mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	Backport PEP 3141 from the py3k branch to the trunk. This includes r50877 (just
the complex_pow part), r56649, r56652, r56715, r57296, r57302, r57359, r57361, r57372, r57738, r57739, r58017, r58039, r58040, and r59390, and new documentation. The only significant difference is that round(x) returns a float to preserve backward-compatibility. See http://bugs.python.org/issue1689.
This commit is contained in:
		
							parent
							
								
									27edd829d7
								
							
						
					
					
						commit
						2f3c16be73
					
				
					 21 changed files with 1089 additions and 124 deletions
				
			
		|  | @ -986,10 +986,13 @@ available.  They are listed here in alphabetical order. | |||
| .. function:: round(x[, n]) | ||||
| 
 | ||||
|    Return the floating point value *x* rounded to *n* digits after the decimal | ||||
|    point.  If *n* is omitted, it defaults to zero. The result is a floating point | ||||
|    number.  Values are rounded to the closest multiple of 10 to the power minus | ||||
|    *n*; if two multiples are equally close, rounding is done away from 0 (so. for | ||||
|    example, ``round(0.5)`` is ``1.0`` and ``round(-0.5)`` is ``-1.0``). | ||||
|    point.  If *n* is omitted, it defaults to zero.  Values are rounded to the | ||||
|    closest multiple of 10 to the power minus *n*; if two multiples are equally | ||||
|    close, rounding is done toward the even choice (so, for example, both | ||||
|    ``round(0.5)`` and ``round(-0.5)`` are ``0``, and ``round(1.5)`` is | ||||
|    ``2``). Delegates to ``x.__round__(n)``. | ||||
| 
 | ||||
|    .. versionchanged:: 2.6 | ||||
| 
 | ||||
| 
 | ||||
| .. function:: set([iterable]) | ||||
|  | @ -1132,6 +1135,14 @@ available.  They are listed here in alphabetical order. | |||
|    .. versionadded:: 2.2 | ||||
| 
 | ||||
| 
 | ||||
| .. function:: trunc(x) | ||||
| 
 | ||||
|    Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually | ||||
|    a long integer). Delegates to ``x.__trunc__()``. | ||||
| 
 | ||||
|    .. versionadded:: 2.6 | ||||
| 
 | ||||
| 
 | ||||
| .. function:: tuple([iterable]) | ||||
| 
 | ||||
|    Return a tuple whose items are the same and in the same order as *iterable*'s | ||||
|  |  | |||
|  | @ -26,8 +26,9 @@ Number-theoretic and representation functions: | |||
| 
 | ||||
| .. function:: ceil(x) | ||||
| 
 | ||||
|    Return the ceiling of *x* as a float, the smallest integer value greater than or | ||||
|    equal to *x*. | ||||
|    Return the ceiling of *x* as a float, the smallest integer value greater than | ||||
|    or equal to *x*. If *x* is not a float, delegates to ``x.__ceil__()``, which | ||||
|    should return an :class:`Integral` value. | ||||
| 
 | ||||
| 
 | ||||
| .. function:: fabs(x) | ||||
|  | @ -37,8 +38,9 @@ Number-theoretic and representation functions: | |||
| 
 | ||||
| .. function:: floor(x) | ||||
| 
 | ||||
|    Return the floor of *x* as a float, the largest integer value less than or equal | ||||
|    to *x*. | ||||
|    Return the floor of *x* as a float, the largest integer value less than or | ||||
|    equal to *x*. If *x* is not a float, delegates to ``x.__floor__()``, which | ||||
|    should return an :class:`Integral` value. | ||||
| 
 | ||||
| 
 | ||||
| .. function:: fmod(x, y) | ||||
|  |  | |||
							
								
								
									
										99
									
								
								Doc/library/numbers.rst
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								Doc/library/numbers.rst
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,99 @@ | |||
| 
 | ||||
| :mod:`numbers` --- Numeric abstract base classes | ||||
| ================================================ | ||||
| 
 | ||||
| .. module:: numbers | ||||
|    :synopsis: Numeric abstract base classes (Complex, Real, Integral, etc.). | ||||
| 
 | ||||
| The :mod:`numbers` module (:pep:`3141`) defines a hierarchy of numeric abstract | ||||
| base classes which progressively define more operations. These concepts also | ||||
| provide a way to distinguish exact from inexact types. None of the types defined | ||||
| in this module can be instantiated. | ||||
| 
 | ||||
| 
 | ||||
| .. class:: Number | ||||
| 
 | ||||
|    The root of the numeric hierarchy. If you just want to check if an argument | ||||
|    *x* is a number, without caring what kind, use ``isinstance(x, Number)``. | ||||
| 
 | ||||
| 
 | ||||
| Exact and inexact operations | ||||
| ---------------------------- | ||||
| 
 | ||||
| .. class:: Exact | ||||
| 
 | ||||
|    Subclasses of this type have exact operations. | ||||
| 
 | ||||
|    As long as the result of a homogenous operation is of the same type, you can | ||||
|    assume that it was computed exactly, and there are no round-off errors. Laws | ||||
|    like commutativity and associativity hold. | ||||
| 
 | ||||
| 
 | ||||
| .. class:: Inexact | ||||
| 
 | ||||
|    Subclasses of this type have inexact operations. | ||||
| 
 | ||||
|    Given X, an instance of :class:`Inexact`, it is possible that ``(X + -X) + 3 | ||||
|    == 3``, but ``X + (-X + 3) == 0``. The exact form this error takes will vary | ||||
|    by type, but it's generally unsafe to compare this type for equality. | ||||
| 
 | ||||
| 
 | ||||
| The numeric tower | ||||
| ----------------- | ||||
| 
 | ||||
| .. class:: Complex | ||||
| 
 | ||||
|    Subclasses of this type describe complex numbers and include the operations | ||||
|    that work on the builtin :class:`complex` type. These are: conversions to | ||||
|    :class:`complex` and :class:`bool`, :attr:`.real`, :attr:`.imag`, ``+``, | ||||
|    ``-``, ``*``, ``/``, :func:`abs`, :meth:`conjugate`, ``==``, and ``!=``. All | ||||
|    except ``-`` and ``!=`` are abstract. | ||||
| 
 | ||||
| .. attribute:: Complex.real | ||||
| 
 | ||||
|    Abstract. Retrieves the :class:`Real` component of this number. | ||||
| 
 | ||||
| .. attribute:: Complex.imag | ||||
| 
 | ||||
|    Abstract. Retrieves the :class:`Real` component of this number. | ||||
| 
 | ||||
| .. method:: Complex.conjugate() | ||||
| 
 | ||||
|    Abstract. Returns the complex conjugate. For example, ``(1+3j).conjugate() == | ||||
|    (1-3j)``. | ||||
| 
 | ||||
| .. class:: Real | ||||
| 
 | ||||
|    To :class:`Complex`, :class:`Real` adds the operations that work on real | ||||
|    numbers. | ||||
| 
 | ||||
|    In short, those are: a conversion to :class:`float`, :func:`trunc`, | ||||
|    :func:`round`, :func:`math.floor`, :func:`math.ceil`, :func:`divmod`, ``//``, | ||||
|    ``%``, ``<``, ``<=``, ``>``, and ``>=``. | ||||
| 
 | ||||
|    Real also provides defaults for :func:`complex`, :attr:`Complex.real`, | ||||
|    :attr:`Complex.imag`, and :meth:`Complex.conjugate`. | ||||
| 
 | ||||
| 
 | ||||
| .. class:: Rational | ||||
| 
 | ||||
|    Subtypes both :class:`Real` and :class:`Exact`, and adds | ||||
|    :attr:`Rational.numerator` and :attr:`Rational.denominator` properties, which | ||||
|    should be in lowest terms. With these, it provides a default for | ||||
|    :func:`float`. | ||||
| 
 | ||||
| .. attribute:: Rational.numerator | ||||
| 
 | ||||
|    Abstract. | ||||
| 
 | ||||
| .. attribute:: Rational.denominator | ||||
| 
 | ||||
|    Abstract. | ||||
| 
 | ||||
| 
 | ||||
| .. class:: Integral | ||||
| 
 | ||||
|    Subtypes :class:`Rational` and adds a conversion to :class:`long`, the | ||||
|    3-argument form of :func:`pow`, and the bit-string operations: ``<<``, | ||||
|    ``>>``, ``&``, ``^``, ``|``, ``~``. Provides defaults for :func:`float`, | ||||
|    :attr:`Rational.numerator`, and :attr:`Rational.denominator`. | ||||
|  | @ -6,16 +6,18 @@ Numeric and Mathematical Modules | |||
| ******************************** | ||||
| 
 | ||||
| The modules described in this chapter provide numeric and math-related functions | ||||
| and data types. The :mod:`math` and :mod:`cmath` contain  various mathematical | ||||
| functions for floating-point and complex numbers. For users more interested in | ||||
| decimal accuracy than in speed, the  :mod:`decimal` module supports exact | ||||
| representations of  decimal numbers. | ||||
| and data types. The :mod:`numbers` module defines an abstract hierarchy of | ||||
| numeric types. The :mod:`math` and :mod:`cmath` modules contain various | ||||
| mathematical functions for floating-point and complex numbers. For users more | ||||
| interested in decimal accuracy than in speed, the :mod:`decimal` module supports | ||||
| exact representations of decimal numbers. | ||||
| 
 | ||||
| The following modules are documented in this chapter: | ||||
| 
 | ||||
| 
 | ||||
| .. toctree:: | ||||
| 
 | ||||
|    numbers.rst | ||||
|    math.rst | ||||
|    cmath.rst | ||||
|    decimal.rst | ||||
|  |  | |||
|  | @ -270,9 +270,8 @@ numbers of mixed type use the same rule. [#]_ The constructors :func:`int`, | |||
| :func:`long`, :func:`float`, and :func:`complex` can be used to produce numbers | ||||
| of a specific type. | ||||
| 
 | ||||
| All numeric types (except complex) support the following operations, sorted by | ||||
| ascending priority (operations in the same box have the same priority; all | ||||
| numeric operations have a higher priority than comparison operations): | ||||
| All builtin numeric types support the following operations. See | ||||
| :ref:`power` and later sections for the operators' priorities. | ||||
| 
 | ||||
| +--------------------+---------------------------------+--------+ | ||||
| | Operation          | Result                          | Notes  | | ||||
|  | @ -285,7 +284,7 @@ numeric operations have a higher priority than comparison operations): | |||
| +--------------------+---------------------------------+--------+ | ||||
| | ``x / y``          | quotient of *x* and *y*         | \(1)   | | ||||
| +--------------------+---------------------------------+--------+ | ||||
| | ``x // y``         | (floored) quotient of *x* and   | \(5)   | | ||||
| | ``x // y``         | (floored) quotient of *x* and   | (4)(5) | | ||||
| |                    | *y*                             |        | | ||||
| +--------------------+---------------------------------+--------+ | ||||
| | ``x % y``          | remainder of ``x / y``          | \(4)   | | ||||
|  | @ -294,7 +293,7 @@ numeric operations have a higher priority than comparison operations): | |||
| +--------------------+---------------------------------+--------+ | ||||
| | ``+x``             | *x* unchanged                   |        | | ||||
| +--------------------+---------------------------------+--------+ | ||||
| | ``abs(x)``         | absolute value or magnitude of  |        | | ||||
| | ``abs(x)``         | absolute value or magnitude of  | \(3)   | | ||||
| |                    | *x*                             |        | | ||||
| +--------------------+---------------------------------+--------+ | ||||
| | ``int(x)``         | *x* converted to integer        | \(2)   | | ||||
|  | @ -308,11 +307,11 @@ numeric operations have a higher priority than comparison operations): | |||
| |                    | *im* defaults to zero.          |        | | ||||
| +--------------------+---------------------------------+--------+ | ||||
| | ``c.conjugate()``  | conjugate of the complex number |        | | ||||
| |                    | *c*                             |        | | ||||
| |                    | *c*. (Identity on real numbers) |        | | ||||
| +--------------------+---------------------------------+--------+ | ||||
| | ``divmod(x, y)``   | the pair ``(x // y, x % y)``    | (3)(4) | | ||||
| +--------------------+---------------------------------+--------+ | ||||
| | ``pow(x, y)``      | *x* to the power *y*            |        | | ||||
| | ``pow(x, y)``      | *x* to the power *y*            | \(3)   | | ||||
| +--------------------+---------------------------------+--------+ | ||||
| | ``x ** y``         | *x* to the power *y*            |        | | ||||
| +--------------------+---------------------------------+--------+ | ||||
|  | @ -341,9 +340,12 @@ Notes: | |||
|       pair: numeric; conversions | ||||
|       pair: C; language | ||||
| 
 | ||||
|    Conversion from floating point to (long or plain) integer may round or truncate | ||||
|    as in C; see functions :func:`floor` and :func:`ceil` in the :mod:`math` module | ||||
|    for well-defined conversions. | ||||
|    Conversion from floating point to (long or plain) integer may round or | ||||
|    truncate as in C. | ||||
| 
 | ||||
|    .. deprecated:: 2.6 | ||||
|       Instead, convert floats to long explicitly with :func:`trunc`, | ||||
|       :func:`math.floor`, or :func:`math.ceil`. | ||||
| 
 | ||||
| (3) | ||||
|    See :ref:`built-in-funcs` for a full description. | ||||
|  | @ -364,6 +366,22 @@ Notes: | |||
|     | ||||
|    .. versionadded:: 2.6 | ||||
| 
 | ||||
| All :class:`numbers.Real` types (:class:`int`, :class:`long`, and | ||||
| :class:`float`) also include the following operations: | ||||
| 
 | ||||
| +--------------------+--------------------------------+--------+ | ||||
| | Operation          | Result                         | Notes  | | ||||
| +====================+================================+========+ | ||||
| | ``trunc(x)``       | *x* truncated to Integral      |        | | ||||
| +--------------------+--------------------------------+--------+ | ||||
| | ``round(x[, n])``  | *x* rounded to n digits,       |        | | ||||
| |                    | rounding half to even. If n is |        | | ||||
| |                    | omitted, it defaults to 0.     |        | | ||||
| +--------------------+--------------------------------+--------+ | ||||
| | ``math.floor(x)``  | the greatest Integral <= *x*   |        | | ||||
| +--------------------+--------------------------------+--------+ | ||||
| | ``math.ceil(x)``   | the least Integral >= *x*      |        | | ||||
| +--------------------+--------------------------------+--------+ | ||||
| 
 | ||||
| .. XXXJH exceptions: overflow (when? what operations?) zerodivision | ||||
| 
 | ||||
|  |  | |||
|  | @ -150,7 +150,7 @@ Ellipsis | |||
|    indicate the presence of the ``...`` syntax in a slice.  Its truth value is | ||||
|    true. | ||||
| 
 | ||||
| Numbers | ||||
| :class:`numbers.Number` | ||||
|    .. index:: object: numeric | ||||
| 
 | ||||
|    These are created by numeric literals and returned as results by arithmetic | ||||
|  | @ -162,7 +162,7 @@ Numbers | |||
|    Python distinguishes between integers, floating point numbers, and complex | ||||
|    numbers: | ||||
| 
 | ||||
|    Integers | ||||
|    :class:`numbers.Integral` | ||||
|       .. index:: object: integer | ||||
| 
 | ||||
|       These represent elements from the mathematical set of integers (positive and | ||||
|  | @ -214,7 +214,7 @@ Numbers | |||
|       without causing overflow, will yield the same result in the long integer domain | ||||
|       or when using mixed operands. | ||||
| 
 | ||||
|    Floating point numbers | ||||
|    :class:`numbers.Real` (:class:`float`) | ||||
|       .. index:: | ||||
|          object: floating point | ||||
|          pair: floating point; number | ||||
|  | @ -229,7 +229,7 @@ Numbers | |||
|       overhead of using objects in Python, so there is no reason to complicate the | ||||
|       language with two kinds of floating point numbers. | ||||
| 
 | ||||
|    Complex numbers | ||||
|    :class:`numbers.Complex` | ||||
|       .. index:: | ||||
|          object: complex | ||||
|          pair: complex; number | ||||
|  |  | |||
|  | @ -801,7 +801,8 @@ were of integer types and the second argument was negative, an exception was | |||
| raised). | ||||
| 
 | ||||
| Raising ``0.0`` to a negative power results in a :exc:`ZeroDivisionError`. | ||||
| Raising a negative number to a fractional power results in a :exc:`ValueError`. | ||||
| Raising a negative number to a fractional power results in a :class:`complex` | ||||
| number. (Since Python 2.6. In earlier versions it raised a :exc:`ValueError`.) | ||||
| 
 | ||||
| 
 | ||||
| .. _unary: | ||||
|  |  | |||
							
								
								
									
										393
									
								
								Lib/numbers.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										393
									
								
								Lib/numbers.py
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,393 @@ | |||
| # Copyright 2007 Google, Inc. All Rights Reserved. | ||||
| # Licensed to PSF under a Contributor Agreement. | ||||
| 
 | ||||
| """Abstract Base Classes (ABCs) for numbers, according to PEP 3141. | ||||
| 
 | ||||
| TODO: Fill out more detailed documentation on the operators.""" | ||||
| 
 | ||||
| from abc import ABCMeta, abstractmethod, abstractproperty | ||||
| 
 | ||||
| __all__ = ["Number", "Exact", "Inexact", | ||||
|            "Complex", "Real", "Rational", "Integral", | ||||
|            ] | ||||
| 
 | ||||
| 
 | ||||
| class Number(object): | ||||
|     """All numbers inherit from this class. | ||||
| 
 | ||||
|     If you just want to check if an argument x is a number, without | ||||
|     caring what kind, use isinstance(x, Number). | ||||
|     """ | ||||
|     __metaclass__ = ABCMeta | ||||
| 
 | ||||
| 
 | ||||
| class Exact(Number): | ||||
|     """Operations on instances of this type are exact. | ||||
| 
 | ||||
|     As long as the result of a homogenous operation is of the same | ||||
|     type, you can assume that it was computed exactly, and there are | ||||
|     no round-off errors. Laws like commutativity and associativity | ||||
|     hold. | ||||
|     """ | ||||
| 
 | ||||
| Exact.register(int) | ||||
| Exact.register(long) | ||||
| 
 | ||||
| 
 | ||||
| class Inexact(Number): | ||||
|     """Operations on instances of this type are inexact. | ||||
| 
 | ||||
|     Given X, an instance of Inexact, it is possible that (X + -X) + 3 | ||||
|     == 3, but X + (-X + 3) == 0. The exact form this error takes will | ||||
|     vary by type, but it's generally unsafe to compare this type for | ||||
|     equality. | ||||
|     """ | ||||
| 
 | ||||
| Inexact.register(complex) | ||||
| Inexact.register(float) | ||||
| # Inexact.register(decimal.Decimal) | ||||
| 
 | ||||
| 
 | ||||
| class Complex(Number): | ||||
|     """Complex defines the operations that work on the builtin complex type. | ||||
| 
 | ||||
|     In short, those are: a conversion to complex, .real, .imag, +, -, | ||||
|     *, /, abs(), .conjugate, ==, and !=. | ||||
| 
 | ||||
|     If it is given heterogenous arguments, and doesn't have special | ||||
|     knowledge about them, it should fall back to the builtin complex | ||||
|     type as described below. | ||||
|     """ | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __complex__(self): | ||||
|         """Return a builtin complex instance. Called for complex(self).""" | ||||
| 
 | ||||
|     def __bool__(self): | ||||
|         """True if self != 0. Called for bool(self).""" | ||||
|         return self != 0 | ||||
| 
 | ||||
|     @abstractproperty | ||||
|     def real(self): | ||||
|         """Retrieve the real component of this number. | ||||
| 
 | ||||
|         This should subclass Real. | ||||
|         """ | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractproperty | ||||
|     def imag(self): | ||||
|         """Retrieve the real component of this number. | ||||
| 
 | ||||
|         This should subclass Real. | ||||
|         """ | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __add__(self, other): | ||||
|         """self + other""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __radd__(self, other): | ||||
|         """other + self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __neg__(self): | ||||
|         """-self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     def __pos__(self): | ||||
|         """+self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     def __sub__(self, other): | ||||
|         """self - other""" | ||||
|         return self + -other | ||||
| 
 | ||||
|     def __rsub__(self, other): | ||||
|         """other - self""" | ||||
|         return -self + other | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __mul__(self, other): | ||||
|         """self * other""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __rmul__(self, other): | ||||
|         """other * self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __div__(self, other): | ||||
|         """self / other; should promote to float or complex when necessary.""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __rdiv__(self, other): | ||||
|         """other / self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __pow__(self, exponent): | ||||
|         """self**exponent; should promote to float or complex when necessary.""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __rpow__(self, base): | ||||
|         """base ** self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __abs__(self): | ||||
|         """Returns the Real distance from 0. Called for abs(self).""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def conjugate(self): | ||||
|         """(x+y*i).conjugate() returns (x-y*i).""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __eq__(self, other): | ||||
|         """self == other""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     # __ne__ is inherited from object and negates whatever __eq__ does. | ||||
| 
 | ||||
| Complex.register(complex) | ||||
| 
 | ||||
| 
 | ||||
| class Real(Complex): | ||||
|     """To Complex, Real adds the operations that work on real numbers. | ||||
| 
 | ||||
|     In short, those are: a conversion to float, trunc(), divmod, | ||||
|     %, <, <=, >, and >=. | ||||
| 
 | ||||
|     Real also provides defaults for the derived operations. | ||||
|     """ | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __float__(self): | ||||
|         """Any Real can be converted to a native float object. | ||||
| 
 | ||||
|         Called for float(self).""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __trunc__(self): | ||||
|         """trunc(self): Truncates self to an Integral. | ||||
| 
 | ||||
|         Returns an Integral i such that: | ||||
|           * i>0 iff self>0; | ||||
|           * abs(i) <= abs(self); | ||||
|           * for any Integral j satisfying the first two conditions, | ||||
|             abs(i) >= abs(j) [i.e. i has "maximal" abs among those]. | ||||
|         i.e. "truncate towards 0". | ||||
|         """ | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __floor__(self): | ||||
|         """Finds the greatest Integral <= self.""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __ceil__(self): | ||||
|         """Finds the least Integral >= self.""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __round__(self, ndigits=None): | ||||
|         """Rounds self to ndigits decimal places, defaulting to 0. | ||||
| 
 | ||||
|         If ndigits is omitted or None, returns an Integral, otherwise | ||||
|         returns a Real. Rounds half toward even. | ||||
|         """ | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     def __divmod__(self, other): | ||||
|         """divmod(self, other): The pair (self // other, self % other). | ||||
| 
 | ||||
|         Sometimes this can be computed faster than the pair of | ||||
|         operations. | ||||
|         """ | ||||
|         return (self // other, self % other) | ||||
| 
 | ||||
|     def __rdivmod__(self, other): | ||||
|         """divmod(other, self): The pair (self // other, self % other). | ||||
| 
 | ||||
|         Sometimes this can be computed faster than the pair of | ||||
|         operations. | ||||
|         """ | ||||
|         return (other // self, other % self) | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __floordiv__(self, other): | ||||
|         """self // other: The floor() of self/other.""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __rfloordiv__(self, other): | ||||
|         """other // self: The floor() of other/self.""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __mod__(self, other): | ||||
|         """self % other""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __rmod__(self, other): | ||||
|         """other % self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __lt__(self, other): | ||||
|         """self < other | ||||
| 
 | ||||
|         < on Reals defines a total ordering, except perhaps for NaN.""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __le__(self, other): | ||||
|         """self <= other""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     # Concrete implementations of Complex abstract methods. | ||||
|     def __complex__(self): | ||||
|         """complex(self) == complex(float(self), 0)""" | ||||
|         return complex(float(self)) | ||||
| 
 | ||||
|     @property | ||||
|     def real(self): | ||||
|         """Real numbers are their real component.""" | ||||
|         return +self | ||||
| 
 | ||||
|     @property | ||||
|     def imag(self): | ||||
|         """Real numbers have no imaginary component.""" | ||||
|         return 0 | ||||
| 
 | ||||
|     def conjugate(self): | ||||
|         """Conjugate is a no-op for Reals.""" | ||||
|         return +self | ||||
| 
 | ||||
| Real.register(float) | ||||
| # Real.register(decimal.Decimal) | ||||
| 
 | ||||
| 
 | ||||
| class Rational(Real, Exact): | ||||
|     """.numerator and .denominator should be in lowest terms.""" | ||||
| 
 | ||||
|     @abstractproperty | ||||
|     def numerator(self): | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractproperty | ||||
|     def denominator(self): | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     # Concrete implementation of Real's conversion to float. | ||||
|     def __float__(self): | ||||
|         """float(self) = self.numerator / self.denominator""" | ||||
|         return self.numerator / self.denominator | ||||
| 
 | ||||
| 
 | ||||
| class Integral(Rational): | ||||
|     """Integral adds a conversion to long and the bit-string operations.""" | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __long__(self): | ||||
|         """long(self)""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     def __index__(self): | ||||
|         """index(self)""" | ||||
|         return long(self) | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __pow__(self, exponent, modulus=None): | ||||
|         """self ** exponent % modulus, but maybe faster. | ||||
| 
 | ||||
|         Accept the modulus argument if you want to support the | ||||
|         3-argument version of pow(). Raise a TypeError if exponent < 0 | ||||
|         or any argument isn't Integral. Otherwise, just implement the | ||||
|         2-argument version described in Complex. | ||||
|         """ | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __lshift__(self, other): | ||||
|         """self << other""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __rlshift__(self, other): | ||||
|         """other << self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __rshift__(self, other): | ||||
|         """self >> other""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __rrshift__(self, other): | ||||
|         """other >> self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __and__(self, other): | ||||
|         """self & other""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __rand__(self, other): | ||||
|         """other & self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __xor__(self, other): | ||||
|         """self ^ other""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __rxor__(self, other): | ||||
|         """other ^ self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __or__(self, other): | ||||
|         """self | other""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __ror__(self, other): | ||||
|         """other | self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     @abstractmethod | ||||
|     def __invert__(self): | ||||
|         """~self""" | ||||
|         raise NotImplementedError | ||||
| 
 | ||||
|     # Concrete implementations of Rational and Real abstract methods. | ||||
|     def __float__(self): | ||||
|         """float(self) == float(long(self))""" | ||||
|         return float(long(self)) | ||||
| 
 | ||||
|     @property | ||||
|     def numerator(self): | ||||
|         """Integers are their own numerators.""" | ||||
|         return +self | ||||
| 
 | ||||
|     @property | ||||
|     def denominator(self): | ||||
|         """Integers have a denominator of 1.""" | ||||
|         return 1 | ||||
| 
 | ||||
| Integral.register(int) | ||||
| Integral.register(long) | ||||
							
								
								
									
										62
									
								
								Lib/test/test_abstract_numbers.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										62
									
								
								Lib/test/test_abstract_numbers.py
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,62 @@ | |||
| """Unit tests for numbers.py.""" | ||||
| 
 | ||||
| import unittest | ||||
| from test import test_support | ||||
| from numbers import Number | ||||
| from numbers import Exact, Inexact | ||||
| from numbers import Complex, Real, Rational, Integral | ||||
| import operator | ||||
| 
 | ||||
| class TestNumbers(unittest.TestCase): | ||||
|     def test_int(self): | ||||
|         self.failUnless(issubclass(int, Integral)) | ||||
|         self.failUnless(issubclass(int, Complex)) | ||||
|         self.failUnless(issubclass(int, Exact)) | ||||
|         self.failIf(issubclass(int, Inexact)) | ||||
| 
 | ||||
|         self.assertEqual(7, int(7).real) | ||||
|         self.assertEqual(0, int(7).imag) | ||||
|         self.assertEqual(7, int(7).conjugate()) | ||||
|         self.assertEqual(7, int(7).numerator) | ||||
|         self.assertEqual(1, int(7).denominator) | ||||
| 
 | ||||
|     def test_long(self): | ||||
|         self.failUnless(issubclass(long, Integral)) | ||||
|         self.failUnless(issubclass(long, Complex)) | ||||
|         self.failUnless(issubclass(long, Exact)) | ||||
|         self.failIf(issubclass(long, Inexact)) | ||||
| 
 | ||||
|         self.assertEqual(7, long(7).real) | ||||
|         self.assertEqual(0, long(7).imag) | ||||
|         self.assertEqual(7, long(7).conjugate()) | ||||
|         self.assertEqual(7, long(7).numerator) | ||||
|         self.assertEqual(1, long(7).denominator) | ||||
| 
 | ||||
|     def test_float(self): | ||||
|         self.failIf(issubclass(float, Rational)) | ||||
|         self.failUnless(issubclass(float, Real)) | ||||
|         self.failIf(issubclass(float, Exact)) | ||||
|         self.failUnless(issubclass(float, Inexact)) | ||||
| 
 | ||||
|         self.assertEqual(7.3, float(7.3).real) | ||||
|         self.assertEqual(0, float(7.3).imag) | ||||
|         self.assertEqual(7.3, float(7.3).conjugate()) | ||||
| 
 | ||||
|     def test_complex(self): | ||||
|         self.failIf(issubclass(complex, Real)) | ||||
|         self.failUnless(issubclass(complex, Complex)) | ||||
|         self.failIf(issubclass(complex, Exact)) | ||||
|         self.failUnless(issubclass(complex, Inexact)) | ||||
| 
 | ||||
|         c1, c2 = complex(3, 2), complex(4,1) | ||||
|         # XXX: This is not ideal, but see the comment in builtin_trunc(). | ||||
|         self.assertRaises(AttributeError, trunc, c1) | ||||
|         self.assertRaises(TypeError, float, c1) | ||||
|         self.assertRaises(TypeError, int, c1) | ||||
| 
 | ||||
| def test_main(): | ||||
|     test_support.run_unittest(TestNumbers) | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     unittest.main() | ||||
|  | @ -1450,11 +1450,13 @@ def test_pow(self): | |||
|                     else: | ||||
|                         self.assertAlmostEqual(pow(x, y, z), 24.0) | ||||
| 
 | ||||
|         self.assertAlmostEqual(pow(-1, 0.5), 1j) | ||||
|         self.assertAlmostEqual(pow(-1, 1./3), 0.5 + 0.8660254037844386j) | ||||
| 
 | ||||
|         self.assertRaises(TypeError, pow, -1, -2, 3) | ||||
|         self.assertRaises(ValueError, pow, 1, 2, 0) | ||||
|         self.assertRaises(TypeError, pow, -1L, -2L, 3L) | ||||
|         self.assertRaises(ValueError, pow, 1L, 2L, 0L) | ||||
|         self.assertRaises(ValueError, pow, -342.43, 0.234) | ||||
| 
 | ||||
|         self.assertRaises(TypeError, pow) | ||||
| 
 | ||||
|  | @ -1622,6 +1624,7 @@ def test_repr(self): | |||
| 
 | ||||
|     def test_round(self): | ||||
|         self.assertEqual(round(0.0), 0.0) | ||||
|         self.assertEqual(type(round(0.0)), float)  # Will be int in 3.0. | ||||
|         self.assertEqual(round(1.0), 1.0) | ||||
|         self.assertEqual(round(10.0), 10.0) | ||||
|         self.assertEqual(round(1000000000.0), 1000000000.0) | ||||
|  | @ -1650,12 +1653,50 @@ def test_round(self): | |||
|         self.assertEqual(round(-999999999.9), -1000000000.0) | ||||
| 
 | ||||
|         self.assertEqual(round(-8.0, -1), -10.0) | ||||
|         self.assertEqual(type(round(-8.0, -1)), float) | ||||
| 
 | ||||
|         self.assertEqual(type(round(-8.0, 0)), float) | ||||
|         self.assertEqual(type(round(-8.0, 1)), float) | ||||
| 
 | ||||
|         # Check even / odd rounding behaviour | ||||
|         self.assertEqual(round(5.5), 6) | ||||
|         self.assertEqual(round(6.5), 6) | ||||
|         self.assertEqual(round(-5.5), -6) | ||||
|         self.assertEqual(round(-6.5), -6) | ||||
| 
 | ||||
|         # Check behavior on ints | ||||
|         self.assertEqual(round(0), 0) | ||||
|         self.assertEqual(round(8), 8) | ||||
|         self.assertEqual(round(-8), -8) | ||||
|         self.assertEqual(type(round(0)), float)  # Will be int in 3.0. | ||||
|         self.assertEqual(type(round(-8, -1)), float) | ||||
|         self.assertEqual(type(round(-8, 0)), float) | ||||
|         self.assertEqual(type(round(-8, 1)), float) | ||||
| 
 | ||||
|         # test new kwargs | ||||
|         self.assertEqual(round(number=-8.0, ndigits=-1), -10.0) | ||||
| 
 | ||||
|         self.assertRaises(TypeError, round) | ||||
| 
 | ||||
|         # test generic rounding delegation for reals | ||||
|         class TestRound(object): | ||||
|             def __round__(self): | ||||
|                 return 23 | ||||
| 
 | ||||
|         class TestNoRound(object): | ||||
|             pass | ||||
| 
 | ||||
|         self.assertEqual(round(TestRound()), 23) | ||||
| 
 | ||||
|         self.assertRaises(TypeError, round, 1, 2, 3) | ||||
|         # XXX: This is not ideal, but see the comment in builtin_round(). | ||||
|         self.assertRaises(AttributeError, round, TestNoRound()) | ||||
| 
 | ||||
|         t = TestNoRound() | ||||
|         t.__round__ = lambda *args: args | ||||
|         self.assertEquals((), round(t)) | ||||
|         self.assertEquals((0,), round(t, 0)) | ||||
| 
 | ||||
|     def test_setattr(self): | ||||
|         setattr(sys, 'spam', 1) | ||||
|         self.assertEqual(sys.spam, 1) | ||||
|  | @ -1697,6 +1738,38 @@ def __getitem__(self, index): | |||
|                 raise ValueError | ||||
|         self.assertRaises(ValueError, sum, BadSeq()) | ||||
| 
 | ||||
|     def test_trunc(self): | ||||
| 
 | ||||
|         self.assertEqual(trunc(1), 1) | ||||
|         self.assertEqual(trunc(-1), -1) | ||||
|         self.assertEqual(type(trunc(1)), int) | ||||
|         self.assertEqual(type(trunc(1.5)), int) | ||||
|         self.assertEqual(trunc(1.5), 1) | ||||
|         self.assertEqual(trunc(-1.5), -1) | ||||
|         self.assertEqual(trunc(1.999999), 1) | ||||
|         self.assertEqual(trunc(-1.999999), -1) | ||||
|         self.assertEqual(trunc(-0.999999), -0) | ||||
|         self.assertEqual(trunc(-100.999), -100) | ||||
| 
 | ||||
|         class TestTrunc(object): | ||||
|             def __trunc__(self): | ||||
|                 return 23 | ||||
| 
 | ||||
|         class TestNoTrunc(object): | ||||
|             pass | ||||
| 
 | ||||
|         self.assertEqual(trunc(TestTrunc()), 23) | ||||
| 
 | ||||
|         self.assertRaises(TypeError, trunc) | ||||
|         self.assertRaises(TypeError, trunc, 1, 2) | ||||
|         # XXX: This is not ideal, but see the comment in builtin_trunc(). | ||||
|         self.assertRaises(AttributeError, trunc, TestNoTrunc()) | ||||
| 
 | ||||
|         t = TestNoTrunc() | ||||
|         t.__trunc__ = lambda *args: args | ||||
|         self.assertEquals((), trunc(t)) | ||||
|         self.assertRaises(TypeError, trunc, t, 0) | ||||
| 
 | ||||
|     def test_tuple(self): | ||||
|         self.assertEqual(tuple(()), ()) | ||||
|         t0_3 = (0, 1, 2, 3) | ||||
|  |  | |||
|  | @ -385,7 +385,9 @@ def test_float_overflow(self): | |||
|                      "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.", | ||||
|                      "math.sin(huge)", "math.sin(mhuge)", | ||||
|                      "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better | ||||
|                      "math.floor(huge)", "math.floor(mhuge)"]: | ||||
|                      # math.floor() of an int returns an int now | ||||
|                      ##"math.floor(huge)", "math.floor(mhuge)", | ||||
|                      ]: | ||||
| 
 | ||||
|             self.assertRaises(OverflowError, eval, test, namespace) | ||||
| 
 | ||||
|  |  | |||
|  | @ -58,6 +58,19 @@ def testCeil(self): | |||
|         self.ftest('ceil(-1.0)', math.ceil(-1.0), -1) | ||||
|         self.ftest('ceil(-1.5)', math.ceil(-1.5), -1) | ||||
| 
 | ||||
|         class TestCeil(object): | ||||
|             def __ceil__(self): | ||||
|                 return 42 | ||||
|         class TestNoCeil(object): | ||||
|             pass | ||||
|         self.ftest('ceil(TestCeil())', math.ceil(TestCeil()), 42) | ||||
|         self.assertRaises(TypeError, math.ceil, TestNoCeil()) | ||||
| 
 | ||||
|         t = TestNoCeil() | ||||
|         t.__ceil__ = lambda *args: args | ||||
|         self.assertRaises(TypeError, math.ceil, t) | ||||
|         self.assertRaises(TypeError, math.ceil, t, 0) | ||||
| 
 | ||||
|     def testCos(self): | ||||
|         self.assertRaises(TypeError, math.cos) | ||||
|         self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0) | ||||
|  | @ -101,6 +114,19 @@ def testFloor(self): | |||
|         self.ftest('floor(1.23e167)', math.floor(1.23e167), 1.23e167) | ||||
|         self.ftest('floor(-1.23e167)', math.floor(-1.23e167), -1.23e167) | ||||
| 
 | ||||
|         class TestFloor(object): | ||||
|             def __floor__(self): | ||||
|                 return 42 | ||||
|         class TestNoFloor(object): | ||||
|             pass | ||||
|         self.ftest('floor(TestFloor())', math.floor(TestFloor()), 42) | ||||
|         self.assertRaises(TypeError, math.floor, TestNoFloor()) | ||||
| 
 | ||||
|         t = TestNoFloor() | ||||
|         t.__floor__ = lambda *args: args | ||||
|         self.assertRaises(TypeError, math.floor, t) | ||||
|         self.assertRaises(TypeError, math.floor, t, 0) | ||||
| 
 | ||||
|     def testFmod(self): | ||||
|         self.assertRaises(TypeError, math.fmod) | ||||
|         self.ftest('fmod(10,1)', math.fmod(10,1), 0) | ||||
|  |  | |||
|  | @ -2264,13 +2264,34 @@ def defaultTestResult(self): | |||
|         expected = ['startTest', 'test', 'stopTest'] | ||||
|         self.assertEqual(events, expected) | ||||
| 
 | ||||
| class Test_Assertions(TestCase): | ||||
|     def test_AlmostEqual(self): | ||||
|         self.failUnlessAlmostEqual(1.00000001, 1.0) | ||||
|         self.failIfAlmostEqual(1.0000001, 1.0) | ||||
|         self.assertRaises(AssertionError, | ||||
|                           self.failUnlessAlmostEqual, 1.0000001, 1.0) | ||||
|         self.assertRaises(AssertionError, | ||||
|                           self.failIfAlmostEqual, 1.00000001, 1.0) | ||||
| 
 | ||||
|         self.failUnlessAlmostEqual(1.1, 1.0, places=0) | ||||
|         self.assertRaises(AssertionError, | ||||
|                           self.failUnlessAlmostEqual, 1.1, 1.0, places=1) | ||||
| 
 | ||||
|         self.failUnlessAlmostEqual(0, .1+.1j, places=0) | ||||
|         self.failIfAlmostEqual(0, .1+.1j, places=1) | ||||
|         self.assertRaises(AssertionError, | ||||
|                           self.failUnlessAlmostEqual, 0, .1+.1j, places=1) | ||||
|         self.assertRaises(AssertionError, | ||||
|                           self.failIfAlmostEqual, 0, .1+.1j, places=0) | ||||
| 
 | ||||
| ###################################################################### | ||||
| ## Main | ||||
| ###################################################################### | ||||
| 
 | ||||
| def test_main(): | ||||
|     test_support.run_unittest(Test_TestCase, Test_TestLoader, | ||||
|         Test_TestSuite, Test_TestResult, Test_FunctionTestCase) | ||||
|         Test_TestSuite, Test_TestResult, Test_FunctionTestCase, | ||||
|         Test_Assertions) | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     test_main() | ||||
|  |  | |||
|  | @ -358,7 +358,7 @@ def failUnlessAlmostEqual(self, first, second, places=7, msg=None): | |||
|            Note that decimal places (from zero) are usually not the same | ||||
|            as significant digits (measured from the most signficant digit). | ||||
|         """ | ||||
|         if round(second-first, places) != 0: | ||||
|         if round(abs(second-first), places) != 0: | ||||
|             raise self.failureException, \ | ||||
|                   (msg or '%r != %r within %r places' % (first, second, places)) | ||||
| 
 | ||||
|  | @ -370,7 +370,7 @@ def failIfAlmostEqual(self, first, second, places=7, msg=None): | |||
|            Note that decimal places (from zero) are usually not the same | ||||
|            as significant digits (measured from the most signficant digit). | ||||
|         """ | ||||
|         if round(second-first, places) == 0: | ||||
|         if round(abs(second-first), places) == 0: | ||||
|             raise self.failureException, \ | ||||
|                   (msg or '%r == %r within %r places' % (first, second, places)) | ||||
| 
 | ||||
|  |  | |||
|  | @ -346,6 +346,8 @@ Core and builtins | |||
| Library | ||||
| ------- | ||||
| 
 | ||||
| - Issue #1689: PEP 3141, numeric abstract base classes. | ||||
| 
 | ||||
| - Tk issue #1851526: Return results from Python callbacks to Tcl as | ||||
|   Tcl objects. | ||||
| 
 | ||||
|  |  | |||
|  | @ -107,9 +107,28 @@ FUNC1(atan, atan, | |||
| FUNC2(atan2, atan2, | ||||
|       "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n" | ||||
|       "Unlike atan(y/x), the signs of both x and y are considered.") | ||||
| FUNC1(ceil, ceil, | ||||
| 
 | ||||
| static PyObject * math_ceil(PyObject *self, PyObject *number) { | ||||
| 	static PyObject *ceil_str = NULL; | ||||
| 	PyObject *method; | ||||
| 
 | ||||
| 	if (ceil_str == NULL) { | ||||
| 		ceil_str = PyString_FromString("__ceil__"); | ||||
| 		if (ceil_str == NULL) | ||||
| 			return NULL; | ||||
| 	} | ||||
| 
 | ||||
| 	method = _PyType_Lookup(Py_Type(number), ceil_str); | ||||
| 	if (method == NULL) | ||||
| 		return math_1(number, ceil); | ||||
| 	else | ||||
| 		return PyObject_CallFunction(method, "O", number); | ||||
| } | ||||
| 
 | ||||
| PyDoc_STRVAR(math_ceil_doc, | ||||
| 	     "ceil(x)\n\nReturn the ceiling of x as a float.\n" | ||||
|       "This is the smallest integral value >= x.") | ||||
| 	     "This is the smallest integral value >= x."); | ||||
| 
 | ||||
| FUNC1(cos, cos, | ||||
|       "cos(x)\n\nReturn the cosine of x (measured in radians).") | ||||
| FUNC1(cosh, cosh, | ||||
|  | @ -118,9 +137,28 @@ FUNC1(exp, exp, | |||
|       "exp(x)\n\nReturn e raised to the power of x.") | ||||
| FUNC1(fabs, fabs, | ||||
|       "fabs(x)\n\nReturn the absolute value of the float x.") | ||||
| FUNC1(floor, floor, | ||||
| 
 | ||||
| static PyObject * math_floor(PyObject *self, PyObject *number) { | ||||
| 	static PyObject *floor_str = NULL; | ||||
| 	PyObject *method; | ||||
| 
 | ||||
| 	if (floor_str == NULL) { | ||||
| 		floor_str = PyString_FromString("__floor__"); | ||||
| 		if (floor_str == NULL) | ||||
| 			return NULL; | ||||
| 	} | ||||
| 
 | ||||
| 	method = _PyType_Lookup(Py_Type(number), floor_str); | ||||
| 	if (method == NULL) | ||||
| 		return math_1(number, floor); | ||||
| 	else | ||||
| 		return PyObject_CallFunction(method, "O", number); | ||||
| } | ||||
| 
 | ||||
| PyDoc_STRVAR(math_floor_doc, | ||||
| 	     "floor(x)\n\nReturn the floor of x as a float.\n" | ||||
|       "This is the largest integral value <= x.") | ||||
| 	     "This is the largest integral value <= x."); | ||||
| 
 | ||||
| FUNC2(fmod, fmod, | ||||
|       "fmod(x,y)\n\nReturn fmod(x, y), according to platform C." | ||||
|       "  x % y may differ.") | ||||
|  |  | |||
|  | @ -385,6 +385,41 @@ complex_hash(PyComplexObject *v) | |||
| 	return combined; | ||||
| } | ||||
| 
 | ||||
| /* This macro may return! */ | ||||
| #define TO_COMPLEX(obj, c) \ | ||||
| 	if (PyComplex_Check(obj)) \ | ||||
| 		c = ((PyComplexObject *)(obj))->cval; \ | ||||
| 	else if (to_complex(&(obj), &(c)) < 0) \ | ||||
| 		return (obj) | ||||
| 
 | ||||
| static int | ||||
| to_complex(PyObject **pobj, Py_complex *pc) | ||||
| { | ||||
|     PyObject *obj = *pobj; | ||||
| 
 | ||||
|     pc->real = pc->imag = 0.0; | ||||
|     if (PyInt_Check(obj)) { | ||||
|         pc->real = PyInt_AS_LONG(obj); | ||||
|         return 0; | ||||
|     } | ||||
|     if (PyLong_Check(obj)) { | ||||
|         pc->real = PyLong_AsDouble(obj); | ||||
|         if (pc->real == -1.0 && PyErr_Occurred()) { | ||||
|             *pobj = NULL; | ||||
|             return -1; | ||||
|         } | ||||
|         return 0; | ||||
|     } | ||||
|     if (PyFloat_Check(obj)) { | ||||
|         pc->real = PyFloat_AsDouble(obj); | ||||
|         return 0; | ||||
|     } | ||||
|     Py_INCREF(Py_NotImplemented); | ||||
|     *pobj = Py_NotImplemented; | ||||
|     return -1; | ||||
| } | ||||
| 		 | ||||
| 
 | ||||
| static PyObject * | ||||
| complex_add(PyComplexObject *v, PyComplexObject *w) | ||||
| { | ||||
|  | @ -502,24 +537,27 @@ complex_divmod(PyComplexObject *v, PyComplexObject *w) | |||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| complex_pow(PyComplexObject *v, PyObject *w, PyComplexObject *z) | ||||
| complex_pow(PyObject *v, PyObject *w, PyObject *z) | ||||
| { | ||||
| 	Py_complex p; | ||||
| 	Py_complex exponent; | ||||
| 	long int_exponent; | ||||
| 	Py_complex a, b; | ||||
|         TO_COMPLEX(v, a); | ||||
|         TO_COMPLEX(w, b); | ||||
| 
 | ||||
|  	if ((PyObject *)z!=Py_None) { | ||||
|  	if (z!=Py_None) { | ||||
| 		PyErr_SetString(PyExc_ValueError, "complex modulo"); | ||||
| 		return NULL; | ||||
| 	} | ||||
| 	PyFPE_START_PROTECT("complex_pow", return 0) | ||||
| 	errno = 0; | ||||
| 	exponent = ((PyComplexObject*)w)->cval; | ||||
| 	exponent = b; | ||||
| 	int_exponent = (long)exponent.real; | ||||
| 	if (exponent.imag == 0. && exponent.real == int_exponent) | ||||
| 		p = c_powi(v->cval,int_exponent); | ||||
| 		p = c_powi(a,int_exponent); | ||||
| 	else | ||||
| 		p = c_pow(v->cval,exponent); | ||||
| 		p = c_pow(a,exponent); | ||||
| 
 | ||||
| 	PyFPE_END_PROTECT(p) | ||||
| 	Py_ADJUST_ERANGE2(p.real, p.imag); | ||||
|  | @ -541,6 +579,10 @@ complex_int_div(PyComplexObject *v, PyComplexObject *w) | |||
| { | ||||
| 	PyObject *t, *r; | ||||
| 	 | ||||
| 	if (PyErr_Warn(PyExc_DeprecationWarning, | ||||
| 		       "complex divmod(), // and % are deprecated") < 0) | ||||
| 		return NULL; | ||||
| 
 | ||||
| 	t = complex_divmod(v, w); | ||||
| 	if (t != NULL) { | ||||
| 		r = PyTuple_GET_ITEM(t, 0); | ||||
|  | @ -695,6 +737,11 @@ complex_conjugate(PyObject *self) | |||
| 	return PyComplex_FromCComplex(c); | ||||
| } | ||||
| 
 | ||||
| PyDoc_STRVAR(complex_conjugate_doc, | ||||
| "complex.conjugate() -> complex\n" | ||||
| "\n" | ||||
| "Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j."); | ||||
| 
 | ||||
| static PyObject * | ||||
| complex_getnewargs(PyComplexObject *v) | ||||
| { | ||||
|  | @ -702,7 +749,8 @@ complex_getnewargs(PyComplexObject *v) | |||
| } | ||||
| 
 | ||||
| static PyMethodDef complex_methods[] = { | ||||
| 	{"conjugate",	(PyCFunction)complex_conjugate,	METH_NOARGS}, | ||||
| 	{"conjugate",	(PyCFunction)complex_conjugate,	METH_NOARGS, | ||||
| 	 complex_conjugate_doc}, | ||||
| 	{"__getnewargs__",	(PyCFunction)complex_getnewargs,	METH_NOARGS}, | ||||
| 	{NULL,		NULL}		/* sentinel */ | ||||
| }; | ||||
|  |  | |||
|  | @ -986,9 +986,10 @@ float_pow(PyObject *v, PyObject *w, PyObject *z) | |||
| 		 * bugs so we have to figure it out ourselves. | ||||
| 		 */ | ||||
| 		if (iw != floor(iw)) { | ||||
| 			PyErr_SetString(PyExc_ValueError, "negative number " | ||||
| 				"cannot be raised to a fractional power"); | ||||
| 			return NULL; | ||||
| 			/* Negative numbers raised to fractional powers
 | ||||
| 			 * become complex. | ||||
| 			 */ | ||||
| 			return PyComplex_Type.tp_as_number->nb_power(v, w, z); | ||||
| 		} | ||||
| 		/* iw is an exact integer, albeit perhaps a very large one.
 | ||||
| 		 * -1 raised to an exact integer should never be exceptional. | ||||
|  | @ -1034,17 +1035,6 @@ float_neg(PyFloatObject *v) | |||
| 	return PyFloat_FromDouble(-v->ob_fval); | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| float_pos(PyFloatObject *v) | ||||
| { | ||||
| 	if (PyFloat_CheckExact(v)) { | ||||
| 		Py_INCREF(v); | ||||
| 		return (PyObject *)v; | ||||
| 	} | ||||
| 	else | ||||
| 		return PyFloat_FromDouble(v->ob_fval); | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| float_abs(PyFloatObject *v) | ||||
| { | ||||
|  | @ -1083,14 +1073,7 @@ float_coerce(PyObject **pv, PyObject **pw) | |||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| float_long(PyObject *v) | ||||
| { | ||||
| 	double x = PyFloat_AsDouble(v); | ||||
| 	return PyLong_FromDouble(x); | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| float_int(PyObject *v) | ||||
| float_trunc(PyObject *v) | ||||
| { | ||||
| 	double x = PyFloat_AsDouble(v); | ||||
| 	double wholepart;	/* integral portion of x, rounded toward 0 */ | ||||
|  | @ -1115,6 +1098,54 @@ float_int(PyObject *v) | |||
| 	return PyLong_FromDouble(wholepart); | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| float_round(PyObject *v, PyObject *args) | ||||
| { | ||||
| #define UNDEF_NDIGITS (-0x7fffffff) /* Unlikely ndigits value */ | ||||
| 	double x; | ||||
| 	double f; | ||||
| 	double flr, cil; | ||||
| 	double rounded; | ||||
| 	int i; | ||||
| 	int ndigits = UNDEF_NDIGITS; | ||||
| 
 | ||||
| 	if (!PyArg_ParseTuple(args, "|i", &ndigits)) | ||||
| 		return NULL; | ||||
| 
 | ||||
| 	x = PyFloat_AsDouble(v); | ||||
| 
 | ||||
| 	if (ndigits != UNDEF_NDIGITS) { | ||||
| 		f = 1.0; | ||||
| 		i = abs(ndigits); | ||||
| 		while  (--i >= 0) | ||||
| 			f = f*10.0; | ||||
| 		if (ndigits < 0) | ||||
| 			x /= f; | ||||
| 		else | ||||
| 			x *= f; | ||||
| 	} | ||||
| 
 | ||||
| 	flr = floor(x); | ||||
| 	cil = ceil(x); | ||||
| 
 | ||||
| 	if (x-flr > 0.5) | ||||
| 		rounded = cil; | ||||
| 	else if (x-flr == 0.5)  | ||||
| 		rounded = fmod(flr, 2) == 0 ? flr : cil; | ||||
| 	else | ||||
| 		rounded = flr; | ||||
| 
 | ||||
| 	if (ndigits != UNDEF_NDIGITS) { | ||||
| 		if (ndigits < 0) | ||||
| 			rounded *= f; | ||||
| 		else | ||||
| 			rounded /= f; | ||||
| 	} | ||||
| 
 | ||||
| 	return PyFloat_FromDouble(rounded); | ||||
| #undef UNDEF_NDIGITS | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| float_float(PyObject *v) | ||||
| { | ||||
|  | @ -1302,7 +1333,20 @@ PyDoc_STRVAR(float_setformat_doc, | |||
| "Overrides the automatic determination of C-level floating point type.\n" | ||||
| "This affects how floats are converted to and from binary strings."); | ||||
| 
 | ||||
| static PyObject * | ||||
| float_getzero(PyObject *v, void *closure) | ||||
| { | ||||
| 	return PyFloat_FromDouble(0.0); | ||||
| } | ||||
| 
 | ||||
| static PyMethodDef float_methods[] = { | ||||
|   	{"conjugate",	(PyCFunction)float_float,	METH_NOARGS, | ||||
| 	 "Returns self, the complex conjugate of any float."}, | ||||
