mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 07:31:38 +00:00 
			
		
		
		
	Issue #7518: Move substitute definitions of C99 math functions from
pymath.c to Modules/_math.c.
This commit is contained in:
		
							parent
							
								
									08dca0d6da
								
							
						
					
					
						commit
						12748b003c
					
				
					 8 changed files with 250 additions and 231 deletions
				
			
		
							
								
								
									
										199
									
								
								Python/pymath.c
									
										
									
									
									
								
							
							
						
						
									
										199
									
								
								Python/pymath.c
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -77,202 +77,3 @@ round(double x)
 | 
			
		|||
    return copysign(y, x);
 | 
			
		||||
}
 | 
			
		||||
#endif /* HAVE_ROUND */
 | 
			
		||||
 | 
			
		||||
#ifndef HAVE_LOG1P
 | 
			
		||||
#include <float.h>
 | 
			
		||||
 | 
			
		||||
double
 | 
			
		||||
log1p(double x)
 | 
			
		||||
{
 | 
			
		||||
	/* For x small, we use the following approach.  Let y be the nearest
 | 
			
		||||
	   float to 1+x, then
 | 
			
		||||
 | 
			
		||||
	     1+x = y * (1 - (y-1-x)/y)
 | 
			
		||||
 | 
			
		||||
	   so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny,
 | 
			
		||||
	   the second term is well approximated by (y-1-x)/y.  If abs(x) >=
 | 
			
		||||
	   DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
 | 
			
		||||
	   then y-1-x will be exactly representable, and is computed exactly
 | 
			
		||||
	   by (y-1)-x.
 | 
			
		||||
 | 
			
		||||
	   If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
 | 
			
		||||
	   round-to-nearest then this method is slightly dangerous: 1+x could
 | 
			
		||||
	   be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
 | 
			
		||||
	   case y-1-x will not be exactly representable any more and the
 | 
			
		||||
	   result can be off by many ulps.  But this is easily fixed: for a
 | 
			
		||||
	   floating-point number |x| < DBL_EPSILON/2., the closest
 | 
			
		||||
	   floating-point number to log(1+x) is exactly x.
 | 
			
		||||
	*/
 | 
			
		||||
 | 
			
		||||
	double y;
 | 
			
		||||
	if (fabs(x) < DBL_EPSILON/2.) {
 | 
			
		||||
		return x;
 | 
			
		||||
	} else if (-0.5 <= x && x <= 1.) {
 | 
			
		||||
		/* WARNING: it's possible than an overeager compiler
 | 
			
		||||
		   will incorrectly optimize the following two lines
 | 
			
		||||
		   to the equivalent of "return log(1.+x)". If this
 | 
			
		||||
		   happens, then results from log1p will be inaccurate
 | 
			
		||||
		   for small x. */
 | 
			
		||||
		y = 1.+x;
 | 
			
		||||
		return log(y)-((y-1.)-x)/y;
 | 
			
		||||
	} else {
 | 
			
		||||
		/* NaNs and infinities should end up here */
 | 
			
		||||
		return log(1.+x);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
#endif /* HAVE_LOG1P */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * ====================================================
 | 
			
		||||
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | 
			
		||||
 *
 | 
			
		||||
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 | 
			
		||||
 * Permission to use, copy, modify, and distribute this
 | 
			
		||||
 * software is freely granted, provided that this notice 
 | 
			
		||||
 * is preserved.
 | 
			
		||||
 * ====================================================
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
static const double ln2 = 6.93147180559945286227E-01;
 | 
			
		||||
static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
 | 
			
		||||
static const double two_pow_p28 = 268435456.0; /* 2**28 */
 | 
			
		||||
static const double zero = 0.0;
 | 
			
		||||
 | 
			
		||||
/* asinh(x)
 | 
			
		||||
 * Method :
 | 
			
		||||
 *	Based on 
 | 
			
		||||
 *		asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
 | 
			
		||||
 *	we have
 | 
			
		||||
 *	asinh(x) := x  if  1+x*x=1,
 | 
			
		||||
 *		 := sign(x)*(log(x)+ln2)) for large |x|, else
 | 
			
		||||
 *		 := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
 | 
			
		||||
 *		 := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))  
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef HAVE_ASINH
 | 
			
