Use the new public PyBytesWriter API in:
* _PyBytes_FromHex()
* _PyBytes_FromBuffer()
* _PyBytes_FromList()
* _PyBytes_FromTuple()
* _PyBytes_FromIterator()
Add _PyBytesWriter_ResizeAndUpdatePointer() and
_PyBytesWriter_GetAllocated() helper functions.
Co-authored-by: sobolevn <mail@sobolevn.me>
Co-authored-by: Ned Batchelder <ned@nedbatchelder.com>
Co-authored-by: Tomas R. <tomas.roun8@gmail.com>
Co-authored-by: Petr Viktorin <encukou@gmail.com>
This partially reverts #137047, keeping the tests for GC collectability of the
original class that dataclass adds `__slots__` to.
The reference leaks solved there are instead solved by having the `__dict__` &
`__weakref__` descriptors not tied to (and referencing) their class.
Instead, they're shared between all classes that need them (within
an interpreter).
The `__objclass__` ol the descriptors is set to `object`, since these
descriptors work with *any* object. (The appropriate checks were already
made in the get/set code, so the `__objclass__` check was redundant.)
The repr of these descriptors (and any others whose `__objclass__` is `object`)
now doesn't mention the objclass.
This change required adjustment of introspection code that checks
`__objclass__` to determine an object's “own” (i.e. not inherited) `__dict__`.
Third-party code that does similar introspection of the internals will also
need adjusting.
Co-authored-by: Jelle Zijlstra <jelle.zijlstra@gmail.com>
Fix name of the Python encoding in Unicode errors of the code page
codec: use "cp65000" and "cp65001" instead of "CP_UTF7" and "CP_UTF8"
which are not valid Python code names.
This makes the following APIs public:
* `Py_BEGIN_CRITICAL_SECTION_MUTEX(mutex),`
* `Py_BEGIN_CRITICAL_SECTION2_MUTEX(mutex1, mutex2)`
* `void PyCriticalSection_BeginMutex(PyCriticalSection *c, PyMutex *mutex)`
* `void PyCriticalSection2_BeginMutex(PyCriticalSection2 *c, PyMutex *mutex1, PyMutex *mutex2)`
The macros are identical to the corresponding `Py_BEGIN_CRITICAL_SECTION` and
`Py_BEGIN_CRITICAL_SECTION2` macros (e.g., they include braces), but they
accept a `PyMutex` instead of an object.
The new macros are still paired with the existing END macros
(`Py_END_CRITICAL_SECTION`, `Py_END_CRITICAL_SECTION2`).
Previously, we assumed that instrumentation would happen for all copies of
the bytecode if the instrumentation version on the code object didn't match
the per-interpreter instrumentation version. That assumption was incorrect:
instrumentation will exit early if there are no new "events," even if there
is an instrumentation version mismatch.
To fix this, include the instrumented opcodes when creating new copies of
the bytecode, rather than replacing them with their uninstrumented variants.
I don't think we have to worry about races between instrumentation and creating
new copies of the bytecode: instrumentation and new bytecode creation cannot happen
concurrently. Instrumentation requires that either the world is stopped or the
code object's per-object lock is held and new bytecode creation requires holding
the code object's per-object lock.