Issue #1869 (and 4707, 5118, 5473, 1456775): use the new

string <-> float conversion routines to make round(x, n) correctly
rounded for floats x, so that it always agrees with format(x, '.<n>f').

Also fix some other round nuisances, like round(123.456, 1-2**31) giving
an integer rather than a float.
This commit is contained in:
Mark Dickinson 2009-04-18 11:48:33 +00:00
parent 60fd0999cc
commit e6a076d86c
3 changed files with 234 additions and 28 deletions

View file

@ -899,43 +899,161 @@ float_trunc(PyObject *v)
return PyLong_FromDouble(wholepart);
}
/* double_round: rounds a finite double to the closest multiple of
10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
ndigits <= 323). Returns a Python float, or sets a Python error and
returns NULL on failure (OverflowError and memory errors are possible). */
#ifndef PY_NO_SHORT_FLOAT_REPR
/* version of double_round that uses the correctly-rounded string<->double
conversions from Python/dtoa.c */
static PyObject *
double_round(double x, int ndigits) {
double rounded;
Py_ssize_t buflen, mybuflen=100;
char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
int decpt, sign;
PyObject *result = NULL;
/* round to a decimal string */
buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
if (buf == NULL) {
PyErr_NoMemory();
return NULL;
}
/* Get new buffer if shortbuf is too small. Space needed <= buf_end -
buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
buflen = buf_end - buf;
if (buflen + 8 > mybuflen) {
mybuflen = buflen+8;
mybuf = (char *)PyMem_Malloc(mybuflen);
if (mybuf == NULL) {
PyErr_NoMemory();
goto exit;
}
}
/* copy buf to mybuf, adding exponent, sign and leading 0 */
PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
buf, decpt - (int)buflen);
/* and convert the resulting string back to a double */
errno = 0;
rounded = _Py_dg_strtod(mybuf, NULL);
if (errno == ERANGE && fabs(rounded) >= 1.)
PyErr_SetString(PyExc_OverflowError,
"rounded value too large to represent");
else
result = PyFloat_FromDouble(rounded);
/* done computing value; now clean up */
if (mybuf != shortbuf)
PyMem_Free(mybuf);
exit:
_Py_dg_freedtoa(buf);
return result;
}
#else /* PY_NO_SHORT_FLOAT_REPR */
/* fallback version, to be used when correctly rounded binary<->decimal
conversions aren't available */
static PyObject *
double_round(double x, int ndigits) {
double pow1, pow2, y, z;
if (ndigits >= 0) {
if (ndigits > 22) {
/* pow1 and pow2 are each safe from overflow, but
pow1*pow2 ~= pow(10.0, ndigits) might overflow */
pow1 = pow(10.0, (double)(ndigits-22));
pow2 = 1e22;
}
else {
pow1 = pow(10.0, (double)ndigits);
pow2 = 1.0;
}
y = (x*pow1)*pow2;
/* if y overflows, then rounded value is exactly x */
if (!Py_IS_FINITE(y))
return PyFloat_FromDouble(x);
}
else {
pow1 = pow(10.0, (double)-ndigits);
pow2 = 1.0; /* unused; silences a gcc compiler warning */
y = x / pow1;
}
z = round(y);
if (fabs(y-z) == 0.5)
/* halfway between two integers; use round-half-even */
z = 2.0*round(y/2.0);
if (ndigits >= 0)
z = (z / pow2) / pow1;
else
z *= pow1;
/* if computation resulted in overflow, raise OverflowError */
if (!Py_IS_FINITE(z)) {
PyErr_SetString(PyExc_OverflowError,
"overflow occurred during round");
return NULL;
}
return PyFloat_FromDouble(z);
}
#endif /* PY_NO_SHORT_FLOAT_REPR */
/* round a Python float v to the closest multiple of 10**-ndigits */
static PyObject *
float_round(PyObject *v, PyObject *args)
{
#define UNDEF_NDIGITS (-0x7fffffff) /* Unlikely ndigits value */
double x;
double f = 1.0;
double flr, cil;
double rounded;
int ndigits = UNDEF_NDIGITS;
if (!PyArg_ParseTuple(args, "|i", &ndigits))
return NULL;
double x, rounded;
PyObject *o_ndigits = NULL;
Py_ssize_t ndigits;
x = PyFloat_AsDouble(v);
if (ndigits != UNDEF_NDIGITS) {
f = pow(10.0, ndigits);
x *= f;
if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
return NULL;
if (o_ndigits == NULL) {
/* single-argument round: round to nearest integer */
rounded = round(x);
if (fabs(x-rounded) == 0.5)
/* halfway case: round to even */
rounded = 2.0*round(x/2.0);
return PyLong_FromDouble(rounded);
}
flr = floor(x);
cil = ceil(x);
/* interpret second argument as a Py_ssize_t; clips on overflow */
ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
if (ndigits == -1 && PyErr_Occurred())
return NULL;
if (x-flr > 0.5)
rounded = cil;
else if (x-flr == 0.5)
rounded = fmod(flr, 2) == 0 ? flr : cil;
/* nans and infinities round to themselves */
if (!Py_IS_FINITE(x))
return PyFloat_FromDouble(x);
/* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
always rounds to itself. For ndigits < NDIGITS_MIN, x always
rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
if (ndigits > NDIGITS_MAX)
/* return x */
return PyFloat_FromDouble(x);
else if (ndigits < NDIGITS_MIN)
/* return 0.0, but with sign of x */
return PyFloat_FromDouble(0.0*x);
else
rounded = flr;
if (ndigits != UNDEF_NDIGITS) {
rounded /= f;
return PyFloat_FromDouble(rounded);
}
return PyLong_FromDouble(rounded);
#undef UNDEF_NDIGITS
/* finite x, and ndigits is not unreasonably large */
return double_round(x, (int)ndigits);
#undef NDIGITS_MAX
#undef NDIGITS_MIN
}
static PyObject *