		||||
double
 | 
			
		||||
asinh(double x)
 | 
			
		||||
{	
 | 
			
		||||
	double w;
 | 
			
		||||
	double absx = fabs(x);
 | 
			
		||||
 | 
			
		||||
	if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
 | 
			
		||||
		return x+x;
 | 
			
		||||
	}
 | 
			
		||||
	if (absx < two_pow_m28) {	/* |x| < 2**-28 */
 | 
			
		||||
		return x;	/* return x inexact except 0 */
 | 
			
		||||
	} 
 | 
			
		||||
	if (absx > two_pow_p28) {	/* |x| > 2**28 */
 | 
			
		||||
		w = log(absx)+ln2;
 | 
			
		||||
	}
 | 
			
		||||
	else if (absx > 2.0) {		/* 2 < |x| < 2**28 */
 | 
			
		||||
		w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
 | 
			
		||||
	}
 | 
			
		||||
	else {				/* 2**-28 <= |x| < 2= */
 | 
			
		||||
		double t = x*x;
 | 
			
		||||
		w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
 | 
			
		||||
	}
 | 
			
		||||
	return copysign(w, x);
 | 
			
		||||
	
 | 
			
		||||
}
 | 
			
		||||
#endif /* HAVE_ASINH */
 | 
			
		||||
 | 
			
		||||
/* acosh(x)
 | 
			
		||||
 * Method :
 | 
			
		||||
 *      Based on
 | 
			
		||||
 *	      acosh(x) = log [ x + sqrt(x*x-1) ]
 | 
			
		||||
 *      we have
 | 
			
		||||
 *	      acosh(x) := log(x)+ln2, if x is large; else
 | 
			
		||||
 *	      acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
 | 
			
		||||
 *	      acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
 | 
			
		||||
 *
 | 
			
		||||
 * Special cases:
 | 
			
		||||
 *      acosh(x) is NaN with signal if x<1.
 | 
			
		||||
 *      acosh(NaN) is NaN without signal.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef HAVE_ACOSH
 | 
			
		||||
double
 | 
			
		||||
acosh(double x)
 | 
			
		||||
{
 | 
			
		||||
	if (Py_IS_NAN(x)) {
 | 
			
		||||
		return x+x;
 | 
			
		||||
	}
 | 
			
		||||
	if (x < 1.) {			/* x < 1;  return a signaling NaN */
 | 
			
		||||
		errno = EDOM;
 | 
			
		||||
#ifdef Py_NAN
 | 
			
		||||
		return Py_NAN;
 | 
			
		||||
#else
 | 
			
		||||
		return (x-x)/(x-x);
 | 
			
		||||
#endif
 | 
			
		||||
	}
 | 
			
		||||
	else if (x >= two_pow_p28) {	/* x > 2**28 */
 | 
			
		||||
		if (Py_IS_INFINITY(x)) {
 | 
			
		||||
			return x+x;
 | 
			
		||||
		} else {
 | 
			
		||||
			return log(x)+ln2;	/* acosh(huge)=log(2x) */
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
	else if (x == 1.) {
 | 
			
		||||
		return 0.0;			/* acosh(1) = 0 */
 | 
			
		||||
	}
 | 
			
		||||
	else if (x > 2.) {			/* 2 < x < 2**28 */
 | 
			
		||||
		double t = x*x;
 | 
			
		||||
		return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
 | 
			
		||||
	}
 | 
			
		||||
	else {				/* 1 < x <= 2 */
 | 
			
		||||
		double t = x - 1.0;
 | 
			
		||||
		return log1p(t + sqrt(2.0*t + t*t));
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
#endif /* HAVE_ACOSH */
 | 
			
		||||
 | 
			
		||||
/* atanh(x)
 | 
			
		||||
 * Method :
 | 
			
		||||
 *    1.Reduced x to positive by atanh(-x) = -atanh(x)
 | 
			
		||||
 *    2.For x>=0.5
 | 
			
		||||
 *		  1	      2x			  x
 | 
			
		||||
 *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
 | 
			
		||||
 *		  2	     1 - x		      1 - x
 | 
			
		||||
 *
 | 
			
		||||
 *      For x<0.5
 | 
			
		||||
 *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
 | 
			
		||||
 *
 | 
			
		||||
 * Special cases:
 | 
			
		||||
 *      atanh(x) is NaN if |x| >= 1 with signal;
 | 
			
		||||
 *      atanh(NaN) is that NaN with no signal;
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef HAVE_ATANH
 | 
			
		||||
double
 | 
			
		||||
atanh(double x)
 | 
			
		||||
{
 | 
			
		||||
	double absx;
 | 
			
		||||
	double t;
 | 
			
		||||
 | 
			
		||||
	if (Py_IS_NAN(x)) {
 | 
			
		||||
		return x+x;
 | 
			
		||||
	}
 | 
			
		||||
	absx = fabs(x);
 | 
			
		||||
	if (absx >= 1.) {		/* |x| >= 1 */
 | 
			
		||||
		errno = EDOM;
 | 
			
		||||
#ifdef Py_NAN
 | 
			
		||||
		return Py_NAN;
 | 
			
		||||
#else
 | 
			
		||||
		return x/zero;
 | 
			
		||||
#endif
 | 
			
		||||
	}
 | 
			
		||||
	if (absx < two_pow_m28) {	/* |x| < 2**-28 */
 | 
			
		||||
		return x;
 | 
			
		||||
	}
 | 
			
		||||
	if (absx < 0.5) {		/* |x| < 0.5 */
 | 
			
		||||
		t = absx+absx;
 | 
			
		||||
		t = 0.5 * log1p(t + t*absx / (1.0 - absx));
 | 
			
		||||
	} 
 | 
			
		||||
	else {				/* 0.5 <= |x| <= 1.0 */
 | 
			
		||||
		t = 0.5 * log1p((absx + absx) / (1.0 - absx));
 | 
			
		||||
	}
 | 
			
		||||
	return copysign(t, x);
 | 
			
		||||
}
 | 
			
		||||
#endif /* HAVE_ATANH */
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue