mirror of
				https://github.com/python/cpython.git
				synced 2025-10-26 03:04:41 +00:00 
			
		
		
		
	
		
			
	
	
		
			333 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			333 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*----------------------------------------------------------------------------
 | ||
|  | Copyright (c) 2018-2020, Microsoft Research, Daan Leijen | ||
|  | This is free software; you can redistribute it and/or modify it under the | ||
|  | terms of the MIT license. A copy of the license can be found in the file | ||
|  | "LICENSE" at the root of this distribution. | ||
|  | -----------------------------------------------------------------------------*/ | ||
|  | 
 | ||
|  | /* -----------------------------------------------------------
 | ||
|  |   Definition of page queues for each block size | ||
|  | ----------------------------------------------------------- */ | ||
|  | 
 | ||
|  | #ifndef MI_IN_PAGE_C
 | ||
|  | #error "this file should be included from 'page.c'"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* -----------------------------------------------------------
 | ||
|  |   Minimal alignment in machine words (i.e. `sizeof(void*)`) | ||
|  | ----------------------------------------------------------- */ | ||
|  | 
 | ||
|  | #if (MI_MAX_ALIGN_SIZE > 4*MI_INTPTR_SIZE)
 | ||
|  |   #error "define alignment for more than 4x word size for this platform"
 | ||
|  | #elif (MI_MAX_ALIGN_SIZE > 2*MI_INTPTR_SIZE)
 | ||
|  |   #define MI_ALIGN4W   // 4 machine words minimal alignment
 | ||
|  | #elif (MI_MAX_ALIGN_SIZE > MI_INTPTR_SIZE)
 | ||
|  |   #define MI_ALIGN2W   // 2 machine words minimal alignment
 | ||
|  | #else
 | ||
|  |   // ok, default alignment is 1 word
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* -----------------------------------------------------------
 | ||
|  |   Queue query | ||
|  | ----------------------------------------------------------- */ | ||
|  | 
 | ||
|  | 
 | ||
|  | static inline bool mi_page_queue_is_huge(const mi_page_queue_t* pq) { | ||
|  |   return (pq->block_size == (MI_MEDIUM_OBJ_SIZE_MAX+sizeof(uintptr_t))); | ||
|  | } | ||
|  | 
 | ||
|  | static inline bool mi_page_queue_is_full(const mi_page_queue_t* pq) { | ||
|  |   return (pq->block_size == (MI_MEDIUM_OBJ_SIZE_MAX+(2*sizeof(uintptr_t)))); | ||
|  | } | ||
|  | 
 | ||
|  | static inline bool mi_page_queue_is_special(const mi_page_queue_t* pq) { | ||
|  |   return (pq->block_size > MI_MEDIUM_OBJ_SIZE_MAX); | ||
|  | } | ||
|  | 
 | ||
|  | /* -----------------------------------------------------------
 | ||
|  |   Bins | ||
|  | ----------------------------------------------------------- */ | ||
|  | 
 | ||
|  | // Return the bin for a given field size.
 | ||
|  | // Returns MI_BIN_HUGE if the size is too large.
 | ||
|  | // We use `wsize` for the size in "machine word sizes",
 | ||
|  | // i.e. byte size == `wsize*sizeof(void*)`.
 | ||
|  | static inline uint8_t mi_bin(size_t size) { | ||
|  |   size_t wsize = _mi_wsize_from_size(size); | ||
|  |   uint8_t bin; | ||
|  |   if (wsize <= 1) { | ||
|  |     bin = 1; | ||
|  |   } | ||
|  |   #if defined(MI_ALIGN4W)
 | ||
|  |   else if (wsize <= 4) { | ||
|  |     bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
 | ||
|  |   } | ||
|  |   #elif defined(MI_ALIGN2W)
 | ||
|  |   else if (wsize <= 8) { | ||
|  |     bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
 | ||
|  |   } | ||
|  |   #else
 | ||
|  |   else if (wsize <= 8) { | ||
|  |     bin = (uint8_t)wsize; | ||
|  |   } | ||
|  |   #endif
 | ||
|  |   else if (wsize > MI_MEDIUM_OBJ_WSIZE_MAX) { | ||
|  |     bin = MI_BIN_HUGE; | ||
|  |   } | ||
|  |   else { | ||
|  |     #if defined(MI_ALIGN4W)
 | ||
|  |     if (wsize <= 16) { wsize = (wsize+3)&~3; } // round to 4x word sizes
 | ||
|  |     #endif
 | ||
|  |     wsize--; | ||
|  |     // find the highest bit
 | ||
|  |     uint8_t b = (uint8_t)mi_bsr(wsize);  // note: wsize != 0
 | ||
|  |     // and use the top 3 bits to determine the bin (~12.5% worst internal fragmentation).
