mirror of
https://github.com/python/cpython.git
synced 2025-12-07 13:50:06 +00:00
gh-111389: replace deprecated occurrences of _PyHASH_* macros (#141236)
This commit is contained in:
parent
3ce2d57b2f
commit
ae1f435071
6 changed files with 41 additions and 41 deletions
|
|
@ -7,7 +7,7 @@
|
|||
|
||||
/* Parameters used for the numeric hash implementation. See notes for
|
||||
_Py_HashDouble in Python/pyhash.c. Numeric hashes are based on
|
||||
reduction modulo the prime 2**_PyHASH_BITS - 1. */
|
||||
reduction modulo the prime 2**PyHASH_BITS - 1. */
|
||||
|
||||
#if SIZEOF_VOID_P >= 8
|
||||
# define PyHASH_BITS 61
|
||||
|
|
@ -15,7 +15,7 @@
|
|||
# define PyHASH_BITS 31
|
||||
#endif
|
||||
|
||||
#define PyHASH_MODULUS (((size_t)1 << _PyHASH_BITS) - 1)
|
||||
#define PyHASH_MODULUS (((size_t)1 << PyHASH_BITS) - 1)
|
||||
#define PyHASH_INF 314159
|
||||
#define PyHASH_IMAG PyHASH_MULTIPLIER
|
||||
|
||||
|
|
|
|||
|
|
@ -5799,7 +5799,7 @@ _decimal_Decimal___floor___impl(PyObject *self, PyTypeObject *cls)
|
|||
static Py_hash_t
|
||||
_dec_hash(PyDecObject *v)
|
||||
{
|
||||
#if defined(CONFIG_64) && _PyHASH_BITS == 61
|
||||
#if defined(CONFIG_64) && PyHASH_BITS == 61
|
||||
/* 2**61 - 1 */
|
||||
mpd_uint_t p_data[1] = {2305843009213693951ULL};
|
||||
mpd_t p = {MPD_POS|MPD_STATIC|MPD_CONST_DATA, 0, 19, 1, 1, p_data};
|
||||
|
|
@ -5807,7 +5807,7 @@ _dec_hash(PyDecObject *v)
|
|||
mpd_uint_t inv10_p_data[1] = {2075258708292324556ULL};
|
||||
mpd_t inv10_p = {MPD_POS|MPD_STATIC|MPD_CONST_DATA,
|
||||
0, 19, 1, 1, inv10_p_data};
|
||||
#elif defined(CONFIG_32) && _PyHASH_BITS == 31
|
||||
#elif defined(CONFIG_32) && PyHASH_BITS == 31
|
||||
/* 2**31 - 1 */
|
||||
mpd_uint_t p_data[2] = {147483647UL, 2};
|
||||
mpd_t p = {MPD_POS|MPD_STATIC|MPD_CONST_DATA, 0, 10, 2, 2, p_data};
|
||||
|
|
@ -5816,7 +5816,7 @@ _dec_hash(PyDecObject *v)
|
|||
mpd_t inv10_p = {MPD_POS|MPD_STATIC|MPD_CONST_DATA,
|
||||
0, 10, 2, 2, inv10_p_data};
|
||||
#else
|
||||
#error "No valid combination of CONFIG_64, CONFIG_32 and _PyHASH_BITS"
|
||||
#error "No valid combination of CONFIG_64, CONFIG_32 and PyHASH_BITS"
|
||||
#endif
|
||||
const Py_hash_t py_hash_inf = 314159;
|
||||
mpd_uint_t ten_data[1] = {10};
|
||||
|
|
|
|||
|
|
@ -644,7 +644,7 @@ complex_hash(PyObject *op)
|
|||
* compare equal must have the same hash value, so that
|
||||
* hash(x + 0*j) must equal hash(x).
|
||||
*/
|
||||
combined = hashreal + _PyHASH_IMAG * hashimag;
|
||||
combined = hashreal + PyHASH_IMAG * hashimag;
|
||||
if (combined == (Py_uhash_t)-1)
|
||||
combined = (Py_uhash_t)-2;
|
||||
return (Py_hash_t)combined;
|
||||
|
|
|
|||
|
|
@ -3703,36 +3703,36 @@ long_hash(PyObject *obj)
|
|||
#endif
|
||||
|
||||
while (--i >= 0) {
|
||||
/* Here x is a quantity in the range [0, _PyHASH_MODULUS); we
|
||||
/* Here x is a quantity in the range [0, PyHASH_MODULUS); we
|
||||
want to compute x * 2**PyLong_SHIFT + v->long_value.ob_digit[i] modulo
|
||||
_PyHASH_MODULUS.