| 	{"__trunc__",	(PyCFunction)float_trunc, METH_NOARGS, | ||||
|          "Returns the Integral closest to x between 0 and x."}, | ||||
| 	{"__round__",	(PyCFunction)float_round, METH_VARARGS, | ||||
|          "Returns the Integral closest to x, rounding half toward even.\n" | ||||
|          "When an argument is passed, works like built-in round(x, ndigits)."}, | ||||
| 	{"__getnewargs__",	(PyCFunction)float_getnewargs,	METH_NOARGS}, | ||||
| 	{"__getformat__",	(PyCFunction)float_getformat,	 | ||||
| 	 METH_O|METH_CLASS,		float_getformat_doc}, | ||||
|  | @ -1311,6 +1355,18 @@ static PyMethodDef float_methods[] = { | |||
| 	{NULL,		NULL}		/* sentinel */ | ||||
| }; | ||||
| 
 | ||||
| static PyGetSetDef float_getset[] = { | ||||
|     {"real",  | ||||
|      (getter)float_float, (setter)NULL, | ||||
|      "the real part of a complex number", | ||||
|      NULL}, | ||||
|     {"imag",  | ||||
|      (getter)float_getzero, (setter)NULL, | ||||
|      "the imaginary part of a complex number", | ||||
|      NULL}, | ||||
|     {NULL}  /* Sentinel */ | ||||
| }; | ||||
| 
 | ||||
| PyDoc_STRVAR(float_doc, | ||||
| "float(x) -> floating point number\n\
 | ||||
| \n\ | ||||
|  | @ -1326,7 +1382,7 @@ static PyNumberMethods float_as_number = { | |||
| 	float_divmod, 	/*nb_divmod*/ | ||||
| 	float_pow, 	/*nb_power*/ | ||||
| 	(unaryfunc)float_neg, /*nb_negative*/ | ||||
| 	(unaryfunc)float_pos, /*nb_positive*/ | ||||
| 	(unaryfunc)float_float, /*nb_positive*/ | ||||
| 	(unaryfunc)float_abs, /*nb_absolute*/ | ||||
| 	(inquiry)float_nonzero, /*nb_nonzero*/ | ||||
| 	0,		/*nb_invert*/ | ||||
|  | @ -1336,8 +1392,8 @@ static PyNumberMethods float_as_number = { | |||
| 	0,		/*nb_xor*/ | ||||
| 	0,		/*nb_or*/ | ||||
| 	float_coerce, 	/*nb_coerce*/ | ||||
| 	float_int, 	/*nb_int*/ | ||||
| 	float_long, 	/*nb_long*/ | ||||
| 	float_trunc, 	/*nb_int*/ | ||||
| 	float_trunc, 	/*nb_long*/ | ||||
| 	float_float,	/*nb_float*/ | ||||
| 	0,		/* nb_oct */ | ||||
| 	0,		/* nb_hex */ | ||||
|  | @ -1389,7 +1445,7 @@ PyTypeObject PyFloat_Type = { | |||
| 	0,					/* tp_iternext */ | ||||
| 	float_methods,				/* tp_methods */ | ||||
| 	0,					/* tp_members */ | ||||
| 	0,					/* tp_getset */ | ||||
| 	float_getset,				/* tp_getset */ | ||||
| 	0,					/* tp_base */ | ||||
| 	0,					/* tp_dict */ | ||||
| 	0,					/* tp_descr_get */ | ||||
|  |  | |||
|  | @ -4,6 +4,8 @@ | |||
| #include "Python.h" | ||||
| #include <ctype.h> | ||||
| 
 | ||||
| static PyObject *int_int(PyIntObject *v); | ||||
| 
 | ||||
| long | ||||
| PyInt_GetMax(void) | ||||
| { | ||||
|  | @ -782,22 +784,11 @@ int_neg(PyIntObject *v) | |||
| 	return PyInt_FromLong(-a); | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| int_pos(PyIntObject *v) | ||||
| { | ||||
| 	if (PyInt_CheckExact(v)) { | ||||
| 		Py_INCREF(v); | ||||
| 		return (PyObject *)v; | ||||
| 	} | ||||
| 	else | ||||
| 		return PyInt_FromLong(v->ob_ival); | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| int_abs(PyIntObject *v) | ||||
| { | ||||
| 	if (v->ob_ival >= 0) | ||||
| 		return int_pos(v); | ||||
| 		return int_int(v); | ||||
| 	else | ||||
| 		return int_neg(v); | ||||
| } | ||||
|  | @ -827,7 +818,7 @@ int_lshift(PyIntObject *v, PyIntObject *w) | |||
| 		return NULL; | ||||
| 	} | ||||
| 	if (a == 0 || b == 0) | ||||
| 		return int_pos(v); | ||||
| 		return int_int(v); | ||||
| 	if (b >= LONG_BIT) { | ||||
| 		vv = PyLong_FromLong(PyInt_AS_LONG(v)); | ||||
| 		if (vv == NULL) | ||||
|  | @ -871,7 +862,7 @@ int_rshift(PyIntObject *v, PyIntObject *w) | |||
| 		return NULL; | ||||
| 	} | ||||
| 	if (a == 0 || b == 0) | ||||
| 		return int_pos(v); | ||||
| 		return int_int(v); | ||||
| 	if (b >= LONG_BIT) { | ||||
| 		if (a < 0) | ||||
| 			a = -1; | ||||
|  | @ -1060,11 +1051,72 @@ int_getnewargs(PyIntObject *v) | |||
| 	return Py_BuildValue("(l)", v->ob_ival); | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| int_getN(PyIntObject *v, void *context) { | ||||
| 	return PyInt_FromLong((intptr_t)context); | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| int_round(PyObject *self, PyObject *args) | ||||
| { | ||||
| #define UNDEF_NDIGITS (-0x7fffffff) /* Unlikely ndigits value */ | ||||
| 	int ndigits = UNDEF_NDIGITS; | ||||
| 	double x; | ||||
| 	PyObject *res; | ||||
| 	 | ||||
| 	if (!PyArg_ParseTuple(args, "|i", &ndigits)) | ||||
| 		return NULL; | ||||
| 
 | ||||
| 	if (ndigits == UNDEF_NDIGITS) | ||||
|           return int_float((PyIntObject *)self); | ||||
| 
 | ||||
| 	/* If called with two args, defer to float.__round__(). */ | ||||
| 	x = (double) PyInt_AS_LONG(self); | ||||
| 	self = PyFloat_FromDouble(x); | ||||
| 	if (self == NULL) | ||||
| 		return NULL; | ||||
| 	res = PyObject_CallMethod(self, "__round__", "i", ndigits); | ||||
| 	Py_DECREF(self); | ||||
| 	return res; | ||||
| #undef UNDEF_NDIGITS | ||||
| } | ||||
| 
 | ||||
| static PyMethodDef int_methods[] = { | ||||
| 	{"conjugate",	(PyCFunction)int_int,	METH_NOARGS, | ||||
| 	 "Returns self, the complex conjugate of any int."}, | ||||
| 	{"__trunc__",	(PyCFunction)int_int,	METH_NOARGS, | ||||
|          "Truncating an Integral returns itself."}, | ||||
| 	{"__floor__",	(PyCFunction)int_int,	METH_NOARGS, | ||||
|          "Flooring an Integral returns itself."}, | ||||
| 	{"__ceil__",	(PyCFunction)int_int,	METH_NOARGS, | ||||
|          "Ceiling of an Integral returns itself."}, | ||||
| 	{"__round__",	(PyCFunction)int_round, METH_VARARGS, | ||||
|          "Rounding an Integral returns itself.\n" | ||||
| 	 "Rounding with an ndigits arguments defers to float.__round__."}, | ||||
| 	{"__getnewargs__",	(PyCFunction)int_getnewargs,	METH_NOARGS}, | ||||
| 	{NULL,		NULL}		/* sentinel */ | ||||
| }; | ||||
| 
 | ||||
| static PyGetSetDef int_getset[] = { | ||||
| 	{"real",  | ||||
| 	 (getter)int_int, (setter)NULL, | ||||
| 	 "the real part of a complex number", | ||||
| 	 NULL}, | ||||
| 	{"imag",  | ||||
| 	 (getter)int_getN, (setter)NULL, | ||||
| 	 "the imaginary part of a complex number", | ||||
| 	 (void*)0}, | ||||
| 	{"numerator",  | ||||
| 	 (getter)int_int, (setter)NULL, | ||||
| 	 "the numerator of a rational number in lowest terms", | ||||
| 	 NULL}, | ||||
| 	{"denominator",  | ||||
| 	 (getter)int_getN, (setter)NULL, | ||||
| 	 "the denominator of a rational number in lowest terms", | ||||
| 	 (void*)1}, | ||||
| 	{NULL}  /* Sentinel */ | ||||
| }; | ||||
| 
 | ||||
| PyDoc_STRVAR(int_doc, | ||||
| "int(x[, base]) -> integer\n\
 | ||||
| \n\ | ||||
|  | @ -1085,7 +1137,7 @@ static PyNumberMethods int_as_number = { | |||
| 	(binaryfunc)int_divmod,	/*nb_divmod*/ | ||||
| 	(ternaryfunc)int_pow,	/*nb_power*/ | ||||
| 	(unaryfunc)int_neg,	/*nb_negative*/ | ||||
| 	(unaryfunc)int_pos,	/*nb_positive*/ | ||||
| 	(unaryfunc)int_int,	/*nb_positive*/ | ||||
| 	(unaryfunc)int_abs,	/*nb_absolute*/ | ||||
| 	(inquiry)int_nonzero,	/*nb_nonzero*/ | ||||
| 	(unaryfunc)int_invert,	/*nb_invert*/ | ||||
|  | @ -1149,7 +1201,7 @@ PyTypeObject PyInt_Type = { | |||
| 	0,					/* tp_iternext */ | ||||
| 	int_methods,				/* tp_methods */ | ||||
| 	0,					/* tp_members */ | ||||
| 	0,					/* tp_getset */ | ||||
| 	int_getset,				/* tp_getset */ | ||||
| 	0,					/* tp_base */ | ||||
| 	0,					/* tp_dict */ | ||||
| 	0,					/* tp_descr_get */ | ||||
|  |  | |||
|  | @ -1716,7 +1716,7 @@ PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base) | |||
| /* forward */ | ||||
| static PyLongObject *x_divrem | ||||
| 	(PyLongObject *, PyLongObject *, PyLongObject **); | ||||
| static PyObject *long_pos(PyLongObject *); | ||||
| static PyObject *long_long(PyObject *v); | ||||
| static int long_divrem(PyLongObject *, PyLongObject *, | ||||
| 	PyLongObject **, PyLongObject **); | ||||
| 
 | ||||
|  | @ -2905,17 +2905,6 @@ long_invert(PyLongObject *v) | |||