 | ||
|  |     // - adjust with 3 because we use do not round the first 8 sizes
 | ||
|  |     //   which each get an exact bin
 | ||
|  |     bin = ((b << 2) + (uint8_t)((wsize >> (b - 2)) & 0x03)) - 3; | ||
|  |     mi_assert_internal(bin < MI_BIN_HUGE); | ||
|  |   } | ||
|  |   mi_assert_internal(bin > 0 && bin <= MI_BIN_HUGE); | ||
|  |   return bin; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* -----------------------------------------------------------
 | ||
|  |   Queue of pages with free blocks | ||
|  | ----------------------------------------------------------- */ | ||
|  | 
 | ||
|  | uint8_t _mi_bin(size_t size) { | ||
|  |   return mi_bin(size); | ||
|  | } | ||
|  | 
 | ||
|  | size_t _mi_bin_size(uint8_t bin) { | ||
|  |   return _mi_heap_empty.pages[bin].block_size; | ||
|  | } | ||
|  | 
 | ||
|  | // Good size for allocation
 | ||
|  | size_t mi_good_size(size_t size) mi_attr_noexcept { | ||
|  |   if (size <= MI_MEDIUM_OBJ_SIZE_MAX) { | ||
|  |     return _mi_bin_size(mi_bin(size)); | ||
|  |   } | ||
|  |   else { | ||
|  |     return _mi_align_up(size,_mi_os_page_size()); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | #if (MI_DEBUG>1)
 | ||
|  | static bool mi_page_queue_contains(mi_page_queue_t* queue, const mi_page_t* page) { | ||
|  |   mi_assert_internal(page != NULL); | ||
|  |   mi_page_t* list = queue->first; | ||
|  |   while (list != NULL) { | ||
|  |     mi_assert_internal(list->next == NULL || list->next->prev == list); | ||
|  |     mi_assert_internal(list->prev == NULL || list->prev->next == list); | ||
|  |     if (list == page) break; | ||
|  |     list = list->next; | ||
|  |   } | ||
|  |   return (list == page); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if (MI_DEBUG>1)
 | ||
|  | static bool mi_heap_contains_queue(const mi_heap_t* heap, const mi_page_queue_t* pq) { | ||
|  |   return (pq >= &heap->pages[0] && pq <= &heap->pages[MI_BIN_FULL]); | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | static mi_page_queue_t* mi_page_queue_of(const mi_page_t* page) { | ||
|  |   uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : mi_bin(page->xblock_size)); | ||
|  |   mi_heap_t* heap = mi_page_heap(page); | ||
|  |   mi_assert_internal(heap != NULL && bin <= MI_BIN_FULL); | ||
|  |   mi_page_queue_t* pq = &heap->pages[bin]; | ||
|  |   mi_assert_internal(bin >= MI_BIN_HUGE || page->xblock_size == pq->block_size); | ||
|  |   mi_assert_expensive(mi_page_queue_contains(pq, page)); | ||
|  |   return pq; | ||
|  | } | ||
|  | 
 | ||
|  | static mi_page_queue_t* mi_heap_page_queue_of(mi_heap_t* heap, const mi_page_t* page) { | ||
|  |   uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : mi_bin(page->xblock_size)); | ||
|  |   mi_assert_internal(bin <= MI_BIN_FULL); | ||
|  |   mi_page_queue_t* pq = &heap->pages[bin]; | ||
|  |   mi_assert_internal(mi_page_is_in_full(page) || page->xblock_size == pq->block_size); | ||
|  |   return pq; | ||
|  | } | ||
|  | 
 | ||
|  | // The current small page array is for efficiency and for each
 | ||
|  | // small size (up to 256) it points directly to the page for that
 | ||
|  | // size without having to compute the bin. This means when the
 | ||
|  | // current free page queue is updated for a small bin, we need to update a
 | ||
|  | // range of entries in `_mi_page_small_free`.
