
							
								                yield s
							 | 
						||
| 
								 | 
							
								                # Same again, but with extra trailing zeros.
							 | 
						||
| 
								 | 
							
								                s = '{}e{}'.format(digits * 10**40, exponent - 40)
							 | 
						||
| 
								 | 
							
								                yield s
							 | 
						||
| 
								 | 
							
								                digits *= 2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            # Try numbers of the form n * 5**p2 * 10**(e - p5), p5
							 | 
						||
| 
								 | 
							
								            # >= 0, with n * 5**p5 < 10**20.
							 | 
						||
| 
								 | 
							
								            digits, exponent = n, e
							 | 
						||
| 
								 | 
							
								            while digits < 10**20:
							 | 
						||
| 
								 | 
							
								                s = '{}e{}'.format(digits, exponent)
							 | 
						||
| 
								 | 
							
								                yield s
							 | 
						||
| 
								 | 
							
								                # Same again, but with extra trailing zeros.
							 | 
						||
| 
								 | 
							
								                s = '{}e{}'.format(digits * 10**40, exponent - 40)
							 | 
						||
| 
								 | 
							
								                yield s
							 | 
						||
| 
								 | 
							
								                digits *= 5
							 | 
						||
| 
								 | 
							
								                exponent -= 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_halfway_cases():
							 | 
						||
| 
								 | 
							
								    # test halfway cases for the round-half-to-even rule
							 | 
						||
| 
								 | 
							
								    for i in range(1000):
							 | 
						||
| 
								 | 
							
								        for j in range(TEST_SIZE):
							 | 
						||
| 
								 | 
							
								            # bit pattern for a random finite positive (or +0.0) float
							 | 
						||
| 
								 | 
							
								            bits = random.randrange(2047*2**52)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            # convert bit pattern to a number of the form m * 2**e
							 | 
						||
| 
								 | 
							
								            e, m = divmod(bits, 2**52)
							 | 
						||
| 
								 | 
							
								            if e:
							 | 
						||
| 
								 | 
							
								                m, e = m + 2**52, e - 1
							 | 
						||
| 
								 | 
							
								            e -= 1074
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            # add 0.5 ulps
							 | 
						||
| 
								 | 
							
								            m, e = 2*m + 1, e - 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            # convert to a decimal string
							 | 
						||
| 
								 | 
							
								            if e >= 0:
							 | 
						||
| 
								 | 
							
								                digits = m << e
							 | 
						||
| 
								 | 
							
								                exponent = 0
							 | 
						||
| 
								 | 
							
								            else:
							 | 
						||
| 
								 | 
							
								                # m * 2**e = (m * 5**-e) * 10**e
							 | 
						||
| 
								 | 
							
								                digits = m * 5**-e
							 | 
						||
| 
								 | 
							
								                exponent = e
							 | 
						||
| 
								 | 
							
								            s = '{}e{}'.format(digits, exponent)
							 | 
						||
| 
								 | 
							
								            yield s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_boundaries():
							 | 
						||
| 
								 | 
							
								    # boundaries expressed as triples (n, e, u), where
							 | 
						||
| 
								 | 
							
								    # n*10**e is an approximation to the boundary value and
							 | 
						||
| 
								 | 
							
								    # u*10**e is 1ulp
							 | 
						||
| 
								 | 
							
								    boundaries = [
							 | 
						||
| 
								 | 
							
								        (10000000000000000000, -19, 1110),   # a power of 2 boundary (1.0)
							 | 
						||
| 
								 | 
							
								        (17976931348623159077, 289, 1995),   # overflow boundary (2.**1024)
							 | 
						||
| 
								 | 
							
								        (22250738585072013831, -327, 4941),  # normal/subnormal (2.**-1022)
							 | 
						||
| 
								 | 
							
