#!/usr/bin/env python3 # # Author: Claude Sonnet 4.5 as driven by gpshead # """ Microbenchmark for pickle module chunked reading performance (GH PR #119204). This script generates Python data structures that act as antagonistic load tests for the chunked reading code introduced to prevent memory exhaustion when unpickling large objects. The PR adds chunked reading (1MB chunks) for: - BINBYTES8 (large bytes) - BINUNICODE8 (large strings) - BYTEARRAY8 (large bytearrays) - FRAME (large frames) - LONG4 (large integers) Including an antagonistic mode that exercies memory denial of service pickles. Usage: python memory_dos_impact.py --help """ import argparse import gc import io import json import os import pickle import statistics import struct import subprocess import sys import tempfile import tracemalloc from pathlib import Path from time import perf_counter from typing import Any, Dict, List, Tuple, Optional # Configuration MIN_READ_BUF_SIZE = 1 << 20 # 1MB - matches pickle.py _MIN_READ_BUF_SIZE # Test sizes in MiB DEFAULT_SIZES_MIB = [1, 2, 5, 10, 20, 50, 100, 200] # Convert to bytes, plus threshold boundary tests DEFAULT_SIZES = ( [999_000] # Below 1MiB (no chunking) + [size * (1 << 20) for size in DEFAULT_SIZES_MIB] # MiB to bytes + [1_048_577] # Just above 1MiB (minimal chunking overhead) ) DEFAULT_SIZES.sort() # Baseline benchmark configuration BASELINE_BENCHMARK_TIMEOUT_SECONDS = 600 # 10 minutes # Sparse memo attack test configuration # Format: test_name -> (memo_index, baseline_memory_note) SPARSE_MEMO_TESTS = { "sparse_memo_1M": (1_000_000, "~8 MB array"), "sparse_memo_100M": (100_000_000, "~800 MB array"), "sparse_memo_1B": (1_000_000_000, "~8 GB array"), } # Utility functions def _extract_size_mb(size_key: str) -> float: """Extract numeric MiB value from size_key like '10.00MB' or '1.00MiB'. Returns 0.0 for non-numeric keys (they'll be sorted last). """ try: return float(size_key.replace('MB', '').replace('MiB', '')) except ValueError: return 999999.0 # Put non-numeric keys last def _format_output(results: Dict[str, Dict[str, Any]], format_type: str, is_antagonistic: bool) -> str: """Format benchmark results according to requested format. Args: results: Benchmark results dictionary format_type: Output format ('text', 'markdown', or 'json') is_antagonistic: Whether these are antagonistic (DoS) test results Returns: Formatted output string """ if format_type == 'json': return Reporter.format_json(results) elif is_antagonistic: # Antagonistic mode uses specialized formatter for text/markdown return Reporter.format_antagonistic(results) elif format_type == 'text': return Reporter.format_text(results) elif format_type == 'markdown': return Reporter.format_markdown(results) else: # Default to text format return Reporter.format_text(results) class AntagonisticGenerator: """Generate malicious/truncated pickles for DoS protection testing. These pickles claim large sizes but provide minimal data, causing them to fail during unpickling. They demonstrate the memory protection of chunked reading. """ @staticmethod def truncated_binbytes8(claimed_size: int, actual_size: int = 1024) -> bytes: """BINBYTES8 claiming `claimed_size` but providing only `actual_size` bytes. This will fail with UnpicklingError but demonstrates peak memory usage. Before PR: Allocates full claimed_size After PR: Allocates in 1MB chunks, fails fast """ return b'\x8e' + struct.pack(' bytes: """BINUNICODE8 claiming `claimed_size` but providing only `actual_size` bytes.""" return b'\x8d' + struct.pack(' bytes: """BYTEARRAY8 claiming `claimed_size` but providing only `actual_size` bytes.""" return b'\x96' + struct.pack(' bytes: """FRAME claiming `claimed_size` but providing minimal data.""" return b'\x95' + struct.pack(' bytes: """LONG_BINPUT with huge sparse index. Before PR: Tries to allocate array with `index` slots (OOM) After PR: Uses dict-based memo for sparse indices """ return (b'(]r' + struct.pack(' bytes: """Multiple BINBYTES8 claims in sequence. Tests that multiple large claims don't accumulate memory. """ data = b'(' # MARK for _ in range(count): data += b'\x8e' + struct.pack(' bytes: """Generate random bytes of specified size.""" return os.urandom(size) @staticmethod def large_string_ascii(size: int) -> str: """Generate ASCII string of specified size.""" return 'x' * size @staticmethod def large_string_multibyte(size: int) -> str: """Generate multibyte UTF-8 string (3 bytes per char for €).""" # Each € is 3 bytes in UTF-8 return '€' * (size // 3) @staticmethod def large_bytearray(size: int) -> bytearray: """Generate bytearray of specified size.""" return bytearray(os.urandom(size)) @staticmethod def list_of_large_bytes(item_size: int, count: int) -> List[bytes]: """Generate list containing multiple large bytes objects.""" return [os.urandom(item_size) for _ in range(count)] @staticmethod def dict_with_large_values(value_size: int, count: int) -> Dict[str, bytes]: """Generate dict with large bytes values.""" return { f'key_{i}': os.urandom(value_size) for i in range(count) } @staticmethod def nested_structure(size: int) -> Dict[str, Any]: """Generate nested structure with various large objects.""" chunk_size = size // 4 return { 'name': 'test_object', 'data': { 'bytes': os.urandom(chunk_size), 'string': 's' * chunk_size, 'bytearray': bytearray(b'b' * chunk_size), }, 'items': [os.urandom(chunk_size // 4) for _ in range(4)], 'metadata': { 'size': size, 'type': 'nested', }, } @staticmethod def tuple_of_large_objects(size: int) -> Tuple[bytes, str, bytearray]: """Generate tuple with large objects (immutable, different pickle path).""" chunk_size = size // 3 return ( os.urandom(chunk_size), 'x' * chunk_size, bytearray(b'y' * chunk_size), ) class PickleBenchmark: """Benchmark pickle unpickling performance and memory usage.""" def __init__(self, obj: Any, protocol: int = 5, iterations: int = 3): self.obj = obj self.protocol = protocol self.iterations = iterations self.pickle_data = pickle.dumps(obj, protocol=protocol) self.pickle_size = len(self.pickle_data) def benchmark_time(self) -> Dict[str, float]: """Measure unpickling time over multiple iterations.""" times = [] for _ in range(self.iterations): start = perf_counter() result = pickle.loads(self.pickle_data) elapsed = perf_counter() - start times.append(elapsed) # Verify correctness (first iteration only) if len(times) == 1: if result != self.obj: raise ValueError("Unpickled object doesn't match original!") return { 'mean': statistics.mean(times), 'median': statistics.median(times), 'stdev': statistics.stdev(times) if len(times) > 1 else 0.0, 'min': min(times), 'max': max(times), } def benchmark_memory(self) -> int: """Measure peak memory usage during unpickling.""" tracemalloc.start() # Warmup pickle.loads(self.pickle_data) # Actual measurement gc.collect() tracemalloc.reset_peak() result = pickle.loads(self.pickle_data) current, peak = tracemalloc.get_traced_memory() tracemalloc.stop() # Verify correctness if result != self.obj: raise ValueError("Unpickled object doesn't match original!") return peak def run_all(self) -> Dict[str, Any]: """Run all benchmarks and return comprehensive results.""" time_stats = self.benchmark_time() peak_memory = self.benchmark_memory() return { 'pickle_size_bytes': self.pickle_size, 'pickle_size_mb': self.pickle_size / (1 << 20), 'protocol': self.protocol, 'time': time_stats, 'memory_peak_bytes': peak_memory, 'memory_peak_mb': peak_memory / (1 << 20), 'iterations': self.iterations, } class AntagonisticBenchmark: """Benchmark antagonistic/malicious pickles that demonstrate DoS protection. These pickles are designed to FAIL unpickling, but we measure peak memory usage before the failure to demonstrate the memory protection. """ def __init__(self, pickle_data: bytes, name: str): self.pickle_data = pickle_data self.name = name def