These were reverted in gh-26530 (commit 17c4edc) due to refleaks.
* 2c1e258 - Compute deref offsets in compiler (gh-25152)
* b2bf2bc - Add new internal code objects fields: co_fastlocalnames and co_fastlocalkinds. (gh-26388)
This change fixes the refleaks.
https://bugs.python.org/issue43693
* Add co_firstinstr field to code object.
* Implement barebones quickening.
* Use non-quickened bytecode when tracing.
* Add NEWS item
* Add new file to Windows build.
* Don't specialize instructions with EXTENDED_ARG.
* Revert "bpo-43693: Compute deref offsets in compiler (gh-25152)"
This reverts commit b2bf2bc1ec.
* Revert "bpo-43693: Add new internal code objects fields: co_fastlocalnames and co_fastlocalkinds. (gh-26388)"
This reverts commit 2c1e2583fd.
These two commits are breaking the refleak buildbots.
A number of places in the code base (notably ceval.c and frameobject.c) rely on mapping variable names to indices in the frame "locals plus" array (AKA fast locals), and thus opargs. Currently the compiler indirectly encodes that information on the code object as the tuples co_varnames, co_cellvars, and co_freevars. At runtime the dependent code must calculate the proper mapping from those, which isn't ideal and impacts performance-sensitive sections. This is something we can easily address in the compiler instead.
This change addresses the situation by replacing internal use of co_varnames, etc. with a single combined tuple of names in locals-plus order, along with a minimal array mapping each to its kind (local vs. cell vs. free). These two new PyCodeObject fields, co_fastlocalnames and co_fastllocalkinds, are not exposed to Python code for now, but co_varnames, etc. are still available with the same values as before (though computed lazily).
Aside from the (mild) performance impact, there are a number of other benefits:
* there's now a clear, direct relationship between locals-plus and variables
* code that relies on the locals-plus-to-name mapping is simpler
* marshaled code objects are smaller and serialize/de-serialize faster
Also note that we can take this approach further by expanding the possible values in co_fastlocalkinds to include specific argument types (e.g. positional-only, kwargs). Doing so would allow further speed-ups in _PyEval_MakeFrameVector(), which is where args get unpacked into the locals-plus array. It would also allow us to shrink marshaled code objects even further.
https://bugs.python.org/issue43693
* Move up the comment about fields using in hashing/comparision.
* Group the fields more clearly.
* Add co_ncellvars and co_nfreevars.
* Raise ValueError if nlocals != len(varnames), rather than aborting.
* Remove 'zombie' frames. We won't need them once we are allocating fixed-size frames.
* Add co_nlocalplus field to code object to avoid recomputing size of locals + frees + cells.
* Move locals, cells and freevars out of frame object into separate memory buffer.
* Use per-threadstate allocated memory chunks for local variables.
* Move globals and builtins from frame object to per-thread stack.
* Move (slow) locals frame object to per-thread stack.
* Move internal frame functions to internal header.
"Zero cost" exception handling.
* Uses a lookup table to determine how to handle exceptions.
* Removes SETUP_FINALLY and POP_TOP block instructions, eliminating (most of) the runtime overhead of try statements.
* Reduces the size of the frame object by about 60%.
* Add length parameter to PyLineTable_InitAddressRange and doen't use sentinel values at end of table. Makes the line number table more robust.
* Update PyCodeAddressRange to match PEP 626.
bpo-35134, bpo-40421: Add Include/cpython/code.h header file.
code.h now defines PyCodeObject type in the limited C API. It is now
included by Python.h.
Give a name to the PyCodeObject structure: it is now called
"struct PyCodeObject". So it becomes possible to define PyCodeObject
as "struct PyCodeObject" in the limited C API without defining the
structure.