 | ||
|  | static inline void mi_heap_queue_first_update(mi_heap_t* heap, const mi_page_queue_t* pq) { | ||
|  |   mi_assert_internal(mi_heap_contains_queue(heap,pq)); | ||
|  |   size_t size = pq->block_size; | ||
|  |   if (size > MI_SMALL_SIZE_MAX) return; | ||
|  | 
 | ||
|  |   mi_page_t* page = pq->first; | ||
|  |   if (pq->first == NULL) page = (mi_page_t*)&_mi_page_empty; | ||
|  | 
 | ||
|  |   // find index in the right direct page array
 | ||
|  |   size_t start; | ||
|  |   size_t idx = _mi_wsize_from_size(size); | ||
|  |   mi_page_t** pages_free = heap->pages_free_direct; | ||
|  | 
 | ||
|  |   if (pages_free[idx] == page) return;  // already set
 | ||
|  | 
 | ||
|  |   // find start slot
 | ||
|  |   if (idx<=1) { | ||
|  |     start = 0; | ||
|  |   } | ||
|  |   else { | ||
|  |     // find previous size; due to minimal alignment upto 3 previous bins may need to be skipped
 | ||
|  |     uint8_t bin = mi_bin(size); | ||
|  |     const mi_page_queue_t* prev = pq - 1; | ||
|  |     while( bin == mi_bin(prev->block_size) && prev > &heap->pages[0]) { | ||
|  |       prev--; | ||
|  |     } | ||
|  |     start = 1 + _mi_wsize_from_size(prev->block_size); | ||
|  |     if (start > idx) start = idx; | ||
|  |   } | ||
|  | 
 | ||
|  |   // set size range to the right page
 | ||
|  |   mi_assert(start <= idx); | ||
|  |   for (size_t sz = start; sz <= idx; sz++) { | ||
|  |     pages_free[sz] = page; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | static bool mi_page_queue_is_empty(mi_page_queue_t* queue) { | ||
|  |   return (queue->first == NULL); | ||
|  | } | ||
|  | */ | ||
|  | 
 | ||
|  | static void mi_page_queue_remove(mi_page_queue_t* queue, mi_page_t* page) { | ||
|  |   mi_assert_internal(page != NULL); | ||
|  |   mi_assert_expensive(mi_page_queue_contains(queue, page)); | ||
|  |   mi_assert_internal(page->xblock_size == queue->block_size || (page->xblock_size > MI_MEDIUM_OBJ_SIZE_MAX && mi_page_queue_is_huge(queue))  || (mi_page_is_in_full(page) && mi_page_queue_is_full(queue))); | ||
|  |   mi_heap_t* heap = mi_page_heap(page); | ||
|  | 
 | ||
|  |   if (page->prev != NULL) page->prev->next = page->next; | ||
|  |   if (page->next != NULL) page->next->prev = page->prev; | ||
|  |   if (page == queue->last)  queue->last = page->prev; | ||
|  |   if (page == queue->first) { | ||
|  |     queue->first = page->next; | ||
|  |     // update first
 | ||
|  |     mi_assert_internal(mi_heap_contains_queue(heap, queue)); | ||
|  |     mi_heap_queue_first_update(heap,queue); | ||
|  |   } | ||
|  |   heap->page_count--; | ||
|  |   page->next = NULL; | ||
|  |   page->prev = NULL; | ||
|  |   // mi_atomic_store_ptr_release(mi_atomic_cast(void*, &page->heap), NULL);
 | ||
|  |   mi_page_set_in_full(page,false); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static void mi_page_queue_push(mi_heap_t* heap, mi_page_queue_t* queue, mi_page_t* page) { | ||
|  |   mi_assert_internal(mi_page_heap(page) == heap); | ||
|  |   mi_assert_internal(!mi_page_queue_contains(queue, page)); | ||
|  |   #if MI_HUGE_PAGE_ABANDON
 | ||
|  |   mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE); | ||
|  |   #endif
 | ||
|  |   mi_assert_internal(page->xblock_size == queue->block_size || | ||
|  |                       (page->xblock_size > MI_MEDIUM_OBJ_SIZE_MAX) || | ||
|  |                         (mi_page_is_in_full(page) && mi_page_queue_is_full(queue))); | ||
|  | 
 | ||
|  |   mi_page_set_in_full(page, mi_page_queue_is_full(queue)); | ||
|  |   // mi_atomic_store_ptr_release(mi_atomic_cast(void*, &page->heap), heap);
 | ||
|  |   page->next = queue->first; | ||
|  |   page->prev = NULL; | ||
|  |   if (queue->first != NULL) { | ||
|  |     mi_assert_internal(queue->first->prev == NULL); | ||
|  |     queue->first->prev = page; | ||
|  |     queue->first = page; | ||
|  |   } | ||
|  |   else { | ||
