1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#	R A N D O M   V A R I A B L E   G E N E R A T O R S
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#	distributions on the real line:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#	------------------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#	       normal (Gaussian)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#	       lognormal
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#	       negative exponential
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#	       gamma
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								#	       beta
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#	distributions on the circle (angles 0 to 2pi)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#	---------------------------------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#	       circular uniform
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#	       von Mises
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# Translated from anonymously contributed C/C++ source.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								from whrandom import random, uniform, randint, choice # Also for export!
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								from math import log, exp, pi, e, sqrt, acos, cos, sin
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# Housekeeping function to verify that magic constants have been
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# computed correctly
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def verify(name, expected):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									computed = eval(name)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									if abs(computed - expected) > 1e-7:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										raise ValueError, \
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  'computed value for %s deviates too much (computed %g, expected %g)' % \
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  (name, computed, expected)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# -------------------- normal distribution --------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								verify('NV_MAGICCONST', 1.71552776992141)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def normalvariate(mu, sigma):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# mu = mean, sigma = standard deviation
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# Uses Kinderman and Monahan method. Reference: Kinderman,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# A.J. and Monahan, J.F., "Computer generation of random
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# variables using the ratio of uniform deviates", ACM Trans
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# Math Software, 3, (1977), pp257-260.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									while 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										u1 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										u2 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										z = NV_MAGICCONST*(u1-0.5)/u2
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
										zz = z*z/4.0
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
										if zz <= -log(u2):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									return mu+z*sigma
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# -------------------- lognormal distribution --------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def lognormvariate(mu, sigma):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									return exp(normalvariate(mu, sigma))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# -------------------- circular uniform --------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def cunifvariate(mean, arc):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# mean: mean angle (in radians between 0 and pi)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# arc:  range of distribution (in radians between 0 and pi)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									return (mean + arc * (random() - 0.5)) % pi
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# -------------------- exponential distribution --------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def expovariate(lambd):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# lambd: rate lambd = 1/mean
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# ('lambda' is a Python reserved word)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									u = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									while u <= 1e-7:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										u = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									return -log(u)/lambd
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# -------------------- von Mises distribution --------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								TWOPI = 2.0*pi
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								verify('TWOPI', 6.28318530718)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def vonmisesvariate(mu, kappa):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# mu:    mean angle (in radians between 0 and 180 degrees)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# kappa: concentration parameter kappa (>= 0)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# if kappa = 0 generate uniform random angle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									if kappa <= 1e-6:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										return TWOPI * random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									b = (a - sqrt(2.0 * a))/(2.0 * kappa)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									r = (1.0 + b * b)/(2.0 * b)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									while 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										u1 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										z = cos(pi * u1)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
										f = (1.0 + r * z)/(r + z)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
										c = kappa * (r - f)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										u2 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									u3 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									if u3 > 0.5:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										theta = mu + 0.5*acos(f)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										theta = mu - 0.5*acos(f)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									return theta % pi
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# -------------------- gamma distribution --------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								LOG4 = log(4.0)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								verify('LOG4', 1.38629436111989)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def gammavariate(alpha, beta):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        # beta times standard gamma
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									ainv = sqrt(2.0 * alpha - 1.0)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								SG_MAGICCONST = 1.0 + log(4.5)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								verify('SG_MAGICCONST', 2.50407739677627)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def stdgamma(alpha, ainv, bbb, ccc):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# ainv = sqrt(2 * alpha - 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# bbb = alpha - log(4)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# ccc = alpha + ainv
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									if alpha <= 0.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										raise ValueError, 'stdgamma: alpha must be > 0.0'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									if alpha > 1.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										# Uses R.C.H. Cheng, "The generation of Gamma
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										# variables with non-integral shape parameters",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										# Applied Statistics, (1977), 26, No. 1, p71-74
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										while 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											u1 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											u2 = random()
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
											v = log(u1/(1.0-u1))/ainv
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
											x = alpha*exp(v)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											z = u1*u1*u2
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											r = bbb+ccc*v-x
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
											if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
												return x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									elif alpha == 1.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										# expovariate(1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										u = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										while u <= 1e-7:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											u = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										return -log(u)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									else:	# alpha is between 0 and 1 (exclusive)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										while 1:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											u = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											b = (e + alpha)/e
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											p = b*u
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											if p <= 1.0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
												x = pow(p, 1.0/alpha)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
												# p > 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
												x = -log((b-p)/alpha)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											u1 = random()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											if not (((p <= 1.0) and (u1 > exp(-x))) or
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
												  ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
												break
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										return x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# -------------------- Gauss (faster alternative) --------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								gauss_next = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def gauss(mu, sigma):
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# When x and y are two variables from [0, 1), uniformly
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# distributed, then
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									#
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									#    cos(2*pi*x)*log(1-y)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									#    sin(2*pi*x)*log(1-y)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									#
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# are two *independent* variables with normal distribution
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# (mu = 0, sigma = 1).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# (Lambert Meertens)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									global gauss_next
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									if gauss_next != None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										z = gauss_next
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										gauss_next = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										x2pi = random() * TWOPI
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										log1_y = log(1.0 - random())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										z = cos(x2pi) * log1_y
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										gauss_next = sin(x2pi) * log1_y
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									return mu + z*sigma
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# -------------------- beta --------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def betavariate(alpha, beta):
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									# Discrete Event Simulation in C, pp 87-88.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									y = expovariate(alpha)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									z = expovariate(1.0/beta)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									return z/(y+z)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								# -------------------- test program --------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											1994-05-06 14:28:19 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								def test(N = 200):
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									print 'TWOPI         =', TWOPI
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									print 'LOG4          =', LOG4
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									print 'NV_MAGICCONST =', NV_MAGICCONST
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									print 'SG_MAGICCONST =', SG_MAGICCONST
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'random()')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'normalvariate(0.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'lognormvariate(0.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'cunifvariate(0.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'expovariate(1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'vonmisesvariate(0.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'gammavariate(0.5, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'gammavariate(0.9, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'gammavariate(1.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'gammavariate(2.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'gammavariate(20.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'gammavariate(200.0, 1.0)')
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'gauss(0.0, 1.0)')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test_generator(N, 'betavariate(3.0, 3.0)')
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								def test_generator(n, funccall):
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									import time
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									print n, 'times', funccall
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									code = compile(funccall, funccall, 'eval')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									sum = 0.0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									sqsum = 0.0
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									smallest = 1e10
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-15 16:10:24 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									largest = -1e10
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									t0 = time.time()
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									for i in range(n):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										x = eval(code)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										sum = sum + x
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										sqsum = sqsum + x*x
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
										smallest = min(x, smallest)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										largest = max(x, largest)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									t1 = time.time()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									print round(t1-t0, 3), 'sec,', 
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									avg = sum/n
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									stddev = sqrt(sqsum/n - avg*avg)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 14:21:05 +00:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									print 'avg %g, stddev %g, min %g, max %g' % \
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										  (avg, stddev, smallest, largest)
							 | 
						
					
						
							
								
									
										
										
										
											1994-03-09 12:55:02 +00:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								if __name__ == '__main__':
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									test()
							 |