#include "Python.h" #include "compile.h" #include "opcode.h" #include "internal/pycore_code.h" /*[clinic input] module _opcode [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=117442e66eb376e6]*/ #include "clinic/_opcode.c.h" /*[clinic input] _opcode.stack_effect -> int opcode: int oparg: object = None / * jump: object = None Compute the stack effect of the opcode. [clinic start generated code]*/ static int _opcode_stack_effect_impl(PyObject *module, int opcode, PyObject *oparg, PyObject *jump) /*[clinic end generated code: output=64a18f2ead954dbb input=461c9d4a44851898]*/ { int oparg_int = 0; int jump_int; if (oparg != Py_None) { oparg_int = (int)PyLong_AsLong(oparg); if ((oparg_int == -1) && PyErr_Occurred()) { return -1; } } if (jump == Py_None) { jump_int = -1; } else if (jump == Py_True) { jump_int = 1; } else if (jump == Py_False) { jump_int = 0; } else { PyErr_SetString(PyExc_ValueError, "stack_effect: jump must be False, True or None"); return -1; } int effect = PyCompile_OpcodeStackEffectWithJump(opcode, oparg_int, jump_int); if (effect == PY_INVALID_STACK_EFFECT) { PyErr_SetString(PyExc_ValueError, "invalid opcode or oparg"); return -1; } return effect; } /*[clinic input] _opcode.is_valid -> bool opcode: int Return True if opcode is valid, False otherwise. [clinic start generated code]*/ static int _opcode_is_valid_impl(PyObject *module, int opcode) /*[clinic end generated code: output=b0d918ea1d073f65 input=fe23e0aa194ddae0]*/ { return PyUnstable_OpcodeIsValid(opcode); } /*[clinic input] _opcode.has_arg -> bool opcode: int Return True if the opcode uses its oparg, False otherwise. [clinic start generated code]*/ static int _opcode_has_arg_impl(PyObject *module, int opcode) /*[clinic end generated code: output=7a062d3b2dcc0815 input=93d878ba6361db5f]*/ { return PyUnstable_OpcodeIsValid(opcode) && PyUnstable_OpcodeHasArg(opcode); } /*[clinic input] _opcode.has_const -> bool opcode: int Return True if the opcode accesses a constant, False otherwise. [clinic start generated code]*/ static int _opcode_has_const_impl(PyObject *module, int opcode) /*[clinic end generated code: output=c646d5027c634120 input=a6999e4cf13f9410]*/ { return PyUnstable_OpcodeIsValid(opcode) && PyUnstable_OpcodeHasConst(opcode); } /*[clinic input] _opcode.has_name -> bool opcode: int Return True if the opcode accesses an attribute by name, False otherwise. [clinic start generated code]*/ static int _opcode_has_name_impl(PyObject *module, int opcode) /*[clinic end generated code: output=b49a83555c2fa517 input=448aa5e4bcc947ba]*/ { return PyUnstable_OpcodeIsValid(opcode) && PyUnstable_OpcodeHasName(opcode); } /*[clinic input] _opcode.has_jump -> bool opcode: int Return True if the opcode has a jump target, False otherwise. [clinic start generated code]*/ static int _opcode_has_jump_impl(PyObject *module, int opcode) /*[clinic end generated code: output=e9c583c669f1c46a input=35f711274357a0c3]*/ { return PyUnstable_OpcodeIsValid(opcode) && PyUnstable_OpcodeHasJump(opcode); } /*[clinic input] _opcode.get_specialization_stats Return the specialization stats [clinic start generated code]*/ static PyObject * _opcode_get_specialization_stats_impl(PyObject *module) /*[clinic end generated code: output=fcbc32fdfbec5c17 input=e1f60db68d8ce5f6]*/ { #ifdef Py_STATS return _Py_GetSpecializationStats(); #else Py_RETURN_NONE; #endif } static PyMethodDef opcode_functions[] = { _OPCODE_STACK_EFFECT_METHODDEF _OPCODE_IS_VALID_METHODDEF _OPCODE_HAS_ARG_METHODDEF _OPCODE_HAS_CONST_METHODDEF _OPCODE_HAS_NAME_METHODDEF _OPCODE_HAS_JUMP_METHODDEF _OPCODE_GET_SPECIALIZATION_STATS_METHODDEF {NULL, NULL, 0, NULL} }; static PyModuleDef_Slot module_slots[] = { {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED}, {0, NULL} }; static struct PyModuleDef opcodemodule = { PyModuleDef_HEAD_INIT, .m_name = "_opcode", .m_doc = "Opcode support module.", .m_size = 0, .m_methods = opcode_functions, .m_slots = module_slots, }; PyMODINIT_FUNC PyInit__opcode(void) { return PyModuleDef_Init(&opcodemodule); }