measure_peak_memory(self, expect_success: bool = False) -> Dict[str, Any]: """Measure peak memory when attempting to unpickle antagonistic data. Args: expect_success: If True, test expects successful unpickling (e.g., sparse memo). If False, test expects failure (e.g., truncated data). """ tracemalloc.start() gc.collect() tracemalloc.reset_peak() error_type = None error_msg = None succeeded = False try: result = pickle.loads(self.pickle_data) succeeded = True if expect_success: error_type = "Success (expected)" else: error_type = "WARNING: Expected failure but succeeded" except (pickle.UnpicklingError, EOFError, ValueError, OverflowError) as e: if expect_success: error_type = f"UNEXPECTED FAILURE: {type(e).__name__}" error_msg = str(e)[:100] else: # Expected failure for truncated data tests error_type = type(e).__name__ error_msg = str(e)[:100] current, peak = tracemalloc.get_traced_memory() tracemalloc.stop() return { 'test_name': self.name, 'peak_memory_bytes': peak, 'peak_memory_mb': peak / (1 << 20), 'error_type': error_type, 'error_msg': error_msg, 'pickle_size_bytes': len(self.pickle_data), 'expected_outcome': 'success' if expect_success else 'failure', 'succeeded': succeeded, } class AntagonisticTestSuite: """Manage a suite of antagonistic (DoS protection) tests.""" # Default sizes in MB to claim (will provide only 1KB actual data) DEFAULT_ANTAGONISTIC_SIZES_MB = [10, 50, 100, 500, 1000, 5000] def __init__(self, claimed_sizes_mb: List[int]): self.claimed_sizes_mb = claimed_sizes_mb def _run_truncated_test( self, test_type: str, generator_func, claimed_bytes: int, claimed_mb: int, size_key: str, all_results: Dict[str, Dict[str, Any]] ) -> None: """Run a single truncated data test and store results. Args: test_type: Type identifier (e.g., 'binbytes8', 'binunicode8') generator_func: Function to generate malicious pickle data claimed_bytes: Size claimed in the pickle (bytes) claimed_mb: Size claimed in the pickle (MB) size_key: Result key for this size (e.g., '10MB') all_results: Dictionary to store results in """ test_name = f"{test_type}_{size_key}_claim" data = generator_func(claimed_bytes) bench = AntagonisticBenchmark(data, test_name) result = bench.measure_peak_memory(expect_success=False) result['claimed_mb'] = claimed_mb all_results[size_key][test_name] = result def run_all_tests(self) -> Dict[str, Dict[str, Any]]: """Run comprehensive antagonistic test suite.""" all_results = {} for claimed_mb in self.claimed_sizes_mb: claimed_bytes = claimed_mb << 20 size_key = f"{claimed_mb}MB" all_results[size_key] = {} # Run truncated data tests (expect failure) self._run_truncated_test('binbytes8', AntagonisticGenerator.truncated_binbytes8, claimed_bytes, claimed_mb, size_key, all_results) self._run_truncated_test('binunicode8', AntagonisticGenerator.truncated_binunicode8, claimed_bytes, claimed_mb, size_key, all_results) self._run_truncated_test('bytearray8', AntagonisticGenerator.truncated_bytearray8, claimed_bytes, claimed_mb, size_key, all_results) self._run_truncated_test('frame', AntagonisticGenerator.truncated_frame, claimed_bytes, claimed_mb, size_key, all_results) # Test 5: Sparse memo (expect success - dict-based memo works!) all_results["Sparse Memo (Success Expected)"] = {} for test_name, (index, baseline_note) in SPARSE_MEMO_TESTS.items(): data = AntagonisticGenerator.sparse_memo_attack(index) bench = AntagonisticBenchmark(data, test_name) result = bench.measure_peak_memory(expect_success=True) result['claimed_mb'] = "N/A" result['baseline_note'] = f"Without PR: {baseline_note}" all_results["Sparse Memo (Success Expected)"][test_name] = result # Test 6: Multi-claim attack (expect failure) test_name = "multi_claim_10x100MB" data = AntagonisticGenerator.multi_claim_attack(10, 100 << 20) bench = AntagonisticBenchmark(data, test_name) result = bench.measure_peak_memory(expect_success=False) result['claimed_mb'] = 1000 # 10 * 100MB all_results["Multi-Claim (Failure Expected)"] = {test_name: result} return all_results class TestSuite: """Manage a suite of benchmark tests.""" def __init__(self, sizes: List[int], protocol: int = 5, iterations: int = 3): self.sizes = sizes self.protocol = protocol self.iterations = iterations self.results = {} def run_test(self, name: str, obj: Any) -> Dict[str, Any]: """Run benchmark for a single test object.""" bench = PickleBenchmark(obj, self.protocol, self.iterations) results = bench.run_all() results['test_name'] = name results['object_type'] = type(obj).__name__ return results def run_all_tests(self) -> Dict[str, Dict[str, Any]]: """Run comprehensive test suite across all sizes and types.""" all_results = {} for size in self.sizes: size_key = f"{size / (1 << 20):.2f}MB" all_results[size_key] = {} # Test 1: Large bytes object (BINBYTES8) test_name = f"bytes_{size_key}" obj = DataGenerator.large_bytes(size) all_results[size_key][test_name] = self.run_test(test_name, obj) # Test 2: Large ASCII string (BINUNICODE8) test_name = f"string_ascii_{size_key}" obj = DataGenerator.large_string_ascii(size) all_results[size_key][test_name] = self.run_test(test_name, obj) # Test 3: Large multibyte UTF-8 string if size >= 3: test_name = f"string_utf8_{size_key}" obj = DataGenerator.large_string_multibyte(size) all_results[size_key][test_name] = self.run_test(test_name, obj) # Test 4: Large bytearray (BYTEARRAY8, protocol 5) if self.protocol >= 5: test_name = f"bytearray_{size_key}" obj = DataGenerator.large_bytearray(size) all_results[size_key][test_name] = self.run_test(test_name, obj) # Test 5: List of large objects (repeated chunking) if size >= MIN_READ_BUF_SIZE * 2: test_name = f"list_large_items_{size_key}" item_size = size // 5 obj = DataGenerator.list_of_large_bytes(item_size, 5) all_results[size_key][test_name] = self.run_test(test_name, obj) # Test 6: Dict with large values if size >= MIN_READ_BUF_SIZE * 2: test_name = f"dict_large_values_{size_key}" value_size = size // 3 obj = DataGenerator.dict_with_large_values(value_size, 3) all_results[size_key][test_name] = self.run_test(test_name, obj) # Test 7: Nested structure if size >= MIN_READ_BUF_SIZE: test_name = f"nested_{size_key}" obj = DataGenerator.nested_structure(size) all_results[size_key][test_name] = self.run_test(test_name, obj) # Test 8: Tuple (immutable) if size >= 3: test_name = f"tuple_{size_key}" obj = DataGenerator.tuple_of_large_objects(size) all_results[size_key][test_name] = self.run_test(test_name, obj) return all_results class Comparator: """Compare benchmark results between current and baseline interpreters.""" @staticmethod def _extract_json_from_output(output: str) -> Dict[str, Dict[str, Any]]: """Extract JSON data from subprocess output. Skips any print statements before the JSON output and parses the JSON. Args: output: Raw stdout from subprocess Returns: Parsed JSON as dictionary Raises: SystemExit: If JSON cannot be found or parsed """ output_lines = output.strip().split('\n') json_start = -1 for i, line in enumerate(output_lines): if line.strip().startswith('{'): json_start = i break if json_start == -1: print("Error: Could not find JSON output from baseline", file=sys.stderr) sys.exit(1) json_output = '\n'.join(output_lines[json_start:]) try: return json.loads(json_output) except json.JSONDecodeError as e: print(f"Error: Could not parse baseline JSON output: {e}", file=sys.stderr) sys.exit(1) @staticmethod def run_baseline_benchmark(baseline_python: str, args: argparse.Namespace) -> Dict[str, Dict[str, Any]]: """Run the benchmark using the baseline Python interpreter.""" # Build command to run this script with baseline Python cmd = [ baseline_python, __file__, '--format', 'json', '--protocol', str(args.protocol), '--iterations', str(args.iterations), ] if args.sizes is not None: cmd.extend(['--sizes'] + [str(s) for s in args.sizes]) if args.antagonistic: cmd.append('--antagonistic') print(f"\nRunning