This makes the following macros public as part of the non-limited C-API for
locking a single object or two objects at once.
* `Py_BEGIN_CRITICAL_SECTION(op)` / `Py_END_CRITICAL_SECTION()`
* `Py_BEGIN_CRITICAL_SECTION2(a, b)` / `Py_END_CRITICAL_SECTION2()`
The supporting functions and structs used by the macros are also exposed for
cases where C macros are not available.
(cherry picked from commit 8f17d69b7b)
This exposes `PyUnstable_Object_ClearWeakRefsNoCallbacks` as an unstable
C-API function to provide a thread-safe mechanism for clearing weakrefs
without executing callbacks.
Some C-API extensions need to clear weakrefs without calling callbacks,
such as after running finalizers like we do in subtype_dealloc.
Previously they could use `_PyWeakref_ClearRef` on each weakref, but
that's not thread-safe in the free-threaded build.
(cherry picked from commit e8752d7b80)
Co-authored-by: Sam Gross <colesbury@gmail.com>
Co-authored-by: Petr Viktorin <encukou@gmail.com>
gh-119336: Restore removed _PyLong_NumBits() function (GH-119418)
It is used by the pywin32 project.
(cherry picked from commit e50fac96e8)
Co-authored-by: Ethan Smith <ethan@ethanhs.me>
`drop_gil()` assumes that its caller is attached, which means that the current
thread holds the GIL if and only if the GIL is enabled, and the enabled-state
of the GIL won't change. This isn't true, though, because `detach_thread()`
calls `_PyEval_ReleaseLock()` after detaching and
`_PyThreadState_DeleteCurrent()` calls it after removing the current thread
from consideration for stop-the-world requests (effectively detaching it).
Fix this by remembering whether or not a thread acquired the GIL when it last
attached, in `PyThreadState._status.holds_gil`, and check this in `drop_gil()`
instead of `gil->enabled`.
This fixes a crash in `test_multiprocessing_pool_circular_import()`, so I've
reenabled it.
(cherry picked from commit be1dfccdf2)
Co-authored-by: Brett Simmers <swtaarrs@users.noreply.github.com>
gh-118789: Restore hidden `_PyWeakref_ClearRef` (GH-118797)
_PyWeakref_ClearRef was previously exposed in the public C-API, although
it begins with an underscore and is not documented. It's used by a few
C-API extensions. There is currently no alternative public API that can
replace its use.
_PyWeakref_ClearWeakRefsExceptCallbacks is the only thread-safe way to
use _PyWeakref_ClearRef in the free-threaded build. This exposes the C
symbol, but does not make the API public.
(cherry picked from commit db5af7da09)
Co-authored-by: Sam Gross <colesbury@gmail.com>
Add _PyType_LookupRef and use incref before setting attribute on type
Makes setting an attribute on a class and signaling type modified atomic
Avoid adding re-entrancy exposing the type cache in an inconsistent state by decrefing after type is updated
Add "Raw" variant of PyTime functions:
* PyTime_MonotonicRaw()
* PyTime_PerfCounterRaw()
* PyTime_TimeRaw()
Changes:
* Add documentation and tests. Tests release the GIL while calling
raw clock functions.
* py_get_system_clock() and py_get_monotonic_clock() now check that
the GIL is hold by the caller if raise_exc is non-zero.
* Reimplement "Unchecked" functions with raw clock functions.
Co-authored-by: Petr Viktorin <encukou@gmail.com>
Account for `add_stopiteration_handler` pushing a block for `async with`.
To allow generator functions that previously almost hit the `CO_MAXBLOCKS`
limit by nesting non-async blocks, the limit is increased by 1.
This increase allows one more block in non-generator functions.
Makes sys.settrace, sys.setprofile, and monitoring generally thread-safe.
Mostly uses a stop-the-world approach and synchronization around the code object's _co_instrumentation_version. There may be a little bit of extra synchronization around the monitoring data that's required to be TSAN clean.
The free-threaded build does not currently support the combination of
single-phase init modules and non-isolated subinterpreters. Ensure that
`check_multi_interp_extensions` is always `True` for subinterpreters in
the free-threaded build so that importing these modules raises an
`ImportError`.
Most mutable data is protected by a striped lock that is keyed on the
referenced object's address. The weakref's hash is protected using the
weakref's per-object lock.
Note that this only affects free-threaded builds. Apart from some minor
refactoring, the added code is all either gated by `ifdef`s or is a no-op
(e.g. `Py_BEGIN_CRITICAL_SECTION`).
Introduce a unified 16-bit backoff counter type (``_Py_BackoffCounter``),
shared between the Tier 1 adaptive specializer and the Tier 2 optimizer. The
API used for adaptive specialization counters is changed but the behavior is
(supposed to be) identical.
The behavior of the Tier 2 counters is changed:
- There are no longer dynamic thresholds (we never varied these).
- All counters now use the same exponential backoff.
- The counter for ``JUMP_BACKWARD`` starts counting down from 16.
- The ``temperature`` in side exits starts counting down from 64.
Use support.infinite_recursion() in test_recursive_pickle() of
test_functools to prevent a stack overflow on "ARM64 Windows
Non-Debug" buildbot.
Lower Py_C_RECURSION_LIMIT to 1,000 frames on Windows ARM64.
I added it quite a while ago as a strategy for managing interpreter lifetimes relative to the PEP 554 (now 734) implementation. Relatively recently I refactored that implementation to no longer rely on InterpreterID objects. Thus now I'm removing it.
Mostly we unify the two different implementations of the conversion code (from PyObject * to int64_t. We also drop the PyArg_ParseTuple()-style converter function, as well as rename and move PyInterpreterID_LookUp().
Defining a type twice is a C11 feature and so makes the C API
incompatible with C99. Fix the issue by only defining the type once.
Example of warning (treated as an error):
In file included from Include/Python.h:122:
Include/cpython/optimizer.h:77:3: error: redefinition of typedef
'_PyOptimizerObject' is a C11 feature [-Werror,-Wtypedef-redefinition]
} _PyOptimizerObject;
^
build/Include/cpython/optimizer.h:60:35: note: previous definition is here
typedef struct _PyOptimizerObject _PyOptimizerObject;
^
There is a race between when `Thread._tstate_lock` is released[^1] in `Thread._wait_for_tstate_lock()`
and when `Thread._stop()` asserts[^2] that it is unlocked. Consider the following execution
involving threads A, B, and C:
1. A starts.
2. B joins A, blocking on its `_tstate_lock`.
3. C joins A, blocking on its `_tstate_lock`.
4. A finishes and releases its `_tstate_lock`.
5. B acquires A's `_tstate_lock` in `_wait_for_tstate_lock()`, releases it, but is swapped
out before calling `_stop()`.
6. C is scheduled, acquires A's `_tstate_lock` in `_wait_for_tstate_lock()` but is swapped
out before releasing it.
7. B is scheduled, calls `_stop()`, which asserts that A's `_tstate_lock` is not held.
However, C holds it, so the assertion fails.
The race can be reproduced[^3] by inserting sleeps at the appropriate points in
the threading code. To do so, run the `repro_join_race.py` from the linked repo.
There are two main parts to this PR:
1. `_tstate_lock` is replaced with an event that is attached to `PyThreadState`.
The event is set by the runtime prior to the thread being cleared (in the same
place that `_tstate_lock` was released). `Thread.join()` blocks waiting for the
event to be set.
2. `_PyInterpreterState_WaitForThreads()` provides the ability to wait for all
non-daemon threads to exit. To do so, an `is_daemon` predicate was added to
`PyThreadState`. This field is set each time a thread is created. `threading._shutdown()`
now calls into `_PyInterpreterState_WaitForThreads()` instead of waiting on
`_tstate_lock`s.
[^1]: 441affc9e7/Lib/threading.py (L1201)
[^2]: 441affc9e7/Lib/threading.py (L1115)
[^3]: 8194653279
---------
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
Co-authored-by: Antoine Pitrou <antoine@python.org>
In free-threaded builds, running with `PYTHON_GIL=0` will now disable the
GIL. Follow-up issues track work to re-enable the GIL when loading an
incompatible extension, and to disable the GIL by default.
In order to support re-enabling the GIL at runtime, all GIL-related data
structures are initialized as usual, and disabling the GIL simply sets a flag
that causes `take_gil()` and `drop_gil()` to return early.