/*[clinic input] preserve [clinic start generated code]*/ #include "pycore_modsupport.h" // _PyArg_CheckPositional() PyDoc_STRVAR(math_integer_gcd__doc__, "gcd($module, /, *integers)\n" "--\n" "\n" "Greatest Common Divisor."); #define MATH_INTEGER_GCD_METHODDEF \ {"gcd", _PyCFunction_CAST(math_integer_gcd), METH_FASTCALL, math_integer_gcd__doc__}, static PyObject * math_integer_gcd_impl(PyObject *module, PyObject * const *args, Py_ssize_t args_length); static PyObject * math_integer_gcd(PyObject *module, PyObject *const *args, Py_ssize_t nargs) { PyObject *return_value = NULL; PyObject * const *__clinic_args; Py_ssize_t args_length; __clinic_args = args; args_length = nargs; return_value = math_integer_gcd_impl(module, __clinic_args, args_length); return return_value; } PyDoc_STRVAR(math_integer_lcm__doc__, "lcm($module, /, *integers)\n" "--\n" "\n" "Least Common Multiple."); #define MATH_INTEGER_LCM_METHODDEF \ {"lcm", _PyCFunction_CAST(math_integer_lcm), METH_FASTCALL, math_integer_lcm__doc__}, static PyObject * math_integer_lcm_impl(PyObject *module, PyObject * const *args, Py_ssize_t args_length); static PyObject * math_integer_lcm(PyObject *module, PyObject *const *args, Py_ssize_t nargs) { PyObject *return_value = NULL; PyObject * const *__clinic_args; Py_ssize_t args_length; __clinic_args = args; args_length = nargs; return_value = math_integer_lcm_impl(module, __clinic_args, args_length); return return_value; } PyDoc_STRVAR(math_integer_isqrt__doc__, "isqrt($module, n, /)\n" "--\n" "\n" "Return the integer part of the square root of the input."); #define MATH_INTEGER_ISQRT_METHODDEF \ {"isqrt", (PyCFunction)math_integer_isqrt, METH_O, math_integer_isqrt__doc__}, PyDoc_STRVAR(math_integer_factorial__doc__, "factorial($module, n, /)\n" "--\n" "\n" "Find n!."); #define MATH_INTEGER_FACTORIAL_METHODDEF \ {"factorial", (PyCFunction)math_integer_factorial, METH_O, math_integer_factorial__doc__}, PyDoc_STRVAR(math_integer_perm__doc__, "perm($module, n, k=None, /)\n" "--\n" "\n" "Number of ways to choose k items from n items without repetition and with order.\n" "\n" "Evaluates to n! / (n - k)! when k <= n and evaluates\n" "to zero when k > n.\n" "\n" "If k is not specified or is None, then k defaults to n\n" "and the function returns n!.\n" "\n" "Raises ValueError if either of the arguments are negative."); #define MATH_INTEGER_PERM_METHODDEF \ {"perm", _PyCFunction_CAST(math_integer_perm), METH_FASTCALL, math_integer_perm__doc__}, static PyObject * math_integer_perm_impl(PyObject *module, PyObject *n, PyObject *k); static PyObject * math_integer_perm(PyObject *module, PyObject *const *args, Py_ssize_t nargs) { PyObject *return_value = NULL; PyObject *n; PyObject *k = Py_None; if (!_PyArg_CheckPositional("perm", nargs, 1, 2)) { goto exit; } n = args[0]; if (nargs < 2) { goto skip_optional; } k = args[1]; skip_optional: return_value = math_integer_perm_impl(module, n, k); exit: return return_value; } PyDoc_STRVAR(math_integer_comb__doc__, "comb($module, n, k, /)\n" "--\n" "\n" "Number of ways to choose k items from n items without repetition and without order.\n" "\n" "Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates\n" "to zero when k > n.\n" "\n" "Also called the binomial coefficient because it is equivalent\n" "to the coefficient of k-th term in polynomial expansion of the\n" "expression (1 + x)**n.\n" "\n" "Raises ValueError if either of the arguments are negative."); #define MATH_INTEGER_COMB_METHODDEF \ {"comb", _PyCFunction_CAST(math_integer_comb), METH_FASTCALL, math_integer_comb__doc__}, static PyObject * math_integer_comb_impl(PyObject *module, PyObject *n, PyObject *k); static PyObject * math_integer_comb(PyObject *module, PyObject *const *args, Py_ssize_t nargs) { PyObject *return_value = NULL; PyObject *n; PyObject *k; if (!_PyArg_CheckPositional("comb", nargs, 2, 2)) { goto exit; } n = args[0]; k = args[1]; return_value = math_integer_comb_impl(module, n, k); exit: return return_value; } /*[clinic end generated code: output=34697570c923a3af input=a9049054013a1b77]*/