| 	return (PyObject *)x; | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| long_pos(PyLongObject *v) | ||||
| { | ||||
| 	if (PyLong_CheckExact(v)) { | ||||
| 		Py_INCREF(v); | ||||
| 		return (PyObject *)v; | ||||
| 	} | ||||
| 	else | ||||
| 		return _PyLong_Copy(v); | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| long_neg(PyLongObject *v) | ||||
| { | ||||
|  | @ -2937,7 +2926,7 @@ long_abs(PyLongObject *v) | |||
| 	if (v->ob_size < 0) | ||||
| 		return long_neg(v); | ||||
| 	else | ||||
| 		return long_pos(v); | ||||
| 		return long_long((PyObject *)v); | ||||
| } | ||||
| 
 | ||||
| static int | ||||
|  | @ -3373,11 +3362,74 @@ long_getnewargs(PyLongObject *v) | |||
| 	return Py_BuildValue("(N)", _PyLong_Copy(v)); | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| long_getN(PyLongObject *v, void *context) { | ||||
| 	return PyLong_FromLong((intptr_t)context); | ||||
| } | ||||
| 
 | ||||
| static PyObject * | ||||
| long_round(PyObject *self, PyObject *args) | ||||
| { | ||||
| #define UNDEF_NDIGITS (-0x7fffffff) /* Unlikely ndigits value */ | ||||
| 	int ndigits = UNDEF_NDIGITS; | ||||
| 	double x; | ||||
| 	PyObject *res; | ||||
| 	 | ||||
| 	if (!PyArg_ParseTuple(args, "|i", &ndigits)) | ||||
| 		return NULL; | ||||
| 
 | ||||
| 	if (ndigits == UNDEF_NDIGITS) | ||||
| 		return long_float(self); | ||||
| 
 | ||||
| 	/* If called with two args, defer to float.__round__(). */ | ||||
| 	x = PyLong_AsDouble(self); | ||||
| 	if (x == -1.0 && PyErr_Occurred()) | ||||
| 		return NULL; | ||||
| 	self = PyFloat_FromDouble(x); | ||||
| 	if (self == NULL) | ||||
| 		return NULL; | ||||
| 	res = PyObject_CallMethod(self, "__round__", "i", ndigits); | ||||
| 	Py_DECREF(self); | ||||
| 	return res; | ||||
| #undef UNDEF_NDIGITS | ||||
| } | ||||
| 
 | ||||
| static PyMethodDef long_methods[] = { | ||||
| 	{"conjugate",	(PyCFunction)long_long,	METH_NOARGS, | ||||
| 	 "Returns self, the complex conjugate of any long."}, | ||||
| 	{"__trunc__",	(PyCFunction)long_long,	METH_NOARGS, | ||||
|          "Truncating an Integral returns itself."}, | ||||
| 	{"__floor__",	(PyCFunction)long_long,	METH_NOARGS, | ||||
|          "Flooring an Integral returns itself."}, | ||||
| 	{"__ceil__",	(PyCFunction)long_long,	METH_NOARGS, | ||||
|          "Ceiling of an Integral returns itself."}, | ||||
| 	{"__round__",	(PyCFunction)long_round, METH_VARARGS, | ||||
|          "Rounding an Integral returns itself.\n" | ||||
| 	 "Rounding with an ndigits arguments defers to float.__round__."}, | ||||
| 	{"__getnewargs__",	(PyCFunction)long_getnewargs,	METH_NOARGS}, | ||||
| 	{NULL,		NULL}		/* sentinel */ | ||||
| }; | ||||
| 
 | ||||
| static PyGetSetDef long_getset[] = { | ||||
|     {"real",  | ||||
|      (getter)long_long, (setter)NULL, | ||||
|      "the real part of a complex number", | ||||
|      NULL}, | ||||
|     {"imag",  | ||||
|      (getter)long_getN, (setter)NULL, | ||||
|      "the imaginary part of a complex number", | ||||
|      (void*)0}, | ||||
|     {"numerator",  | ||||
|      (getter)long_long, (setter)NULL, | ||||
|      "the numerator of a rational number in lowest terms", | ||||
|      NULL}, | ||||
|     {"denominator",  | ||||
|      (getter)long_getN, (setter)NULL, | ||||
|      "the denominator of a rational number in lowest terms", | ||||
|      (void*)1}, | ||||
|     {NULL}  /* Sentinel */ | ||||
| }; | ||||
| 
 | ||||
| PyDoc_STRVAR(long_doc, | ||||
| "long(x[, base]) -> integer\n\
 | ||||
| \n\ | ||||
|  | @ -3396,7 +3448,7 @@ static PyNumberMethods long_as_number = { | |||
| 			long_divmod,	/*nb_divmod*/ | ||||
| 			long_pow,	/*nb_power*/ | ||||
| 	(unaryfunc) 	long_neg,	/*nb_negative*/ | ||||
| 	(unaryfunc) 	long_pos,	/*tp_positive*/ | ||||
| 	(unaryfunc) 	long_long,	/*tp_positive*/ | ||||
| 	(unaryfunc) 	long_abs,	/*tp_absolute*/ | ||||
| 	(inquiry)	long_nonzero,	/*tp_nonzero*/ | ||||
| 	(unaryfunc)	long_invert,	/*nb_invert*/ | ||||
|  | @ -3461,7 +3513,7 @@ PyTypeObject PyLong_Type = { | |||
| 	0,					/* tp_iternext */ | ||||
| 	long_methods,				/* tp_methods */ | ||||
| 	0,					/* tp_members */ | ||||
| 	0,					/* tp_getset */ | ||||
| 	long_getset,				/* tp_getset */ | ||||
| 	0,					/* tp_base */ | ||||
| 	0,					/* tp_dict */ | ||||
| 	0,					/* tp_descr_get */ | ||||
|  |  | |||
|  | @ -1926,39 +1926,31 @@ For most object types, eval(repr(object)) == object."); | |||
| static PyObject * | ||||
| builtin_round(PyObject *self, PyObject *args, PyObject *kwds) | ||||
| { | ||||
| 	double number; | ||||
| 	double f; | ||||
| 	int ndigits = 0; | ||||
| 	int i; | ||||
| #define UNDEF_NDIGITS (-0x7fffffff) /* Unlikely ndigits value */ | ||||
| 	int ndigits = UNDEF_NDIGITS; | ||||
| 	static char *kwlist[] = {"number", "ndigits", 0}; | ||||
| 	PyObject *number; | ||||
| 
 | ||||
| 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "d|i:round", | ||||
| 	if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|i:round", | ||||
|                 kwlist, &number, &ndigits)) | ||||
|                 return NULL; | ||||
| 	f = 1.0; | ||||
| 	i = abs(ndigits); | ||||
| 	while  (--i >= 0) | ||||
| 		f = f*10.0; | ||||
| 	if (ndigits < 0) | ||||
| 		number /= f; | ||||
| 
 | ||||
|         // The py3k branch gets better errors for this by using
 | ||||
|         // _PyType_Lookup(), but since float's mro isn't set in py2.6,
 | ||||
|         // we just use PyObject_CallMethod here.
 | ||||
|         if (ndigits == UNDEF_NDIGITS) | ||||
|                 return PyObject_CallMethod(number, "__round__", ""); | ||||
|         else | ||||
| 		number *= f; | ||||
| 	if (number >= 0.0) | ||||
| 		number = floor(number + 0.5); | ||||
| 	else | ||||
| 		number = ceil(number - 0.5); | ||||
| 	if (ndigits < 0) | ||||
| 		number *= f; | ||||
| 	else | ||||
| 		number /= f; | ||||
| 	return PyFloat_FromDouble(number); | ||||
|                 return PyObject_CallMethod(number, "__round__", "i", ndigits); | ||||
| #undef UNDEF_NDIGITS | ||||
| } | ||||
| 
 | ||||
| PyDoc_STRVAR(round_doc, | ||||
| "round(number[, ndigits]) -> floating point number\n\
 | ||||
| \n\ | ||||
| Round a number to a given precision in decimal digits (default 0 digits).\n\ | ||||
| This always returns a floating point number.  Precision may be negative."); | ||||
| This returns an int when called with one argument, otherwise a float.\n\ | ||||
| Precision may be negative."); | ||||
| 
 | ||||
| static PyObject * | ||||
| builtin_sorted(PyObject *self, PyObject *args, PyObject *kwds) | ||||
|  | @ -2039,6 +2031,20 @@ PyDoc_STRVAR(vars_doc, | |||
| Without arguments, equivalent to locals().\n\ | ||||
| With an argument, equivalent to object.__dict__."); | ||||
| 
 | ||||
| static PyObject * | ||||
| builtin_trunc(PyObject *self, PyObject *number) | ||||
| { | ||||
|         // XXX: The py3k branch gets better errors for this by using
 | ||||
|         // _PyType_Lookup(), but since float's mro isn't set in py2.6,
 | ||||
|         // we just use PyObject_CallMethod here.
 | ||||
| 	return PyObject_CallMethod(number, "__trunc__", ""); | ||||
| } | ||||
| 
 | ||||
| PyDoc_STRVAR(trunc_doc, | ||||
| "trunc(Real) -> Integral\n\
 | ||||
| \n\ | ||||
| returns the integral closest to x between 0 and x."); | ||||
| 
 | ||||
| 
 | ||||
| static PyObject* | ||||
| builtin_sum(PyObject *self, PyObject *args) | ||||
|  | @ -2387,6 +2393,7 @@ static PyMethodDef builtin_methods[] = { | |||
|  	{"unichr",	builtin_unichr,     METH_VARARGS, unichr_doc}, | ||||
| #endif | ||||
|  	{"vars",	builtin_vars,       METH_VARARGS, vars_doc}, | ||||
|  	{"trunc",	builtin_trunc,      METH_O, trunc_doc}, | ||||
|   	{"zip",         builtin_zip,        METH_VARARGS, zip_doc}, | ||||
| 	{NULL,		NULL}, | ||||
| }; | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 Jeffrey Yasskin
						Jeffrey Yasskin