|
||||
PyHASH_MODULUS.
|
||||
|
||||
The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS
|
||||
The computation of x * 2**PyLong_SHIFT % PyHASH_MODULUS
|
||||
amounts to a rotation of the bits of x. To see this, write
|
||||
|
||||
x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z
|
||||
x * 2**PyLong_SHIFT = y * 2**PyHASH_BITS + z
|
||||
|
||||
where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top
|
||||
where y = x >> (PyHASH_BITS - PyLong_SHIFT) gives the top
|
||||
PyLong_SHIFT bits of x (those that are shifted out of the
|
||||
original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
|
||||
_PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT
|
||||
bits of x, shifted up. Then since 2**_PyHASH_BITS is
|
||||
congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is
|
||||
congruent to y modulo _PyHASH_MODULUS. So
|
||||
original PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
|
||||
PyHASH_MODULUS gives the bottom PyHASH_BITS - PyLong_SHIFT
|
||||
bits of x, shifted up. Then since 2**PyHASH_BITS is
|
||||
congruent to 1 modulo PyHASH_MODULUS, y*2**PyHASH_BITS is
|
||||
congruent to y modulo PyHASH_MODULUS. So
|
||||
|
||||
x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS).
|
||||
x * 2**PyLong_SHIFT = y + z (mod PyHASH_MODULUS).
|
||||
|
||||
The right-hand side is just the result of rotating the
|
||||
_PyHASH_BITS bits of x left by PyLong_SHIFT places; since
|
||||
not all _PyHASH_BITS bits of x are 1s, the same is true
|
||||
after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is
|
||||
PyHASH_BITS bits of x left by PyLong_SHIFT places; since
|
||||
not all PyHASH_BITS bits of x are 1s, the same is true
|
||||
after rotation, so 0 <= y+z < PyHASH_MODULUS and y + z is
|
||||
the reduction of x*2**PyLong_SHIFT modulo
|
||||
_PyHASH_MODULUS. */
|
||||
x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) |
|
||||
(x >> (_PyHASH_BITS - PyLong_SHIFT));
|
||||
PyHASH_MODULUS. */
|
||||
x = ((x << PyLong_SHIFT) & PyHASH_MODULUS) |
|
||||
(x >> (PyHASH_BITS - PyLong_SHIFT));
|
||||
x += v->long_value.ob_digit[i];
|
||||
if (x >= _PyHASH_MODULUS)
|
||||
x -= _PyHASH_MODULUS;
|
||||
if (x >= PyHASH_MODULUS)
|
||||
x -= PyHASH_MODULUS;
|
||||
}
|
||||
x = x * sign;
|
||||
if (x == (Py_uhash_t)-1)
|
||||
|
|
|
|||
|
|
@ -29,7 +29,7 @@ static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0};
|
|||
#endif
|
||||
|
||||
/* For numeric types, the hash of a number x is based on the reduction
|
||||
of x modulo the prime P = 2**_PyHASH_BITS - 1. It's designed so that
|
||||
of x modulo the prime P = 2**PyHASH_BITS - 1. It's designed so that
|
||||
hash(x) == hash(y) whenever x and y are numerically equal, even if
|
||||
x and y have different types.
|
||||
|
||||
|
|
@ -52,8 +52,8 @@ static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0};
|
|||
|
||||
If the result of the reduction is infinity (this is impossible for
|
||||
integers, floats and Decimals) then use the predefined hash value
|
||||
_PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead.
|
||||
_PyHASH_INF and -_PyHASH_INF are also used for the
|
||||
PyHASH_INF for x >= 0, or -PyHASH_INF for x < 0, instead.
|
||||
PyHASH_INF and -PyHASH_INF are also used for the
|
||||
hashes of float and Decimal infinities.
