This version of CPython can be built with an experimental just-in-time compiler[^pep-744]. While most everything you already know about building and using CPython is unchanged, you will probably need to install a compatible version of LLVM first.
The JIT compiler does not require end users to install any third-party dependencies, but part of it must be *built* using LLVM[^why-llvm]. You are *not* required to build the rest of CPython using LLVM, or even the same version of LLVM (in fact, this is uncommon).
LLVM version 20 is the officially supported version. You can modify if needed using the `LLVM_VERSION` env var during configure. Both `clang` and `llvm-readobj` need to be installed and discoverable (version suffixes, like `clang-19`, are okay). It's highly recommended that you also have `llvm-objdump` available, since this allows the build script to dump human-readable assembly for the generated code.
Otherwise, you can install LLVM 20 [by searching for it on LLVM's GitHub releases page](https://github.com/llvm/llvm-project/releases?q=20), clicking on "Assets", downloading the appropriate Windows installer for your platform (likely the file ending with `-win64.exe`), and running it. **When installing, be sure to select the option labeled "Add LLVM to the system PATH".**
The JIT can also be enabled or disabled using the `PYTHON_JIT` environment variable, even on builds where it is enabled or disabled by default. More details about configuring CPython with the JIT and optional values for `--enable-experimental-jit` can be found [here](https://docs.python.org/dev/using/configure.html#cmdoption-enable-experimental-jit).
[^why-llvm]: Clang is specifically needed because it's the only C compiler with support for guaranteed tail calls (`musttail`), which are required by CPython's continuation-passing-style approach to JIT compilation. Since LLVM also includes other functionalities we need (namely, object file parsing and disassembly), it's convenient to only support one toolchain at this time.