|  |     queue->first = queue->last = page; | ||
|  |   } | ||
|  | 
 | ||
|  |   // update direct
 | ||
|  |   mi_heap_queue_first_update(heap, queue); | ||
|  |   heap->page_count++; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static void mi_page_queue_enqueue_from(mi_page_queue_t* to, mi_page_queue_t* from, mi_page_t* page) { | ||
|  |   mi_assert_internal(page != NULL); | ||
|  |   mi_assert_expensive(mi_page_queue_contains(from, page)); | ||
|  |   mi_assert_expensive(!mi_page_queue_contains(to, page)); | ||
|  | 
 | ||
|  |   mi_assert_internal((page->xblock_size == to->block_size && page->xblock_size == from->block_size) || | ||
|  |                      (page->xblock_size == to->block_size && mi_page_queue_is_full(from)) || | ||
|  |                      (page->xblock_size == from->block_size && mi_page_queue_is_full(to)) || | ||
|  |                      (page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_huge(to)) || | ||
|  |                      (page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_full(to))); | ||
|  | 
 | ||
|  |   mi_heap_t* heap = mi_page_heap(page); | ||
|  |   if (page->prev != NULL) page->prev->next = page->next; | ||
|  |   if (page->next != NULL) page->next->prev = page->prev; | ||
|  |   if (page == from->last)  from->last = page->prev; | ||
|  |   if (page == from->first) { | ||
|  |     from->first = page->next; | ||
|  |     // update first
 | ||
|  |     mi_assert_internal(mi_heap_contains_queue(heap, from)); | ||
|  |     mi_heap_queue_first_update(heap, from); | ||
|  |   } | ||
|  | 
 | ||
|  |   page->prev = to->last; | ||
|  |   page->next = NULL; | ||
|  |   if (to->last != NULL) { | ||
|  |     mi_assert_internal(heap == mi_page_heap(to->last)); | ||
|  |     to->last->next = page; | ||
|  |     to->last = page; | ||
|  |   } | ||
|  |   else { | ||
|  |     to->first = page; | ||
|  |     to->last = page; | ||
|  |     mi_heap_queue_first_update(heap, to); | ||
|  |   } | ||
|  | 
 | ||
|  |   mi_page_set_in_full(page, mi_page_queue_is_full(to)); | ||
|  | } | ||
|  | 
 | ||
|  | // Only called from `mi_heap_absorb`.
 | ||
|  | size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append) { | ||
|  |   mi_assert_internal(mi_heap_contains_queue(heap,pq)); | ||
|  |   mi_assert_internal(pq->block_size == append->block_size); | ||
|  | 
 | ||
|  |   if (append->first==NULL) return 0; | ||
|  | 
 | ||
|  |   // set append pages to new heap and count
 | ||
|  |   size_t count = 0; | ||
|  |   for (mi_page_t* page = append->first; page != NULL; page = page->next) { | ||
|  |     // inline `mi_page_set_heap` to avoid wrong assertion during absorption;
 | ||
|  |     // in this case it is ok to be delayed freeing since both "to" and "from" heap are still alive.
 | ||
|  |     mi_atomic_store_release(&page->xheap, (uintptr_t)heap); | ||
|  |     // set the flag to delayed free (not overriding NEVER_DELAYED_FREE) which has as a
 | ||
|  |     // side effect that it spins until any DELAYED_FREEING is finished. This ensures
 | ||
|  |     // that after appending only the new heap will be used for delayed free operations.
 | ||
|  |     _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, false); | ||
|  |     count++; | ||
|  |   } | ||
|  | 
 | ||
|  |   if (pq->last==NULL) { | ||
|  |     // take over afresh
 | ||
|  |     mi_assert_internal(pq->first==NULL); | ||
|  |     pq->first = append->first; | ||
|  |     pq->last = append->last; | ||
|  |     mi_heap_queue_first_update(heap, pq); | ||
|  |   } | ||
|  |   else { | ||
|  |     // append to end
 | ||
|  |     mi_assert_internal(pq->last!=NULL); | ||
|  |     mi_assert_internal(append->first!=NULL); | ||
|  |     pq->last->next = append->first; | ||
|  |     append->first->prev = pq->last; | ||
|  |     pq->last = append->last; | ||
|  |   } | ||
|  |   return count; | ||
|  | } |