| 
									
										
										
										
											2008-04-18 23:13:07 +00:00
										 |  |  | #include "Python.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef HAVE_HYPOT
 | 
					
						
							|  |  |  | double hypot(double x, double y) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	double yx; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	x = fabs(x); | 
					
						
							|  |  |  | 	y = fabs(y); | 
					
						
							|  |  |  | 	if (x < y) { | 
					
						
							|  |  |  | 		double temp = x; | 
					
						
							|  |  |  | 		x = y; | 
					
						
							|  |  |  | 		y = temp; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	if (x == 0.) | 
					
						
							|  |  |  | 		return 0.; | 
					
						
							|  |  |  | 	else { | 
					
						
							|  |  |  | 		yx = y/x; | 
					
						
							|  |  |  | 		return x*sqrt(1.+yx*yx); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif /* HAVE_HYPOT */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef HAVE_COPYSIGN
 | 
					
						
							|  |  |  | static double | 
					
						
							|  |  |  | copysign(double x, double y) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	/* use atan2 to distinguish -0. from 0. */ | 
					
						
							|  |  |  | 	if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) { | 
					
						
							|  |  |  | 		return fabs(x); | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		return -fabs(x); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif /* HAVE_COPYSIGN */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef HAVE_LOG1P
 | 
					
						
							| 
									
										
										
										
											2008-09-22 14:11:41 +00:00
										 |  |  | #include <float.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2008-04-18 23:13:07 +00:00
										 |  |  | double | 
					
						
							|  |  |  | log1p(double x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	/* For x small, we use the following approach.  Let y be the nearest
 | 
					
						
							|  |  |  | 	   float to 1+x, then | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	     1+x = y * (1 - (y-1-x)/y) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny, | 
					
						
							|  |  |  | 	   the second term is well approximated by (y-1-x)/y.  If abs(x) >= | 
					
						
							|  |  |  | 	   DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest | 
					
						
							|  |  |  | 	   then y-1-x will be exactly representable, and is computed exactly | 
					
						
							|  |  |  | 	   by (y-1)-x. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	   If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be | 
					
						
							|  |  |  | 	   round-to-nearest then this method is slightly dangerous: 1+x could | 
					
						
							|  |  |  | 	   be rounded up to 1+DBL_EPSILON instead of down to 1, and in that | 
					
						
							|  |  |  | 	   case y-1-x will not be exactly representable any more and the | 
					
						
							|  |  |  | 	   result can be off by many ulps.  But this is easily fixed: for a | 
					
						
							|  |  |  | 	   floating-point number |x| < DBL_EPSILON/2., the closest | 
					
						
							|  |  |  | 	   floating-point number to log(1+x) is exactly x. | 
					
						
							|  |  |  | 	*/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	double y; | 
					
						
							|  |  |  | 	if (fabs(x) < DBL_EPSILON/2.) { | 
					
						
							|  |  |  | 		return x; | 
					
						
							|  |  |  | 	} else if (-0.5 <= x && x <= 1.) { | 
					
						
							|  |  |  | 		/* WARNING: it's possible than an overeager compiler
 | 
					
						
							|  |  |  | 		   will incorrectly optimize the following two lines | 
					
						
							|  |  |  | 		   to the equivalent of "return log(1.+x)". If this | 
					
						
							|  |  |  | 		   happens, then results from log1p will be inaccurate | 
					
						
							|  |  |  | 		   for small x. */ | 
					
						
							|  |  |  | 		y = 1.+x; | 
					
						
							|  |  |  | 		return log(y)-((y-1.)-x)/y; | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		/* NaNs and infinities should end up here */ | 
					
						
							|  |  |  | 		return log(1.+x); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif /* HAVE_LOG1P */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |  * ==================================================== | 
					
						
							|  |  |  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
					
						
							|  |  |  |  * Permission to use, copy, modify, and distribute this | 
					
						
							|  |  |  |  * software is freely granted, provided that this notice  | 
					
						
							|  |  |  |  * is preserved. | 
					
						
							|  |  |  |  * ==================================================== | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static const double ln2 = 6.93147180559945286227E-01; | 
					
						
							|  |  |  | static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */ | 
					
						
							|  |  |  | static const double two_pow_p28 = 268435456.0; /* 2**28 */ | 
					
						
							|  |  |  | static const double zero = 0.0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* asinh(x)
 | 
					
						
							|  |  |  |  * Method : | 
					
						
							|  |  |  |  *	Based on  | 
					
						
							|  |  |  |  *		asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] | 
					
						
							|  |  |  |  *	we have | 
					
						
							|  |  |  |  *	asinh(x) := x  if  1+x*x=1, | 
					
						
							|  |  |  |  *		 := sign(x)*(log(x)+ln2)) for large |x|, else | 
					
						
							|  |  |  |  *		 := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else | 
					
						
							|  |  |  |  *		 := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))   | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef HAVE_ASINH
 | 
					
						
							|  |  |  | double | 
					
						
							|  |  |  | asinh(double x) | 
					
						
							|  |  |  | {	 | 
					
						
							|  |  |  | 	double w; | 
					
						
							|  |  |  | 	double absx = fabs(x); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) { | 
					
						
							|  |  |  | 		return x+x; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	if (absx < two_pow_m28) {	/* |x| < 2**-28 */ | 
					
						
							|  |  |  | 		return x;	/* return x inexact except 0 */ | 
					
						
							|  |  |  | 	}  | 
					
						
							|  |  |  | 	if (absx > two_pow_p28) {	/* |x| > 2**28 */ | 
					
						
							|  |  |  | 		w = log(absx)+ln2; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	else if (absx > 2.0) {		/* 2 < |x| < 2**28 */ | 
					
						
							|  |  |  | 		w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx)); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	else {				/* 2**-28 <= |x| < 2= */ | 
					
						
							|  |  |  | 		double t = x*x; | 
					
						
							|  |  |  | 		w = log1p(absx + t / (1.0 + sqrt(1.0 + t))); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	return copysign(w, x); | 
					
						
							|  |  |  | 	 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif /* HAVE_ASINH */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* acosh(x)
 | 
					
						
							|  |  |  |  * Method : | 
					
						
							|  |  |  |  *      Based on | 
					
						
							|  |  |  |  *	      acosh(x) = log [ x + sqrt(x*x-1) ] | 
					
						
							|  |  |  |  *      we have | 
					
						
							|  |  |  |  *	      acosh(x) := log(x)+ln2, if x is large; else | 
					
						
							|  |  |  |  *	      acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else | 
					
						
							|  |  |  |  *	      acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Special cases: | 
					
						
							|  |  |  |  *      acosh(x) is NaN with signal if x<1. | 
					
						
							|  |  |  |  *      acosh(NaN) is NaN without signal. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef HAVE_ACOSH
 | 
					
						
							|  |  |  | double | 
					
						
							|  |  |  | acosh(double x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	if (Py_IS_NAN(x)) { | 
					
						
							|  |  |  | 		return x+x; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	if (x < 1.) {			/* x < 1;  return a signaling NaN */ | 
					
						
							|  |  |  | 		errno = EDOM; | 
					
						
							|  |  |  | #ifdef Py_NAN
 | 
					
						
							|  |  |  | 		return Py_NAN; | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 		return (x-x)/(x-x); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	else if (x >= two_pow_p28) {	/* x > 2**28 */ | 
					
						
							|  |  |  | 		if (Py_IS_INFINITY(x)) { | 
					
						
							|  |  |  | 			return x+x; | 
					
						
							|  |  |  | 		} else { | 
					
						
							|  |  |  | 			return log(x)+ln2;	/* acosh(huge)=log(2x) */ | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	else if (x == 1.) { | 
					
						
							|  |  |  | 		return 0.0;			/* acosh(1) = 0 */ | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	else if (x > 2.) {			/* 2 < x < 2**28 */ | 
					
						
							|  |  |  | 		double t = x*x; | 
					
						
							|  |  |  | 		return log(2.0*x - 1.0 / (x + sqrt(t - 1.0))); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	else {				/* 1 < x <= 2 */ | 
					
						
							|  |  |  | 		double t = x - 1.0; | 
					
						
							|  |  |  | 		return log1p(t + sqrt(2.0*t + t*t)); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif /* HAVE_ACOSH */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* atanh(x)
 | 
					
						
							|  |  |  |  * Method : | 
					
						
							|  |  |  |  *    1.Reduced x to positive by atanh(-x) = -atanh(x) | 
					
						
							|  |  |  |  *    2.For x>=0.5 | 
					
						
							|  |  |  |  *		  1	      2x			  x | 
					
						
							|  |  |  |  *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) | 
					
						
							|  |  |  |  *		  2	     1 - x		      1 - x | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  *      For x<0.5 | 
					
						
							|  |  |  |  *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Special cases: | 
					
						
							|  |  |  |  *      atanh(x) is NaN if |x| >= 1 with signal; | 
					
						
							|  |  |  |  *      atanh(NaN) is that NaN with no signal; | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef HAVE_ATANH
 | 
					
						
							|  |  |  | double | 
					
						
							|  |  |  | atanh(double x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	double absx; | 
					
						
							|  |  |  | 	double t; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (Py_IS_NAN(x)) { | 
					
						
							|  |  |  | 		return x+x; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	absx = fabs(x); | 
					
						
							|  |  |  | 	if (absx >= 1.) {		/* |x| >= 1 */ | 
					
						
							|  |  |  | 		errno = EDOM; | 
					
						
							|  |  |  | #ifdef Py_NAN
 | 
					
						
							|  |  |  | 		return Py_NAN; | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 		return x/zero; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	if (absx < two_pow_m28) {	/* |x| < 2**-28 */ | 
					
						
							|  |  |  | 		return x; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	if (absx < 0.5) {		/* |x| < 0.5 */ | 
					
						
							|  |  |  | 		t = absx+absx; | 
					
						
							|  |  |  | 		t = 0.5 * log1p(t + t*absx / (1.0 - absx)); | 
					
						
							|  |  |  | 	}  | 
					
						
							|  |  |  | 	else {				/* 0.5 <= |x| <= 1.0 */ | 
					
						
							|  |  |  | 		t = 0.5 * log1p((absx + absx) / (1.0 - absx)); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	return copysign(t, x); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif /* HAVE_ATANH */
 |