baseline benchmark with: {baseline_python}") print(f"Command: {' '.join(cmd)}\n") try: result = subprocess.run( cmd, capture_output=True, text=True, timeout=BASELINE_BENCHMARK_TIMEOUT_SECONDS, ) if result.returncode != 0: print(f"Error running baseline benchmark:", file=sys.stderr) print(result.stderr, file=sys.stderr) sys.exit(1) # Extract and parse JSON from output return Comparator._extract_json_from_output(result.stdout) except subprocess.TimeoutExpired: print("Error: Baseline benchmark timed out", file=sys.stderr) sys.exit(1) @staticmethod def calculate_change(baseline_value: float, current_value: float) -> float: """Calculate percentage change from baseline to current.""" if baseline_value == 0: return 0.0 return ((current_value - baseline_value) / baseline_value) * 100 @staticmethod def format_comparison( current_results: Dict[str, Dict[str, Any]], baseline_results: Dict[str, Dict[str, Any]] ) -> str: """Format comparison results as readable text.""" lines = [] lines.append("=" * 100) lines.append("Pickle Unpickling Benchmark Comparison") lines.append("=" * 100) lines.append("") lines.append("Legend: Current vs Baseline | % Change (+ is slower/more memory, - is faster/less memory)") lines.append("") # Sort size keys numerically for size_key in sorted(current_results.keys(), key=_extract_size_mb): if size_key not in baseline_results: continue lines.append(f"\n{size_key} Comparison") lines.append("-" * 100) current_tests = current_results[size_key] baseline_tests = baseline_results[size_key] for test_name in sorted(current_tests.keys()): if test_name not in baseline_tests: continue curr = current_tests[test_name] base = baseline_tests[test_name] time_change = Comparator.calculate_change( base['time']['mean'], curr['time']['mean'] ) mem_change = Comparator.calculate_change( base['memory_peak_mb'], curr['memory_peak_mb'] ) lines.append(f"\n {curr['test_name']}") lines.append(f" Time: {curr['time']['mean']*1000:6.2f}ms vs {base['time']['mean']*1000:6.2f}ms | " f"{time_change:+6.1f}%") lines.append(f" Memory: {curr['memory_peak_mb']:6.2f}MB vs {base['memory_peak_mb']:6.2f}MB | " f"{mem_change:+6.1f}%") lines.append("\n" + "=" * 100) lines.append("\nSummary:") # Calculate overall statistics time_changes = [] mem_changes = [] for size_key in current_results.keys(): if size_key not in baseline_results: continue for test_name in current_results[size_key].keys(): if test_name not in baseline_results[size_key]: continue curr = current_results[size_key][test_name] base = baseline_results[size_key][test_name] time_changes.append(Comparator.calculate_change( base['time']['mean'], curr['time']['mean'] )) mem_changes.append(Comparator.calculate_change( base['memory_peak_mb'], curr['memory_peak_mb'] )) if time_changes: lines.append(f" Time change: mean={statistics.mean(time_changes):+.1f}%, " f"median={statistics.median(time_changes):+.1f}%") if mem_changes: lines.append(f" Memory change: mean={statistics.mean(mem_changes):+.1f}%, " f"median={statistics.median(mem_changes):+.1f}%") lines.append("=" * 100) return "\n".join(lines) @staticmethod def format_antagonistic_comparison( current_results: Dict[str, Dict[str, Any]], baseline_results: Dict[str, Dict[str, Any]] ) -> str: """Format antagonistic benchmark comparison results.""" lines = [] lines.append("=" * 100) lines.append("Antagonistic Pickle Benchmark Comparison (Memory DoS Protection)") lines.append("=" * 100) lines.append("") lines.append("Legend: Current vs Baseline | Memory Change (- is better, shows memory saved)") lines.append("") lines.append("This compares TWO types of DoS protection:") lines.append(" 1. Truncated data → Baseline allocates full claimed size, Current uses chunked reading") lines.append(" 2. Sparse memo → Baseline uses huge arrays, Current uses dict-based memo") lines.append("") # Track statistics truncated_memory_changes = [] sparse_memory_changes = [] # Sort size keys numerically for size_key in sorted(current_results.keys(), key=_extract_size_mb): if size_key not in baseline_results: continue lines.append(f"\n{size_key} Comparison") lines.append("-" * 100) current_tests = current_results[size_key] baseline_tests = baseline_results[size_key] for test_name in sorted(current_tests.keys()): if test_name not in baseline_tests: continue curr = current_tests[test_name] base = baseline_tests[test_name] curr_peak_mb = curr['peak_memory_mb'] base_peak_mb = base['peak_memory_mb'] expected_outcome = curr.get('expected_outcome', 'failure') mem_change = Comparator.calculate_change(base_peak_mb, curr_peak_mb) mem_saved_mb = base_peak_mb - curr_peak_mb lines.append(f"\n {curr['test_name']}") lines.append(f" Memory: {curr_peak_mb:6.2f}MB vs {base_peak_mb:6.2f}MB | " f"{mem_change:+6.1f}% ({mem_saved_mb:+.2f}MB saved)") # Track based on test type if expected_outcome == 'success': sparse_memory_changes.append(mem_change) if curr.get('baseline_note'): lines.append(f" Note: {curr['baseline_note']}") else: truncated_memory_changes.append(mem_change) claimed_mb = curr.get('claimed_mb', 'N/A') if claimed_mb != 'N/A': lines.append(f" Claimed: {claimed_mb:,}MB") # Show status curr_status = curr.get('error_type', 'Unknown') base_status = base.get('error_type', 'Unknown') if curr_status != base_status: lines.append(f" Status: {curr_status} (baseline: {base_status})") else: lines.append(f" Status: {curr_status}") lines.append("\n" + "=" * 100) lines.append("\nSummary:") lines.append("") if truncated_memory_changes: lines.append(" Truncated Data Protection (chunked reading):") lines.append(f" Mean memory change: {statistics.mean(truncated_memory_changes):+.1f}%") lines.append(f" Median memory change: {statistics.median(truncated_memory_changes):+.1f}%") avg_change = statistics.mean(truncated_memory_changes) if avg_change < -50: lines.append(f" Result: ✓ Dramatic memory reduction ({avg_change:.1f}%) - DoS protection working!") elif avg_change < 0: lines.append(f" Result: ✓ Memory reduced ({avg_change:.1f}%)") else: lines.append(f" Result: ⚠ Memory increased ({avg_change:.1f}%) - unexpected!") lines.append("") if sparse_memory_changes: lines.append(" Sparse Memo Protection (dict-based memo):") lines.append(f" Mean memory change: {statistics.mean(sparse_memory_changes):+.1f}%") lines.append(f" Median memory change: {statistics.median(sparse_memory_changes):+.1f}%") avg_change = statistics.mean(sparse_memory_changes) if avg_change < -50: lines.append(f" Result: ✓ Dramatic memory reduction ({avg_change:.1f}%) - Dict optimization working!") elif avg_change < 0: lines.append(f" Result: ✓ Memory reduced ({avg_change:.1f}%)") else: lines.append(f" Result: ⚠ Memory increased ({avg_change:.1f}%) - unexpected!") lines.append("") lines.append("=" * 100) return "\n".join(lines) class Reporter: """Format and display benchmark results.""" @staticmethod def format_text(results: Dict[str, Dict[str, Any]]) -> str: """Format results as readable text.""" lines = [] lines.append("=" * 80) lines.append("Pickle Unpickling Benchmark Results") lines.append("=" * 80) lines.append("") for size_key, tests in results.items(): lines.append(f"\n{size_key} Test Results") lines.append("-" * 80) for test_name, data in tests.items(): lines.append(f"\n Test: {data['test_name']}") lines.append(f" Type: {data['object_type']}") lines.append(f" Pickle size: {data['pickle_size_mb']:.2f} MB") lines.append(f" Time (mean): {data['time']['mean']*1000:.2f} ms") lines.append(f" Time (stdev): {data['time']['stdev']*1000:.2f} ms") lines.append(f" Peak memory: {data['memory_peak_mb']:.2f} MB") lines.append(f" Protocol: {data['protocol']}") lines.append("\n" + "=" * 80) return "\n".join(lines) @staticmethod def format_markdown(results: Dict[str, Dict[str, Any]]) -> str: """Format results as markdown table.""" lines = [] lines.append("# Pickle Unpickling Benchmark Results\n") for size_key, tests