"""Thin Python wrapper around C binary reader for profiling data.""" class BinaryReader: """High-performance binary reader using C implementation. This reader uses memory-mapped I/O (on Unix) for fast replay of profiling data from binary files. Use as a context manager: with BinaryReader('profile.bin') as reader: info = reader.get_info() reader.replay_samples(collector, progress_callback) """ def __init__(self, filename): """Create a new binary reader. Args: filename: Path to input binary file """ self.filename = filename self._reader = None def __enter__(self): import _remote_debugging self._reader = _remote_debugging.BinaryReader(self.filename) return self def __exit__(self, exc_type, exc_val, exc_tb): if self._reader is not None: self._reader.close() self._reader = None return False def get_info(self): """Get metadata about the binary file. Returns: dict: File metadata including: - sample_count: Number of samples in the file - sample_interval_us: Sampling interval in microseconds - start_time_us: Start timestamp in microseconds - string_count: Number of unique strings - frame_count: Number of unique frames - compression: Compression type used """ if self._reader is None: raise RuntimeError("Reader not open. Use as context manager.") return self._reader.get_info() def replay_samples(self, collector, progress_callback=None): """Replay samples from binary file through a collector. This allows converting binary profiling data to other formats (e.g., flamegraph, pstats) by replaying through the appropriate collector. Args: collector: A Collector instance with a collect() method progress_callback: Optional callable(current, total) for progress Returns: int: Number of samples replayed """ if self._reader is None: raise RuntimeError("Reader not open. Use as context manager.") return self._reader.replay(collector, progress_callback) @property def sample_count(self): if self._reader is None: raise RuntimeError("Reader not open. Use as context manager.") return self._reader.get_info()['sample_count'] def get_stats(self): """Get reconstruction statistics from replay. Returns: dict: Statistics about record types decoded and samples reconstructed during replay. """ if self._reader is None: raise RuntimeError("Reader not open. Use as context manager.") return self._reader.get_stats() def convert_binary_to_format(input_file, output_file, output_format, sample_interval_usec=None, progress_callback=None): """Convert a binary profiling file to another format. Args: input_file: Path to input binary file output_file: Path to output file output_format: Target format ('flamegraph', 'collapsed', 'pstats', etc.) sample_interval_usec: Override sample interval (uses file's if None) progress_callback: Optional callable(current, total) for progress Returns: int: Number of samples converted """ from .gecko_collector import GeckoCollector from .stack_collector import FlamegraphCollector, CollapsedStackCollector from .pstats_collector import PStatsCollector with BinaryReader(input_file) as reader: info = reader.get_info() interval = sample_interval_usec or info['sample_interval_us'] # Create appropriate collector based on format if output_format == 'flamegraph': collector = FlamegraphCollector(interval) elif output_format == 'collapsed': collector = CollapsedStackCollector(interval) elif output_format == 'pstats': collector = PStatsCollector(interval) elif output_format == 'gecko': collector = GeckoCollector(interval) else: raise ValueError(f"Unknown output format: {output_format}") # Replay samples through collector count = reader.replay_samples(collector, progress_callback) # Export to target format collector.export(output_file) return count