#include "Python.h" #include "pycore_ceval.h" // _PyEval_IsGILEnabled() #include "pycore_initconfig.h" // _PyStatus_ERR() #include "pycore_pyerrors.h" // _Py_DumpExtensionModules() #include "pycore_fileutils.h" // _PyFile_Flush #include "pycore_pystate.h" // _PyThreadState_GET() #include "pycore_runtime.h" // _Py_ID() #include "pycore_signal.h" // Py_NSIG #include "pycore_time.h" // _PyTime_FromSecondsObject() #include "pycore_traceback.h" // _Py_DumpTracebackThreads #ifdef HAVE_UNISTD_H # include // _exit() #endif #include // sigaction() #include // abort() #if defined(HAVE_PTHREAD_SIGMASK) && !defined(HAVE_BROKEN_PTHREAD_SIGMASK) && defined(HAVE_PTHREAD_H) # include #endif #ifdef MS_WINDOWS # include #endif #ifdef HAVE_SYS_RESOURCE_H # include // setrlimit() #endif #if defined(FAULTHANDLER_USE_ALT_STACK) && defined(HAVE_LINUX_AUXVEC_H) && defined(HAVE_SYS_AUXV_H) # include // AT_MINSIGSTKSZ # include // getauxval() #endif #include "clinic/faulthandler.c.h" /* Sentinel to ignore all_threads on free-threading */ #define FT_IGNORE_ALL_THREADS 2 /* Allocate at maximum 100 MiB of the stack to raise the stack overflow */ #define STACK_OVERFLOW_MAX_SIZE (100 * 1024 * 1024) #define PUTS(fd, str) (void)_Py_write_noraise(fd, str, strlen(str)) /*[clinic input] module faulthandler [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=c3d4f47c4f3d440f]*/ typedef struct { int signum; int enabled; const char* name; _Py_sighandler_t previous; int all_threads; } fault_handler_t; #define fatal_error _PyRuntime.faulthandler.fatal_error #define thread _PyRuntime.faulthandler.thread #ifdef FAULTHANDLER_USER #define user_signals _PyRuntime.faulthandler.user_signals typedef struct faulthandler_user_signal user_signal_t; static void faulthandler_user(int signum); #endif /* FAULTHANDLER_USER */ static fault_handler_t faulthandler_handlers[] = { #ifdef SIGBUS {SIGBUS, 0, "Bus error", }, #endif #ifdef SIGILL {SIGILL, 0, "Illegal instruction", }, #endif {SIGFPE, 0, "Floating-point exception", }, {SIGABRT, 0, "Aborted", }, /* define SIGSEGV at the end to make it the default choice if searching the handler fails in faulthandler_fatal_error() */ {SIGSEGV, 0, "Segmentation fault", } }; static const size_t faulthandler_nsignals = \ Py_ARRAY_LENGTH(faulthandler_handlers); #ifdef FAULTHANDLER_USE_ALT_STACK # define stack _PyRuntime.faulthandler.stack # define old_stack _PyRuntime.faulthandler.old_stack #endif /* Get the file descriptor of a file by calling its fileno() method and then call its flush() method. If file is NULL or Py_None, use sys.stderr as the new file. If file is an integer, it will be treated as file descriptor. On success, return the file descriptor and write the new file into *file_ptr. On error, return -1. */ static int faulthandler_get_fileno(PyObject **file_ptr) { PyObject *result; long fd_long; int fd; PyObject *file = *file_ptr; if (file == NULL || file == Py_None) { file = PySys_GetAttr(&_Py_ID(stderr)); if (file == NULL) { return -1; } if (file == Py_None) { PyErr_SetString(PyExc_RuntimeError, "sys.stderr is None"); Py_DECREF(file); return -1; } } else if (PyLong_Check(file)) { if (PyBool_Check(file)) { if (PyErr_WarnEx(PyExc_RuntimeWarning, "bool is used as a file descriptor", 1)) { return -1; } } fd = PyLong_AsInt(file); if (fd == -1 && PyErr_Occurred()) return -1; if (fd < 0) { PyErr_SetString(PyExc_ValueError, "file is not a valid file descriptor"); return -1; } *file_ptr = NULL; return fd; } else { Py_INCREF(file); } result = PyObject_CallMethodNoArgs(file, &_Py_ID(fileno)); if (result == NULL) { Py_DECREF(file); return -1; } fd = -1; if (PyLong_Check(result)) { fd_long = PyLong_AsLong(result); if (0 <= fd_long && fd_long < INT_MAX) fd = (int)fd_long; } Py_DECREF(result); if (fd == -1) { PyErr_SetString(PyExc_RuntimeError, "file.fileno() is not a valid file descriptor"); Py_DECREF(file); return -1; } if (_PyFile_Flush(file) < 0) { /* ignore flush() error */ PyErr_Clear(); } *file_ptr = file; return fd; } /* Get the state of the current thread: only call this function if the current thread holds the GIL. Raise an exception on error. */ static PyThreadState* get_thread_state(void) { PyThreadState *tstate = _PyThreadState_GET(); if (tstate == NULL) { /* just in case but very unlikely... */ PyErr_SetString(PyExc_RuntimeError, "unable to get the current thread state"); return NULL; } return tstate; } static void faulthandler_dump_traceback(int fd, int