in results.items(): lines.append(f"## {size_key}\n") lines.append("| Test | Type | Pickle Size (MB) | Time (ms) | Stdev (ms) | Peak Memory (MB) |") lines.append("|------|------|------------------|-----------|------------|------------------|") for test_name, data in tests.items(): lines.append( f"| {data['test_name']} | " f"{data['object_type']} | " f"{data['pickle_size_mb']:.2f} | " f"{data['time']['mean']*1000:.2f} | " f"{data['time']['stdev']*1000:.2f} | " f"{data['memory_peak_mb']:.2f} |" ) lines.append("") return "\n".join(lines) @staticmethod def format_json(results: Dict[str, Dict[str, Any]]) -> str: """Format results as JSON.""" import json return json.dumps(results, indent=2) @staticmethod def format_antagonistic(results: Dict[str, Dict[str, Any]]) -> str: """Format antagonistic benchmark results.""" lines = [] lines.append("=" * 100) lines.append("Antagonistic Pickle Benchmark (Memory DoS Protection Test)") lines.append("=" * 100) lines.append("") lines.append("This benchmark tests TWO types of DoS protection:") lines.append(" 1. Truncated data attacks → Expect FAILURE with minimal memory before failure") lines.append(" 2. Sparse memo attacks → Expect SUCCESS with dict-based memo (vs huge array)") lines.append("") # Sort size keys numerically for size_key in sorted(results.keys(), key=_extract_size_mb): tests = results[size_key] # Determine test type from first test if tests: first_test = next(iter(tests.values())) expected_outcome = first_test.get('expected_outcome', 'failure') claimed_mb = first_test.get('claimed_mb', 'N/A') # Header varies by test type if "Sparse Memo" in size_key: lines.append(f"\n{size_key}") lines.append("-" * 100) elif "Multi-Claim" in size_key: lines.append(f"\n{size_key}") lines.append("-" * 100) elif claimed_mb != 'N/A': lines.append(f"\n{size_key} Claimed (actual: 1KB) - Expect Failure") lines.append("-" * 100) else: lines.append(f"\n{size_key}") lines.append("-" * 100) for test_name, data in tests.items(): peak_mb = data['peak_memory_mb'] claimed = data.get('claimed_mb', 'N/A') expected_outcome = data.get('expected_outcome', 'failure') succeeded = data.get('succeeded', False) baseline_note = data.get('baseline_note', '') lines.append(f" {data['test_name']}") # Format output based on test type if expected_outcome == 'success': # Sparse memo test - show success with dict status_icon = "✓" if succeeded else "✗" lines.append(f" Peak memory: {peak_mb:8.2f} MB {status_icon}") lines.append(f" Status: {data['error_type']}") if baseline_note: lines.append(f" {baseline_note}") else: # Truncated data test - show savings before failure if claimed != 'N/A': saved_mb = claimed - peak_mb savings_pct = (saved_mb / claimed * 100) if claimed > 0 else 0 lines.append(f" Peak memory: {peak_mb:8.2f} MB (claimed: {claimed:,} MB, saved: {saved_mb:.2f} MB, {savings_pct:.1f}%)") else: lines.append(f" Peak memory: {peak_mb:8.2f} MB") lines.append(f" Status: {data['error_type']}") lines.append("\n" + "=" * 100) # Calculate statistics by test type truncated_claimed = 0 truncated_peak = 0 truncated_count = 0 sparse_peak_total = 0 sparse_count = 0 for size_key, tests in results.items(): for test_name, data in tests.items(): expected_outcome = data.get('expected_outcome', 'failure') if expected_outcome == 'failure': # Truncated data test claimed = data.get('claimed_mb', 0) if claimed != 'N/A' and claimed > 0: truncated_claimed += claimed truncated_peak += data['peak_memory_mb'] truncated_count += 1 else: # Sparse memo test sparse_peak_total += data['peak_memory_mb'] sparse_count += 1 lines.append("\nSummary:") lines.append("") if truncated_count > 0: avg_claimed = truncated_claimed / truncated_count avg_peak = truncated_peak / truncated_count avg_saved = avg_claimed - avg_peak avg_savings_pct = (avg_saved / avg_claimed * 100) if avg_claimed > 0 else 0 lines.append(" Truncated Data Protection (chunked reading):") lines.append(f" Average claimed: {avg_claimed:,.1f} MB") lines.append(f" Average peak: {avg_peak:,.2f} MB") lines.append(f" Average saved: {avg_saved:,.2f} MB ({avg_savings_pct:.1f}% reduction)") lines.append(f" Status: ✓ Fails fast with minimal memory") lines.append("") if sparse_count > 0: avg_sparse_peak = sparse_peak_total / sparse_count lines.append(" Sparse Memo Protection (dict-based memo):") lines.append(f" Average peak: {avg_sparse_peak:,.2f} MB") lines.append(f" Status: ✓ Succeeds with dict (vs GB-sized arrays without PR)") lines.append(f" Note: Compare with --baseline to see actual memory savings") lines.append("") lines.append("=" * 100) return "\n".join(lines) def main(): parser = argparse.ArgumentParser( description="Benchmark pickle unpickling performance for large objects" ) parser.add_argument( '--sizes', type=int, nargs='+', default=None, metavar='MiB', help=f'Object sizes to test in MiB (default: {DEFAULT_SIZES_MIB})' ) parser.add_argument( '--protocol', type=int, default=5, choices=[0, 1, 2, 3, 4, 5], help='Pickle protocol version (default: 5)' ) parser.add_argument( '--iterations', type=int, default=3, help='Number of benchmark iterations (default: 3)' ) parser.add_argument( '--format', choices=['text', 'markdown', 'json'], default='text', help='Output format (default: text)' ) parser.add_argument( '--baseline', type=str, metavar='PYTHON', help='Path to baseline Python interpreter for comparison (e.g., ../main-build/python)' ) parser.add_argument( '--antagonistic', action='store_true', help='Run antagonistic/malicious pickle tests (DoS protection benchmark)' ) args = parser.parse_args() # Handle antagonistic mode if args.antagonistic: # Antagonistic mode uses claimed sizes in MB, not actual data sizes if args.sizes is None: claimed_sizes_mb = AntagonisticTestSuite.DEFAULT_ANTAGONISTIC_SIZES_MB else: claimed_sizes_mb = args.sizes print(f"Running ANTAGONISTIC pickle benchmark (DoS protection test)...") print(f"Claimed sizes: {claimed_sizes_mb} MiB (actual data: 1KB each)") print(f"NOTE: These pickles will FAIL to unpickle (expected)") print() # Run antagonistic benchmark suite suite = AntagonisticTestSuite(claimed_sizes_mb) results = suite.run_all_tests() # Format and display results if args.baseline: # Verify baseline Python exists baseline_path = Path(args.baseline) if not baseline_path.exists(): print(f"Error: Baseline Python not found: {args.baseline}", file=sys.stderr) return 1 # Run baseline benchmark baseline_results = Comparator.run_baseline_benchmark(args.baseline, args) # Show comparison comparison_output = Comparator.format_antagonistic_comparison(results, baseline_results) print(comparison_output) else: # Format and display results output = _format_output(results, args.format, is_antagonistic=True) print(output) else: # Normal mode: legitimate pickle benchmarks # Convert sizes from MiB to bytes if args.sizes is None: sizes_bytes = DEFAULT_SIZES else: sizes_bytes = [size * (1 << 20) for size in args.sizes] print(f"Running pickle benchmark with protocol {args.protocol}...") print(f"Test sizes: {[f'{s/(1<<20):.2f}MiB' for s in sizes_bytes]}") print(f"Iterations per test: {args.iterations}") print() # Run benchmark suite suite = TestSuite(sizes_bytes, args.protocol, args.iterations) results = suite.run_all_tests() # If baseline comparison requested, run baseline and compare if args.baseline: # Verify baseline Python exists baseline_path = Path(args.baseline) if not baseline_path.exists(): print(f"Error: Baseline Python not found: {args.baseline}", file=sys.stderr) return 1 # Run baseline benchmark baseline_results = Comparator.run_baseline_benchmark(args.baseline, args) # Show comparison comparison_output = Comparator.format_comparison(results, baseline_results) print(comparison_output) else: # Format and display results output = _format_output(results, args.format, is_antagonistic=False) print(output) return 0 if __name__ == '__main__': sys.exit(main())