								        (0, -327, 4941),                     # zero
							 | 
						||
| 
								 | 
							
								        ]
							 | 
						||
| 
								 | 
							
								    for n, e, u in boundaries:
							 | 
						||
| 
								 | 
							
								        for j in range(1000):
							 | 
						||
| 
								 | 
							
								            for i in range(TEST_SIZE):
							 | 
						||
| 
								 | 
							
								                digits = n + random.randrange(-3*u, 3*u)
							 | 
						||
| 
								 | 
							
								                exponent = e
							 | 
						||
| 
								 | 
							
								                s = '{}e{}'.format(digits, exponent)
							 | 
						||
| 
								 | 
							
								                yield s
							 | 
						||
| 
								 | 
							
								            n *= 10
							 | 
						||
| 
								 | 
							
								            u *= 10
							 | 
						||
| 
								 | 
							
								            e -= 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_underflow_boundary():
							 | 
						||
| 
								 | 
							
								    # test values close to 2**-1075, the underflow boundary; similar
							 | 
						||
| 
								 | 
							
								    # to boundary_tests, except that the random error doesn't scale
							 | 
						||
| 
								 | 
							
								    # with n
							 | 
						||
| 
								 | 
							
								    for exponent in range(-400, -320):
							 | 
						||
| 
								 | 
							
								        base = 10**-exponent // 2**1075
							 | 
						||
| 
								 | 
							
								        for j in range(TEST_SIZE):
							 | 
						||
| 
								 | 
							
								            digits = base + random.randrange(-1000, 1000)
							 | 
						||
| 
								 | 
							
								            s = '{}e{}'.format(digits, exponent)
							 | 
						||
| 
								 | 
							
								            yield s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_bigcomp():
							 | 
						||
| 
								 | 
							
								    for ndigs in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50:
							 | 
						||
| 
								 | 
							
								        dig10 = 10**ndigs
							 | 
						||
| 
								 | 
							
								        for i in range(100 * TEST_SIZE):
							 | 
						||
| 
								 | 
							
								            digits = random.randrange(dig10)
							 | 
						||
| 
								 | 
							
								            exponent = random.randrange(-400, 400)
							 | 
						||
| 
								 | 
							
								            s = '{}e{}'.format(digits, exponent)
							 | 
						||
| 
								 | 
							
								            yield s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_parsing():
							 | 
						||
| 
								 | 
							
								    # make '0' more likely to be chosen than other digits
							 | 
						||
| 
								 | 
							
								    digits = '000000123456789'
							 | 
						||
| 
								 | 
							
								    signs = ('+', '-', '')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # put together random short valid strings
							 | 
						||
| 
								 | 
							
								    # \d*[.\d*]?e
							 | 
						||
| 
								 | 
							
								    for i in range(1000):
							 | 
						||
| 
								 | 
							
								        for j in range(TEST_SIZE):
							 | 
						||
| 
								 | 
							
								            s = random.choice(signs)
							 | 
						||
| 
								 | 
							
								            intpart_len = random.randrange(5)
							 | 
						||
| 
								 | 
							
								            s += ''.join(random.choice(digits) for _ in range(intpart_len))
							 | 
						||
| 
								 | 
							
								            if random.choice([True, False]):
							 | 
						||
| 
								 | 
							
								                s += '.'
							 | 
						||
| 
								 | 
							
								                fracpart_len = random.randrange(5)
							 | 
						||
| 
								 | 
							
								                s += ''.join(random.choice(digits)
							 | 
						||
| 
								 | 
							
								                             for _ in range(fracpart_len))
							 | 
						||
| 
								 | 
							
								            else:
							 | 
						||
| 
								 | 
							
								                fracpart_len = 0
							 | 
						||
| 
								 | 
							
								            if random.choice([True, False]):
							 | 
						||
| 
								 | 
							
								                s += random.choice(['e', 'E'])
							 | 
						||
| 
								 | 
							
								                s += random.choice(signs)
							 | 
						||
| 
								 | 
							
								                exponent_len = random.randrange(1, 4)
							 | 
						||
| 
								 | 
							
								                s += ''.join(random.choice(digits)
							 | 
						||
| 
								 | 
							
								                             for _ in range(exponent_len))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            if intpart_len + fracpart_len:
							 | 
						||
| 
								 | 
							
								                yield s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								test_particular = [
							 | 
						||
| 
								 | 
							
								     # squares
							 | 
						||
| 
								 | 
							
								    '1.00000000100000000025',
							 | 
						||
| 
								 | 
							
								    '1.0000000000000000000000000100000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '00025',
							 | 
						||
| 
								 | 
							
								    '1.0000000000000000000000000000000000000000000010000' #...
							 | 
						||
| 
								 | 
							
								    '0000000000000000000000000000000000000000025',
							 | 
						||
| 
								 | 
							
								    '1.0000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000001000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000025',
							 | 
						||
| 
								 | 
							
								    '0.99999999900000000025',
							 | 
						||
| 
								 | 
							
								    '0.9999999999999999999999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '999000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000025',
							 | 
						||
| 
								 | 
							
								    '0.9999999999999999999999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '999999999999999999999999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '999999999999999999999999999999999999999990000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '0000000000000000000000000000025',
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    '1.0000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '100000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000000000001',
							 | 
						||
| 
								 | 
							
								    '1.0000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '500000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000000000005',
							 | 
						||
| 
								 | 
							
								    '1.0000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000100000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000250000000000000002000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000010000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '0000000000000000001',
							 | 
						||
| 
								 | 
							
								    '1.0000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000100000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000249999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '999999999999979999999999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '999999999999999999999900000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '00000000000000000000000001',
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    '0.9999999999999999999999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '999999999900000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000249999999999999998000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000010000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '0000000000000000001',
							 | 
						||
| 
								 | 
							
								    '0.9999999999999999999999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '999999999900000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000250000001999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '999999999999999999999999999999999990000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '000000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '1',
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # tough cases for ln etc.
							 | 
						||
| 
								 | 
							
								    '1.000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '00000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '00100000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '00000000000000000000000000000000000000000000000000' #...
							 | 
						||
| 
								 | 
							
								    '0001',
							 | 
						||
| 
								 | 
							
								    '0.999999999999999999999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '99999999999999999999999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '99899999999999999999999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '99999999999999999999999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '99999999999999999999999999999999999999999999999999' #...
							 | 
						||
| 
								 | 
							
								    '9999'
							 | 
						||
| 
								 | 
							
								    ]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								TESTCASES = [
							 | 
						||
| 
								 | 
							
								      [x for x in test_short_halfway_cases()],
							 | 
						||
| 
								 | 
							
								      [x for x in test_halfway_cases()],
							 | 
						||
| 
								 | 
							
								      [x for x in test_boundaries()],
							 | 
						||
| 
								 | 
							
								      [x for x in test_underflow_boundary()],
							 | 
						||
| 
								 | 
							
								      [x for x in test_bigcomp()],
							 | 
						||
| 
								 | 
							
								      [x for x in test_parsing()],
							 | 
						||
| 
								 | 
							
								      test_particular
							 | 
						||
| 
								 | 
							
								]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def un_randfloat():
							 | 
						||
| 
								 | 
							
								    for i in range(1000):
							 | 
						||
| 
								 | 
							
								        l = random.choice(TESTCASES[:6])
							 | 
						||
| 
								 | 
							
								        yield random.choice(l)
							 | 
						||
| 
								 | 
							
								    for v in test_particular:
							 | 
						||
| 
								 | 
							
								        yield v
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def bin_randfloat():
							 | 
						||
| 
								 | 
							
								    for i in range(1000):
							 | 
						||
| 
								 | 
							
								        l1 = random.choice(TESTCASES)
							 | 
						||
| 
								 | 
							
								        l2 = random.choice(TESTCASES)
							 | 
						||
| 
								 | 
							
								        yield random.choice(l1), random.choice(l2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def tern_randfloat():
							 | 
						||
| 
								 | 
							
								    for i in range(1000):
							 | 
						||
| 
								 | 
							
								        l1 = random.choice(TESTCASES)
							 | 
						||
| 
								 | 
							
								        l2 = random.choice(TESTCASES)
							 | 
						||
| 
								 | 
							
								        l3 = random.choice(TESTCASES)
							 | 
						||
| 
								 | 
							
								        yield random.choice(l1), random.choice(l2), random.choice(l3)
							 |