all_threads, PyInterpreterState *interp) { static volatile int reentrant = 0; if (reentrant) return; reentrant = 1; /* SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL are synchronous signals and are thus delivered to the thread that caused the fault. Get the Python thread state of the current thread. PyThreadState_Get() doesn't give the state of the thread that caused the fault if the thread released the GIL, and so this function cannot be used. Read the thread specific storage (TSS) instead: call PyGILState_GetThisThreadState(). */ PyThreadState *tstate = PyGILState_GetThisThreadState(); if (all_threads == 1) { (void)_Py_DumpTracebackThreads(fd, NULL, tstate); } else { if (all_threads == FT_IGNORE_ALL_THREADS) { PUTS(fd, "\n"); } if (tstate != NULL) _Py_DumpTraceback(fd, tstate); } reentrant = 0; } static void faulthandler_dump_c_stack(int fd) { static volatile int reentrant = 0; if (reentrant) { return; } reentrant = 1; if (fatal_error.c_stack) { PUTS(fd, "\n"); _Py_DumpStack(fd); } reentrant = 0; } /*[clinic input] faulthandler.dump_traceback as faulthandler_dump_traceback_py file: object(py_default="sys.stderr") = NULL all_threads: bool = True Dump the traceback of the current thread into file. Dump the traceback of all threads if all_threads is true. [clinic start generated code]*/ static PyObject * faulthandler_dump_traceback_py_impl(PyObject *module, PyObject *file, int all_threads) /*[clinic end generated code: output=34efece0ca18314f input=b832ec55e27a7898]*/ { PyThreadState *tstate; const char *errmsg; int fd; fd = faulthandler_get_fileno(&file); if (fd < 0) return NULL; tstate = get_thread_state(); if (tstate == NULL) { Py_XDECREF(file); return NULL; } if (all_threads) { PyInterpreterState *interp = _PyInterpreterState_GET(); /* gh-128400: Accessing other thread states while they're running * isn't safe if those threads are running. */ _PyEval_StopTheWorld(interp); errmsg = _Py_DumpTracebackThreads(fd, NULL, tstate); _PyEval_StartTheWorld(interp); if (errmsg != NULL) { PyErr_SetString(PyExc_RuntimeError, errmsg); Py_XDECREF(file); return NULL; } } else { _Py_DumpTraceback(fd, tstate); } Py_XDECREF(file); if (PyErr_CheckSignals()) return NULL; Py_RETURN_NONE; } /*[clinic input] faulthandler.dump_c_stack as faulthandler_dump_c_stack_py file: object(py_default="sys.stderr") = NULL Dump the C stack of the current thread. [clinic start generated code]*/ static PyObject * faulthandler_dump_c_stack_py_impl(PyObject *module, PyObject *file) /*[clinic end generated code: output=151d6c95e9f8c0f6 input=10f6b6f29b635109]*/ { int fd = faulthandler_get_fileno(&file); if (fd < 0) { return NULL; } _Py_DumpStack(fd); Py_XDECREF(file); if (PyErr_CheckSignals()) { return NULL; } Py_RETURN_NONE; } static void faulthandler_disable_fatal_handler(fault_handler_t *handler) { if (!handler->enabled) return; handler->enabled = 0; #ifdef HAVE_SIGACTION (void)sigaction(handler->signum, &handler->previous, NULL); #else (void)signal(handler->signum, handler->previous); #endif } static int deduce_all_threads(void) { #ifndef Py_GIL_DISABLED return fatal_error.all_threads; #else if (fatal_error.all_threads == 0) { return 0; } // We can't use _PyThreadState_GET, so use the stored GILstate one PyThreadState *tstate = PyGILState_GetThisThreadState(); if (tstate == NULL) { return 0; } /* In theory, it's safe to dump all threads if the GIL is enabled */ return _PyEval_IsGILEnabled(tstate) ? fatal_error.all_threads : FT_IGNORE_ALL_THREADS; #endif } /* Handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals. Display the current Python traceback, restore the previous handler and call the previous handler. On Windows, don't explicitly call the previous handler, because the Windows signal handler would not be called (for an unknown reason). The execution of the program continues at faulthandler_fatal_error() exit, but the same instruction will raise the same fault (signal), and so the previous handler will be called. This function is signal-safe and should only call signal-safe functions. */ static void faulthandler_fatal_error(int signum) { const int fd = fatal_error.fd; size_t i; fault_handler_t *handler = NULL; int save_errno = errno; int found = 0; if (!fatal_error.enabled) return; for (i=0; i < faulthandler_nsignals; i++) { handler = &faulthandler_handlers[i]; if (handler->signum == signum) { found = 1; break; } } if (handler == NULL) { /* faulthandler_nsignals == 0 (unlikely) */ return; } /* restore the previous handler */ faulthandler_disable_fatal_handler(handler); if (found) { PUTS(fd, "Fatal Python error: "); PUTS(fd, handler->name); PUTS(fd, "\n\n"); } else { char unknown_signum[23] = {0,}; snprintf(unknown_signum, 23, "%d", signum); PUTS(fd, "Fatal Python error from unexpected signum: "); PUTS(fd, unknown_signum); PUTS(fd, "\n\n"); } faulthandler_dump_traceback(fd, deduce_all_threads(), fatal_error.interp); faulthandler_dump_c_stack(fd); _Py_DumpExtensionModules(fd, fatal_error.interp); errno = save_errno; #ifdef MS_WINDOWS if (signum == SIGSEGV) { /* don't explicitly call the previous handler for SIGSEGV in this signal handler, because the Windows signal handler would not be called */ return; } #endif /* call the previous signal handler: it is called immediately if we use sigaction() thanks to SA_NODEFER flag, otherwise it is deferred */ raise(signum); } #ifdef MS_WINDOWS static int faulthandler_ignore_exception(DWORD code) { /* bpo-30557: ignore exceptions which are not errors */ if (!(code & 0x80000000)) { return 1; } /* bpo-31701: ignore MSC and COM exceptions E0000000 + code */ if (code == 0xE06D7363 /* MSC exception ("Emsc") */ || code == 0xE0434352 /* COM Callable Runtime exception ("ECCR") */) { return 1; } /* Interesting exception: log it with the Python traceback */ return 0; } static LONG WINAPI faulthandler_exc_handler(struct _EXCEPTION_POINTERS *exc_info) { const int fd = fatal_error.fd; DWORD code = exc_info->ExceptionRecord->ExceptionCode; if (faulthandler_ignore_exception(code)) { /* ignore the exception: call the next exception handler */ return EXCEPTION_CONTINUE_SEARCH; } PUTS(fd, "Windows fatal exception: "); switch (code) { /* only format most common errors */ case EXCEPTION_ACCESS_VIOLATION: PUTS(fd, "access violation"); break; case EXCEPTION_FLT_DIVIDE_BY_ZERO: PUTS(fd, "float divide by zero"); break; case EXCEPTION_FLT_OVERFLOW: PUTS(fd, "float overflow"); break; case EXCEPTION_INT_DIVIDE_BY_ZERO: PUTS(fd, "int divide by zero"); break; case EXCEPTION_INT_OVERFLOW: PUTS(fd, "integer overflow"); break; case EXCEPTION_IN_PAGE_ERROR: PUTS(fd, "page error"); break; case EXCEPTION_STACK_OVERFLOW: PUTS(fd, "stack overflow"); break; default: PUTS(fd, "code 0x"); _Py_DumpHexadecimal(fd, code, 8); } PUTS(fd, "\n\n"); if (code == EXCEPTION_ACCESS_VIOLATION) { /* disable signal handler for SIGSEGV */ for (size_t i=0; i < faulthandler_nsignals; i++) { fault_handler_t *handler = &faulthandler_handlers[i]; if (handler->signum == SIGSEGV) { faulthandler_disable_fatal_handler(handler); break; } } } faulthandler_dump_traceback(fd, deduce_all_threads(), fatal_error.interp); faulthandler_dump_c_stack(fd); /* call the next exception handler */ return EXCEPTION_CONTINUE_SEARCH; } #endif #ifdef FAULTHANDLER_USE_ALT_STACK static int faulthandler_allocate_stack(void) { if (stack.ss_sp != NULL) { return 0; } /* Allocate an alternate stack for faulthandler() signal handler to be able to execute a signal handler on a stack overflow error */ stack.ss_sp = PyMem_Malloc(stack.ss_size); if (stack.ss_sp == NULL) { PyErr_NoMemory(); return -1; } int err = sigaltstack(&stack, &old_stack); if (err) { PyErr_SetFromErrno(PyExc_OSError); /* Release the stack to retry sigaltstack() next time */ PyMem_Free(stack.ss_sp); stack.ss_sp = NULL; return -1; } return 0; } #endif /* Install the handler for fatal signals, faulthandler_fatal_error(). */ static int faulthandler_enable(void) { if (fatal_error.enabled) { return 0; } fatal_error.enabled = 1; #ifdef FAULTHANDLER_USE_ALT_STACK if (faulthandler_allocate_stack() < 0) { return -1; } #endif // gh-137185: Initialize C stack trace dumping outside of the signal // handler. Specifically, we call backtrace() to ensure that libgcc is // dynamically loaded outside of the signal handler. _Py_InitDumpStack(); for (size_t i=0; i < faulthandler_nsignals; i++) { fault_handler_t *handler; int err; handler = &faulthandler_handlers[i]; assert(!handler->enabled); #ifdef HAVE_SIGACTION struct sigaction action; action.sa_handler = faulthandler_fatal_error; sigemptyset(&action.sa_mask); /* Do not prevent the signal from being received from within its own signal handler */ action.sa_flags = SA_NODEFER; #ifdef FAULTHANDLER_USE_ALT_STACK assert(stack.ss_sp != NULL); /* Call the signal handler on an alternate signal stack provided by sigaltstack() */ action.sa_flags |= SA_ONSTACK; #endif err = sigaction(handler->signum, &action, &handler->previous); #else handler->previous = signal(handler->signum, faulthandler_fatal_error); err = (handler->previous == SIG_ERR); #endif if (err) { PyErr_SetFromErrno(PyExc_RuntimeError); return -1; } handler->enabled = 1; } #ifdef MS_WINDOWS assert(fatal_error.exc_handler == NULL); fatal_error.exc_handler = AddVectoredExceptionHandler(1, faulthandler_exc_handler); #endif return 0; } /*[clinic input] faulthandler.enable as faulthandler_py_enable file: object(py_default="sys.stderr") = NULL all_threads: bool = True c_stack: bool = True Enable the fault handler. [clinic start generated code]*/ static PyObject * faulthandler_py_enable_impl(PyObject *module, PyObject *file, int all_threads, int c_stack) /*[clinic end generated code: output=580d89b5eb62f1cb input=77277746a88b25ca]*/ { int fd; PyThreadState *tstate; fd = faulthandler_get_fileno(&file); if (fd < 0) return NULL; tstate = get_thread_state(); if (tstate == NULL) { Py_XDECREF(file); return NULL; } Py_XSETREF(fatal_error.file, file); fatal_error.fd = fd; fatal_error.all_threads = all_threads; fatal_error.interp = PyThreadState_GetInterpreter(tstate); fatal_error.c_stack = c_stack; if (faulthandler_enable() < 0) { return NULL; } Py_RETURN_NONE; } static void faulthandler_disable(void) { if (fatal_error.enabled) { fatal_error.enabled = 0; for (size_t i=0; i < faulthandler_nsignals; i++) { fault_handler_t *handler; handler = &faulthandler_handlers[i]; faulthandler_disable_fatal_handler(handler); } } #ifdef MS_WINDOWS if (fatal_error.exc_handler != NULL) { RemoveVectoredExceptionHandler(fatal_error.exc_handler); fatal_error.exc_handler = NULL; } #endif Py_CLEAR(fatal_error.file); } /*[clinic input] faulthandler.disable as faulthandler_disable_py Disable the fault handler. [clinic start generated code]*/ static PyObject * faulthandler_disable_py_impl(PyObject *module) /*[clinic end generated code: output=e9087a04535af3cb input=6223eac6804550af]*/ { if (!fatal_error.enabled) { Py_RETURN_FALSE; } faulthandler_disable(); Py_RETURN_TRUE; } /*[clinic input] faulthandler.is_enabled -> bool Check if the handler is enabled. [clinic start generated code]*/ static int faulthandler_is_enabled_impl(PyObject *module) /*[clinic end generated code: output=b9f33a3e0f881a23 input=3d5532547eb14bf9]*/ { return fatal_error.enabled; } static void faulthandler_thread(void *unused) { PyLockStatus st; const char* errmsg; int ok; #if defined(HAVE_PTHREAD_SIGMASK) && !defined(HAVE_BROKEN_PTHREAD_SIGMASK) sigset_t set; /* we don't want to receive any signal */ sigfillset(&set); pthread_sigmask(SIG_SETMASK, &set, NULL); #endif do { st = PyThread_acquire_lock_timed(thread.cancel_event, thread.timeout_us, 0); if (st == PY_LOCK_ACQUIRED) { PyThread_release_lock(thread.cancel_event); break; } /* Timeout => dump traceback */ assert(st == PY_LOCK_FAILURE); (void)_Py_write_noraise(thread.fd, thread.header, (int)thread.header_len); errmsg = _Py_DumpTracebackThreads(thread.fd, thread.interp, NULL); ok = (errmsg == NULL); if (thread.exit) _exit(1); } while (ok && thread.repeat); /* The only way out */ PyThread_release_lock(thread.running); } static void cancel_dump_traceback_later(void) { /* If not scheduled, nothing to cancel */ if (!thread.cancel_event) { return; } /* Notify cancellation */ PyThread_release_lock(thread.cancel_event); /* Wait for thread to join */ PyThread_acquire_lock(thread.running, 1); PyThread_release_lock(thread.running); /* The main thread should always hold the cancel_event lock */ PyThread_acquire_lock(thread.cancel_event, 1); Py_CLEAR(thread.file); if (thread.header) { PyMem_Free(thread.header); thread.header = NULL; } } #define SEC_TO_US (1000 * 1000) static char* format_timeout(PyTime_t us) { unsigned long sec, min, hour; char buffer[100]; /* the downcast is safe: the caller check that 0 < us <= LONG_MAX */ sec = (unsigned long)(us / SEC_TO_US); us %= SEC_TO_US; min = sec / 60; sec %= 60; hour = min / 60; min %= 60; if (us != 0) { PyOS_snprintf(buffer, sizeof(buffer), "Timeout (%lu:%02lu:%02lu.%06u)!\n", hour, min, sec, (unsigned int)us); } else { PyOS_snprintf(buffer, sizeof(buffer), "Timeout (%lu:%02lu:%02lu)!\n", hour, min, sec); } return _PyMem_Strdup(buffer); } /*[clinic input] faulthandler.dump_traceback_later timeout as timeout_obj: object repeat: bool = False file: object(py_default="sys.stderr") = NULL exit: bool = False Dump the traceback of all threads in timeout seconds. If repeat is true, the tracebacks of all threads are dumped every timeout seconds. If exit is true, call _exit(1) which is not safe. [clinic start generated code]*/ static PyObject * faulthandler_dump_traceback_later_impl(PyObject *module, PyObject *timeout_obj, int repeat, PyObject *file, int exit) /*[clinic end generated code: output=a24d80d694d25ba2 input=fd005625ecc2ba9a]*/ { PyTime_t timeout, timeout_us; int fd; PyThreadState *tstate; char *header; size_t header_len; if (_PyTime_FromSecondsObject(&timeout, timeout_obj, _PyTime_ROUND_TIMEOUT) < 0) { return NULL; } timeout_us = _PyTime_AsMicroseconds(timeout, _PyTime_ROUND_TIMEOUT); if (timeout_us <= 0) { PyErr_SetString(PyExc_ValueError, "timeout must be greater than 0"); return NULL; } /* Limit to LONG_MAX seconds for format_timeout() */ if (timeout_us > PY_TIMEOUT_MAX || timeout_us / SEC_TO_US > LONG_MAX) { PyErr_SetString(PyExc_OverflowError, "timeout value is too large"); return NULL; } tstate = get_thread_state(); if (tstate == NULL) { return NULL; } fd = faulthandler_get_fileno(&file); if (fd < 0) { return NULL; } if (!thread.running) { thread.running = PyThread_allocate_lock(); if (!thread.running) { Py_XDECREF(file); return PyErr_NoMemory(); } } if (!thread.cancel_event) { thread.cancel_event = PyThread_allocate_lock(); if (!thread.cancel_event || !thread.running) { Py_XDECREF(file); return PyErr_NoMemory(); } /* cancel_event starts to be acquired: it's only released to cancel the thread. */ PyThread_acquire_lock(thread.cancel_event, 1); } /* format the timeout */ header = format_timeout(timeout_us); if (header == NULL) { Py_XDECREF(file); return PyErr_NoMemory(); } header_len = strlen(header); /* Cancel previous thread, if running */ cancel_dump_traceback_later(); Py_XSETREF(thread.file, file); thread.fd = fd; /* the downcast is safe: we check that 0 < timeout_us < PY_TIMEOUT_MAX */ thread.timeout_us = (PY_TIMEOUT_T)timeout_us; thread.repeat = repeat; thread.interp = PyThreadState_GetInterpreter(tstate); thread.exit = exit; thread.header = header; thread.header_len = header_len; /* Arm these locks to serve as events when released */ PyThread_acquire_lock(thread.running, 1); if (PyThread_start_new_thread(faulthandler_thread, NULL) == PYTHREAD_INVALID_THREAD_ID) { PyThread_release_lock(thread.running); Py_CLEAR(thread.file); PyMem_Free(header); thread.header = NULL; PyErr_SetString(PyExc_RuntimeError, "unable to start watchdog thread"); return NULL; } Py_RETURN_NONE; } /*[clinic input] faulthandler.cancel_dump_traceback_later as faulthandler_cancel_dump_traceback_later_py Cancel the previous call to dump_traceback_later(). [clinic start generated code]*/ static PyObject * faulthandler_cancel_dump_traceback_later_py_impl(PyObject *module) /*[clinic end generated code: output=2cf303015d39c926 input=51ad64b6ca8412a4]*/ { cancel_dump_traceback_later(); Py_RETURN_NONE; } #ifdef FAULTHANDLER_USER static int faulthandler_register(int signum, int chain, _Py_sighandler_t *previous_p) { #ifdef HAVE_SIGACTION struct sigaction action; action.sa_handler = faulthandler_user; sigemptyset(&action.sa_mask); /* if the signal is received while the kernel is executing a system call, try to restart the system call instead of interrupting it and return EINTR. */ action.sa_flags = SA_RESTART; if (chain) { /* do not prevent the signal from being received from within its own signal handler */ action.sa_flags = SA_NODEFER; } #ifdef FAULTHANDLER_USE_ALT_STACK assert(stack.ss_sp != NULL); /* Call the signal handler on an alternate signal stack provided by sigaltstack() */ action.sa_flags |= SA_ONSTACK; #endif return sigaction(signum, &action, previous_p); #else _Py_sighandler_t previous; previous = signal(signum, faulthandler_user); if (previous_p != NULL) { *previous_p = previous; } return (previous == SIG_ERR); #endif } /* Handler of user signals (e.g. SIGUSR1). Dump the traceback of the current thread, or of all threads if thread.all_threads is true. This function is signal safe and should only call signal safe functions. */ static void faulthandler_user(int signum) { user_signal_t *user; int save_errno = errno; user = &user_signals[signum]; if (!user->enabled) return; faulthandler_dump_traceback(user->fd, user->all_threads, user->interp); #ifdef HAVE_SIGACTION if (user->chain) { (void)sigaction(signum, &user->previous, NULL); errno = save_errno; /* call the previous signal handler */ raise(signum); save_errno = errno; (void)faulthandler_register(signum, user->chain, NULL); errno = save_errno; } #else if (user->chain && user->previous != NULL) { errno = save_errno; /* call the previous signal handler */ user->previous(signum); } #endif } static int check_signum(int signum) { for (size_t i=0; i < faulthandler_nsignals; i++) { if (faulthandler_handlers[i].signum == signum) { PyErr_Format(PyExc_RuntimeError, "signal %i cannot be registered, " "use enable() instead", signum); return 0; } } if (signum < 1 || Py_NSIG <= signum) { PyErr_SetString(PyExc_ValueError, "signal number out of range"); return 0; } return 1; } /*[clinic input] faulthandler.register as faulthandler_register_py signum: int file: object(py_default="sys.stderr") = NULL all_threads: bool = True chain: bool = False Register a handler for the signal 'signum'. Dump the traceback of the current thread, or of all threads if all_threads is True, into file. [clinic start generated code]*/ static PyObject * faulthandler_register_py_impl(PyObject *module, int signum, PyObject *file, int all_threads, int chain) /*[clinic end generated code: output=1f770cee150a56cd input=ae9de829e850907b]*/ { int fd; user_signal_t *user; _Py_sighandler_t previous; PyThreadState *tstate; int err; if (!check_signum(signum)) return NULL; tstate = get_thread_state(); if (tstate == NULL) return NULL; fd = faulthandler_get_fileno(&file); if (fd < 0) return NULL; if (user_signals == NULL) { user_signals = PyMem_Calloc(Py_NSIG, sizeof(user_signal_t)); if (user_signals == NULL) { Py_XDECREF(file); return PyErr_NoMemory(); } } user = &user_signals[signum]; if (!user->enabled) { #ifdef FAULTHANDLER_USE_ALT_STACK if (faulthandler_allocate_stack() < 0) { Py_XDECREF(file); return NULL; } #endif err = faulthandler_register(signum, chain, &previous); if (err) { PyErr_SetFromErrno(PyExc_OSError); Py_XDECREF(file); return NULL; } user->previous = previous; } Py_XSETREF(user->file, file); user->fd = fd; user->all_threads = all_threads; user->chain = chain; user->interp = PyThreadState_GetInterpreter(tstate); user->enabled = 1; Py_RETURN_NONE; } static int faulthandler_unregister(user_signal_t *user, int signum) { if (!user->enabled) return 0; user->enabled = 0; #ifdef HAVE_SIGACTION (void)sigaction(signum, &user->previous, NULL); #else (void)signal(signum, user->previous); #endif Py_CLEAR(user->file); user->fd = -1; return 1; } /*[clinic input] faulthandler.unregister as faulthandler_unregister_py signum: int / Unregister the handler of the signal 'signum' registered by register(). [clinic start generated code]*/ static PyObject * faulthandler_unregister_py_impl(PyObject *module, int signum) /*[clinic end generated code: output=01734423da1155ed input=c016de014495d384]*/ { user_signal_t *user; int change; if (!check_signum(signum)) return NULL; if (user_signals == NULL) Py_RETURN_FALSE; user = &user_signals[signum]; change = faulthandler_unregister(user, signum); return PyBool_FromLong(change); } #endif /* FAULTHANDLER_USER */ static void faulthandler_suppress_crash_report(void) { #ifdef MS_WINDOWS_DESKTOP UINT mode; /* Configure Windows to not display the Windows Error Reporting dialog */ mode = SetErrorMode(SEM_NOGPFAULTERRORBOX); SetErrorMode(mode | SEM_NOGPFAULTERRORBOX); #endif #ifdef HAVE_SYS_RESOURCE_H struct rlimit rl; /* Disable creation of core dump */ if (getrlimit(RLIMIT_CORE, &rl) == 0) { rl.rlim_cur = 0; setrlimit(RLIMIT_CORE, &rl); } #endif #ifdef _MSC_VER /* Visual Studio: configure abort() to not display an error message nor open a popup asking to report the fault. */ _set_abort_behavior(0, _WRITE_ABORT_MSG | _CALL_REPORTFAULT); #endif } static void faulthandler_raise_sigsegv(void) { faulthandler_suppress_crash_report(); #if defined(MS_WINDOWS) /* For SIGSEGV, faulthandler_fatal_error() restores the previous signal handler and then gives back the execution flow to the program (without explicitly calling the previous error handler). In a normal case, the SIGSEGV was raised by the kernel because of a fault, and so if the program retries to execute the same instruction, the fault will be raised again. Here the fault is simulated by a fake SIGSEGV signal raised by the application. We have to raise SIGSEGV at lease twice: once for faulthandler_fatal_error(), and one more time for the previous signal handler. */ while(1) raise(SIGSEGV); #else raise(SIGSEGV); #endif } /*[clinic input] faulthandler._sigsegv release_gil: bool = False / Raise a SIGSEGV signal. [clinic start generated code]*/ static PyObject * faulthandler__sigsegv_impl(PyObject *module, int release_gil) /*[clinic end generated code: output=96e5a2f215b01b76 input=c6ad893cf2ea2b41]*/ { if (release_gil) { Py_BEGIN_ALLOW_THREADS faulthandler_raise_sigsegv(); Py_END_ALLOW_THREADS } else { faulthandler_raise_sigsegv(); } Py_RETURN_NONE; } static void _Py_NO_RETURN faulthandler_fatal_error_thread(void *plock) { Py_FatalError("in new thread"); } /*[clinic input] faulthandler._fatal_error_c_thread Call Py_FatalError() in a new C thread. [clinic start generated code]*/ static PyObject * faulthandler__fatal_error_c_thread_impl(PyObject *module) /*[clinic end generated code: output=101bc8aaf4a5eec1 input=fbdca6fffd639a39]*/ { long tid; PyThread_type_lock lock; faulthandler_suppress_crash_report(); lock = PyThread_allocate_lock(); if (lock == NULL) return PyErr_NoMemory(); PyThread_acquire_lock(lock, WAIT_LOCK); tid = PyThread_start_new_thread(faulthandler_fatal_error_thread, lock); if (tid == -1) { PyThread_free_lock(lock); PyErr_SetString(PyExc_RuntimeError, "unable to start the thread"); return NULL; } /* wait until the thread completes: it will never occur, since Py_FatalError() exits the process immediately. */ PyThread_acquire_lock(lock, WAIT_LOCK); PyThread_release_lock(lock); PyThread_free_lock(lock); Py_RETURN_NONE; } /*[clinic input] faulthandler._sigfpe Raise a SIGFPE signal. [clinic start generated code]*/ static PyObject * faulthandler__sigfpe_impl(PyObject *module) /*[clinic end generated code: output=dec9c98100e986db input=fd608a92d4421d28]*/ { faulthandler_suppress_crash_report(); raise(SIGFPE); Py_UNREACHABLE(); } /*[clinic input] faulthandler._sigabrt Raise a SIGABRT signal. [clinic start generated code]*/ static PyObject * faulthandler__sigabrt_impl(PyObject *module) /*[clinic end generated code: output=58c1378a0c166682 input=be3e0ecefb8676b8]*/ { faulthandler_suppress_crash_report(); abort(); Py_RETURN_NONE; } #if defined(FAULTHANDLER_USE_ALT_STACK) #define FAULTHANDLER_STACK_OVERFLOW static uintptr_t stack_overflow(uintptr_t min_sp, uintptr_t max_sp, size_t *depth) { /* Allocate (at least) 4096 bytes on the stack at each call. bpo-23654, bpo-38965: use volatile keyword to prevent tail call optimization. */ volatile unsigned char buffer[4096]; uintptr_t sp = (uintptr_t)&buffer; *depth += 1; if (sp < min_sp || max_sp < sp) return sp; buffer[0] = 1; buffer[4095] = 0; return stack_overflow(min_sp, max_sp, depth); } /*[clinic input] faulthandler._stack_overflow Recursive call to raise a stack overflow. [clinic start generated code]*/ static PyObject * faulthandler__stack_overflow_impl(PyObject *module) /*[clinic end generated code: output=efffba4be522d8fb input=4291594a790b6c35]*/ { size_t depth, size; uintptr_t sp = (uintptr_t)&depth; uintptr_t stop, lower_limit, upper_limit; faulthandler_suppress_crash_report(); depth = 0; if (STACK_OVERFLOW_MAX_SIZE <= sp) { lower_limit = sp - STACK_OVERFLOW_MAX_SIZE; } else { lower_limit = 0; } if (UINTPTR_MAX - STACK_OVERFLOW_MAX_SIZE >= sp) { upper_limit = sp + STACK_OVERFLOW_MAX_SIZE; } else { upper_limit = UINTPTR_MAX; } stop = stack_overflow(lower_limit, upper_limit, &depth); if (sp < stop) size = stop - sp; else size = sp - stop; PyErr_Format(PyExc_RuntimeError, "unable to raise a stack overflow (allocated %zu bytes " "on the stack, %zu recursive calls)", size, depth); return NULL; } #endif /* defined(FAULTHANDLER_USE_ALT_STACK) && defined(HAVE_SIGACTION) */ static int faulthandler_traverse(PyObject *module, visitproc visit, void *arg) { Py_VISIT(thread.file); #ifdef FAULTHANDLER_USER if (user_signals != NULL) { for (size_t signum=0; signum < Py_NSIG; signum++) Py_VISIT(user_signals[signum].file); } #endif Py_VISIT(fatal_error.file); return 0; } #ifdef MS_WINDOWS /*[clinic input] faulthandler._raise_exception code: unsigned_int flags: unsigned_int = 0 / Call RaiseException(code, flags). [clinic start generated code]*/ static PyObject * faulthandler__raise_exception_impl(PyObject *module, unsigned int code, unsigned int flags) /*[clinic end generated code: output=2346cf318eab10dc input=43a5ba0eb7794504]*/ { faulthandler_suppress_crash_report(); RaiseException(code, flags, 0, NULL); Py_RETURN_NONE; } #endif PyDoc_STRVAR(module_doc, "faulthandler module."); static PyMethodDef module_methods[] = { FAULTHANDLER_PY_ENABLE_METHODDEF FAULTHANDLER_DISABLE_PY_METHODDEF FAULTHANDLER_IS_ENABLED_METHODDEF FAULTHANDLER_DUMP_TRACEBACK_PY_METHODDEF FAULTHANDLER_DUMP_C_STACK_PY_METHODDEF FAULTHANDLER_DUMP_TRACEBACK_LATER_METHODDEF FAULTHANDLER_CANCEL_DUMP_TRACEBACK_LATER_PY_METHODDEF #ifdef FAULTHANDLER_USER FAULTHANDLER_REGISTER_PY_METHODDEF FAULTHANDLER_UNREGISTER_PY_METHODDEF #endif FAULTHANDLER__SIGSEGV_METHODDEF FAULTHANDLER__FATAL_ERROR_C_THREAD_METHODDEF FAULTHANDLER__SIGABRT_METHODDEF FAULTHANDLER__SIGFPE_METHODDEF #ifdef FAULTHANDLER_STACK_OVERFLOW FAULTHANDLER__STACK_OVERFLOW_METHODDEF #endif #ifdef MS_WINDOWS FAULTHANDLER__RAISE_EXCEPTION_METHODDEF #endif {NULL, NULL} /* sentinel */ }; static int PyExec_faulthandler(PyObject *module) { /* Add constants for unit tests */ #ifdef MS_WINDOWS /* RaiseException() codes (prefixed by an underscore) */ if (PyModule_Add(module, "_EXCEPTION_ACCESS_VIOLATION", PyLong_FromUnsignedLong(EXCEPTION_ACCESS_VIOLATION))) { return -1; } if (PyModule_Add(module, "_EXCEPTION_INT_DIVIDE_BY_ZERO", PyLong_FromUnsignedLong(EXCEPTION_INT_DIVIDE_BY_ZERO))) { return -1; } if (PyModule_Add(module, "_EXCEPTION_STACK_OVERFLOW", PyLong_FromUnsignedLong(EXCEPTION_STACK_OVERFLOW))) { return -1; } /* RaiseException() flags (prefixed by an underscore) */ if (PyModule_Add(module, "_EXCEPTION_NONCONTINUABLE", PyLong_FromUnsignedLong(EXCEPTION_NONCONTINUABLE))) { return -1; } if (PyModule_Add(module, "_EXCEPTION_NONCONTINUABLE_EXCEPTION", PyLong_FromUnsignedLong(EXCEPTION_NONCONTINUABLE_EXCEPTION))) { return -1; } #endif return 0; } static PyModuleDef_Slot faulthandler_slots[] = { {Py_mod_exec, PyExec_faulthandler}, // XXX gh-103092: fix isolation. //{Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED}, {Py_mod_gil, Py_MOD_GIL_NOT_USED}, {0, NULL} }; static struct PyModuleDef module_def = { PyModuleDef_HEAD_INIT, .m_name = "faulthandler", .m_doc = module_doc, .m_methods = module_methods, .m_traverse = faulthandler_traverse, .m_slots = faulthandler_slots }; PyMODINIT_FUNC PyInit_faulthandler(void) { return PyModuleDef_Init(&module_def); } static int faulthandler_init_enable(void) { PyObject *enable = PyImport_ImportModuleAttrString("faulthandler", "enable"); if (enable == NULL) { return -1; } PyObject *res = PyObject_CallNoArgs(enable); Py_DECREF(enable); if (res == NULL) { return -1; } Py_DECREF(res); return 0; } PyStatus _PyFaulthandler_Init(int enable) { #ifdef FAULTHANDLER_USE_ALT_STACK memset(&stack, 0, sizeof(stack)); stack.ss_flags = 0; /* bpo-21131: allocate dedicated stack of SIGSTKSZ*2 bytes, instead of just SIGSTKSZ bytes. Calling the previous signal handler in faulthandler signal handler uses more than SIGSTKSZ bytes of stack memory on some platforms. */ stack.ss_size = SIGSTKSZ * 2; #ifdef AT_MINSIGSTKSZ /* bpo-46968: Query Linux for minimal stack size to ensure signal delivery for the hardware running CPython. This OS feature is available in Linux kernel version >= 5.14 */ unsigned long at_minstack_size = getauxval(AT_MINSIGSTKSZ); if (at_minstack_size != 0) { stack.ss_size = SIGSTKSZ + at_minstack_size; } #endif #endif memset(&thread, 0, sizeof(thread)); if (enable) { if (faulthandler_init_enable() < 0) { return _PyStatus_ERR("failed to enable faulthandler"); } } return _PyStatus_OK(); } void _PyFaulthandler_Fini(void) { /* later */ if (thread.cancel_event) { cancel_dump_traceback_later(); PyThread_release_lock(thread.cancel_event); PyThread_free_lock(thread.cancel_event); thread.cancel_event = NULL; } if (thread.running) { PyThread_free_lock(thread.running); thread.running = NULL; } #ifdef FAULTHANDLER_USER /* user */ if (user_signals != NULL) { for (size_t signum=0; signum < Py_NSIG; signum++) { faulthandler_unregister(&user_signals[signum], signum); } PyMem_Free(user_signals); user_signals = NULL; } #endif /* fatal */ faulthandler_disable(); #ifdef FAULTHANDLER_USE_ALT_STACK if (stack.ss_sp != NULL) { /* Fetch the current alt stack */ stack_t current_stack; memset(¤t_stack, 0, sizeof(current_stack)); if (sigaltstack(NULL, ¤t_stack) == 0) { if (current_stack.ss_sp == stack.ss_sp) { /* The current alt stack is the one that we installed. It is safe to restore the old stack that we found when we installed ours */ sigaltstack(&old_stack, NULL); } else { /* Someone switched to a different alt stack and didn't restore ours when they were done (if they're done). There's not much we can do in this unlikely case */ } } PyMem_Free(stack.ss_sp); stack.ss_sp = NULL; } #endif }