| 
									
										
										
										
											1998-08-10 19:42:37 +00:00
										 |  |  | \section{\module{bisect} --- | 
					
						
							| 
									
										
										
										
											1999-02-20 00:14:17 +00:00
										 |  |  |          Array bisection algorithm} | 
					
						
							| 
									
										
										
										
											1998-07-23 17:59:49 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											1999-02-20 00:14:17 +00:00
										 |  |  | \declaremodule{standard}{bisect} | 
					
						
							| 
									
										
										
										
											1998-07-27 22:16:46 +00:00
										 |  |  | \modulesynopsis{Array bisection algorithms for binary searching.} | 
					
						
							| 
									
										
										
										
											2000-04-03 20:13:55 +00:00
										 |  |  | \sectionauthor{Fred L. Drake, Jr.}{fdrake@acm.org} | 
					
						
							|  |  |  | % LaTeX produced by Fred L. Drake, Jr. <fdrake@acm.org>, with an
 | 
					
						
							|  |  |  | % example based on the PyModules FAQ entry by Aaron Watters
 | 
					
						
							|  |  |  | % <arw@pythonpros.com>.
 | 
					
						
							| 
									
										
										
										
											1998-07-23 17:59:49 +00:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											1998-04-28 18:28:21 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | This module provides support for maintaining a list in sorted order | 
					
						
							|  |  |  | without having to sort the list after each insertion.  For long lists | 
					
						
							|  |  |  | of items with expensive comparison operations, this can be an | 
					
						
							|  |  |  | improvement over the more common approach.  The module is called | 
					
						
							|  |  |  | \module{bisect} because it uses a basic bisection algorithm to do its | 
					
						
							| 
									
										
										
										
											1999-02-19 17:54:10 +00:00
										 |  |  | work.  The source code may be most useful as a working example of the | 
					
						
							| 
									
										
										
										
											2001-07-06 19:28:48 +00:00
										 |  |  | algorithm (the boundary conditions are already right!). | 
					
						
							| 
									
										
										
										
											1998-04-28 18:28:21 +00:00
										 |  |  | 
 | 
					
						
							|  |  |  | The following functions are provided: | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-04 05:12:52 +00:00
										 |  |  | \begin{funcdesc}{bisect_left}{list, item\optional{, lo\optional{, hi}}} | 
					
						
							|  |  |  |   Locate the proper insertion point for \var{item} in \var{list} to | 
					
						
							|  |  |  |   maintain sorted order.  The parameters \var{lo} and \var{hi} may be | 
					
						
							|  |  |  |   used to specify a subset of the list which should be considered; by | 
					
						
							|  |  |  |   default the entire list is used.  If \var{item} is already present | 
					
						
							|  |  |  |   in \var{list}, the insertion point will be before (to the left of) | 
					
						
							|  |  |  |   any existing entries.  The return value is suitable for use as the | 
					
						
							|  |  |  |   first parameter to \code{\var{list}.insert()}.  This assumes that | 
					
						
							|  |  |  |   \var{list} is already sorted. | 
					
						
							|  |  |  | \versionadded{2.1} | 
					
						
							| 
									
										
										
										
											1998-04-28 18:28:21 +00:00
										 |  |  | \end{funcdesc} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2001-01-04 05:12:52 +00:00
										 |  |  | \begin{funcdesc}{bisect_right}{list, item\optional{, lo\optional{, hi}}} | 
					
						
							|  |  |  |   Similar to \function{bisect_left()}, but returns an insertion point | 
					
						
							|  |  |  |   which comes after (to the right of) any existing entries of | 
					
						
							|  |  |  |   \var{item} in \var{list}. | 
					
						
							|  |  |  | \versionadded{2.1} | 
					
						
							|  |  |  | \end{funcdesc} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin{funcdesc}{bisect}{\unspecified} | 
					
						
							| 
									
										
										
										
											2001-01-04 14:18:55 +00:00
										 |  |  |   Alias for \function{bisect_right()}. | 
					
						
							| 
									
										
										
										
											2001-01-04 05:12:52 +00:00
										 |  |  | \end{funcdesc} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin{funcdesc}{insort_left}{list, item\optional{, lo\optional{, hi}}} | 
					
						
							|  |  |  |   Insert \var{item} in \var{list} in sorted order.  This is equivalent | 
					
						
							|  |  |  |   to \code{\var{list}.insert(bisect.bisect_left(\var{list}, \var{item}, | 
					
						
							|  |  |  |   \var{lo}, \var{hi}), \var{item})}.  This assumes that \var{list} is | 
					
						
							|  |  |  |   already sorted. | 
					
						
							|  |  |  | \versionadded{2.1} | 
					
						
							|  |  |  | \end{funcdesc} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin{funcdesc}{insort_right}{list, item\optional{, lo\optional{, hi}}} | 
					
						
							|  |  |  |   Similar to \function{insort_left()}, but inserting \var{item} in | 
					
						
							|  |  |  |   \var{list} after any existing entries of \var{item}. | 
					
						
							|  |  |  | \versionadded{2.1} | 
					
						
							|  |  |  | \end{funcdesc} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin{funcdesc}{insort}{\unspecified} | 
					
						
							| 
									
										
										
										
											2001-01-04 14:18:55 +00:00
										 |  |  |   Alias for \function{insort_right()}. | 
					
						
							| 
									
										
										
										
											1998-04-28 18:28:21 +00:00
										 |  |  | \end{funcdesc} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \subsection{Example} | 
					
						
							|  |  |  | \nodename{bisect-example} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | The \function{bisect()} function is generally useful for categorizing | 
					
						
							| 
									
										
										
										
											2001-01-04 14:18:55 +00:00
										 |  |  | numeric data.  This example uses \function{bisect()} to look up a | 
					
						
							| 
									
										
										
										
											1998-04-28 18:28:21 +00:00
										 |  |  | letter grade for an exam total (say) based on a set of ordered numeric | 
					
						
							|  |  |  | breakpoints: 85 and up is an `A', 75..84 is a `B', etc. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin{verbatim} | 
					
						
							|  |  |  | >>> grades = "FEDCBA" | 
					
						
							|  |  |  | >>> breakpoints = [30, 44, 66, 75, 85] | 
					
						
							| 
									
										
										
										
											2001-01-04 14:18:55 +00:00
										 |  |  | >>> from bisect import bisect | 
					
						
							| 
									
										
										
										
											1998-04-28 18:28:21 +00:00
										 |  |  | >>> def grade(total): | 
					
						
							| 
									
										
										
										
											2001-01-04 14:18:55 +00:00
										 |  |  | ...           return grades[bisect(breakpoints, total)] | 
					
						
							| 
									
										
										
										
											1998-04-28 18:28:21 +00:00
										 |  |  | ... | 
					
						
							|  |  |  | >>> grade(66) | 
					
						
							|  |  |  | 'C' | 
					
						
							|  |  |  | >>> map(grade, [33, 99, 77, 44, 12, 88]) | 
					
						
							|  |  |  | ['E', 'A', 'B', 'D', 'F', 'A'] | 
					
						
							|  |  |  | \end{verbatim} |