|
||||
|
||||
NaNs hash with a pointer hash. Having distinct hash values prevents
|
||||
|
|
@ -65,16 +65,16 @@ static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0};
|
|||
efficiently, even if the exponent of the binary or decimal number
|
||||
is large. The key point is that
|
||||
|
||||
reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS)
|
||||
reduce(x * y) == reduce(x) * reduce(y) (modulo PyHASH_MODULUS)
|
||||
|
||||
provided that {reduce(x), reduce(y)} != {0, infinity}. The reduction of a
|
||||
binary or decimal float is never infinity, since the denominator is a power
|
||||
of 2 (for binary) or a divisor of a power of 10 (for decimal). So we have,
|
||||
for nonnegative x,
|
||||
|
||||
reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS
|
||||
reduce(x * 2**e) == reduce(x) * reduce(2**e) % PyHASH_MODULUS
|
||||
|
||||
reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS
|
||||
reduce(x * 10**e) == reduce(x) * reduce(10**e) % PyHASH_MODULUS
|
||||
|
||||
and reduce(10**e) can be computed efficiently by the usual modular
|
||||
exponentiation algorithm. For reduce(2**e) it's even better: since
|
||||
|
|
@ -92,7 +92,7 @@ _Py_HashDouble(PyObject *inst, double v)
|
|||
|
||||
if (!isfinite(v)) {
|
||||
if (isinf(v))
|
||||
return v > 0 ? _PyHASH_INF : -_PyHASH_INF;
|
||||
return v > 0 ? PyHASH_INF : -PyHASH_INF;
|
||||
else
|
||||
return PyObject_GenericHash(inst);
|
||||
}
|
||||
|
|
@ -109,19 +109,19 @@ _Py_HashDouble(PyObject *inst, double v)
|
|||
and hexadecimal floating point. */
|
||||
x = 0;
|
||||
while (m) {
|
||||
x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28);
|
||||
x = ((x << 28) & PyHASH_MODULUS) | x >> (PyHASH_BITS - 28);
|
||||
m *= 268435456.0; /* 2**28 */
|
||||
e -= 28;
|
||||
y = (Py_uhash_t)m; /* pull out integer part */
|
||||
m -= y;
|
||||
x += y;
|
||||
if (x >= _PyHASH_MODULUS)
|
||||
x -= _PyHASH_MODULUS;
|
||||
if (x >= PyHASH_MODULUS)
|
||||
x -= PyHASH_MODULUS;
|
||||
}
|
||||
|
||||
/* adjust for the exponent; first reduce it modulo _PyHASH_BITS */
|
||||
e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS);
|
||||
x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e);
|
||||
/* adjust for the exponent; first reduce it modulo PyHASH_BITS */
|
||||
e = e >= 0 ? e % PyHASH_BITS : PyHASH_BITS-1-((-1-e) % PyHASH_BITS);
|
||||
x = ((x << e) & PyHASH_MODULUS) | x >> (PyHASH_BITS - e);
|
||||
|
||||
x = x * sign;
|
||||
if (x == (Py_uhash_t)-1)
|
||||
|
|
|
|||
|
|
@ -1587,10 +1587,10 @@ get_hash_info(PyThreadState *tstate)
|
|||
} while(0)
|
||||
|
||||
SET_HASH_INFO_ITEM(PyLong_FromLong(8 * sizeof(Py_hash_t)));
|
||||
SET_HASH_INFO_ITEM(PyLong_FromSsize_t(_PyHASH_MODULUS));
|
||||
SET_HASH_INFO_ITEM(PyLong_FromLong(_PyHASH_INF));
|
||||
SET_HASH_INFO_ITEM(PyLong_FromSsize_t(PyHASH_MODULUS));
|
||||
SET_HASH_INFO_ITEM(PyLong_FromLong(PyHASH_INF));
|
||||
SET_HASH_INFO_ITEM(PyLong_FromLong(0)); // This is no longer used
|
||||
SET_HASH_INFO_ITEM(PyLong_FromLong(_PyHASH_IMAG));
|
||||
SET_HASH_INFO_ITEM(PyLong_FromLong(PyHASH_IMAG));
|
||||
SET_HASH_INFO_ITEM(PyUnicode_FromString(hashfunc->name));
|
||||
SET_HASH_INFO_ITEM(PyLong_FromLong(hashfunc->hash_bits));
|
||||
SET_HASH_INFO_ITEM(PyLong_FromLong(hashfunc->seed_bits));
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue