mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 10:44:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2918 lines
		
	
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2918 lines
		
	
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /****************************************************************
 | |
|  *
 | |
|  * The author of this software is David M. Gay.
 | |
|  *
 | |
|  * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
 | |
|  *
 | |
|  * Permission to use, copy, modify, and distribute this software for any
 | |
|  * purpose without fee is hereby granted, provided that this entire notice
 | |
|  * is included in all copies of any software which is or includes a copy
 | |
|  * or modification of this software and in all copies of the supporting
 | |
|  * documentation for such software.
 | |
|  *
 | |
|  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 | |
|  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
 | |
|  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 | |
|  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 | |
|  *
 | |
|  ***************************************************************/
 | |
| 
 | |
| /****************************************************************
 | |
|  * This is dtoa.c by David M. Gay, downloaded from
 | |
|  * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
 | |
|  * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
 | |
|  *
 | |
|  * Please remember to check http://www.netlib.org/fp regularly (and especially
 | |
|  * before any Python release) for bugfixes and updates.
 | |
|  *
 | |
|  * The major modifications from Gay's original code are as follows:
 | |
|  *
 | |
|  *  0. The original code has been specialized to Python's needs by removing
 | |
|  *     many of the #ifdef'd sections.  In particular, code to support VAX and
 | |
|  *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
 | |
|  *     treatment of the decimal point, and setting of the inexact flag have
 | |
|  *     been removed.
 | |
|  *
 | |
|  *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
 | |
|  *
 | |
|  *  2. The public functions strtod, dtoa and freedtoa all now have
 | |
|  *     a _Py_dg_ prefix.
 | |
|  *
 | |
|  *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
 | |
|  *     PyMem_Malloc failures through the code.  The functions
 | |
|  *
 | |
|  *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
 | |
|  *
 | |
|  *     of return type *Bigint all return NULL to indicate a malloc failure.
 | |
|  *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
 | |
|  *     failure.  bigcomp now has return type int (it used to be void) and
 | |
|  *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
 | |
|  *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
 | |
|  *     by returning -1.0, setting errno=ENOMEM and *se to s00.
 | |
|  *
 | |
|  *  4. The static variable dtoa_result has been removed.  Callers of
 | |
|  *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
 | |
|  *     the memory allocated by _Py_dg_dtoa.
 | |
|  *
 | |
|  *  5. The code has been reformatted to better fit with Python's
 | |
|  *     C style guide (PEP 7).
 | |
|  *
 | |
|  *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
 | |
|  *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
 | |
|  *     Kmax.
 | |
|  *
 | |
|  *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
 | |
|  *     leading whitespace.
 | |
|  *
 | |
|  ***************************************************************/
 | |
| 
 | |
| /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
 | |
|  * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
 | |
|  * Please report bugs for this modified version using the Python issue tracker
 | |
|  * (http://bugs.python.org). */
 | |
| 
 | |
| /* On a machine with IEEE extended-precision registers, it is
 | |
|  * necessary to specify double-precision (53-bit) rounding precision
 | |
|  * before invoking strtod or dtoa.  If the machine uses (the equivalent
 | |
|  * of) Intel 80x87 arithmetic, the call
 | |
|  *      _control87(PC_53, MCW_PC);
 | |
|  * does this with many compilers.  Whether this or another call is
 | |
|  * appropriate depends on the compiler; for this to work, it may be
 | |
|  * necessary to #include "float.h" or another system-dependent header
 | |
|  * file.
 | |
|  */
 | |
| 
 | |
| /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
 | |
|  *
 | |
|  * This strtod returns a nearest machine number to the input decimal
 | |
|  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
 | |
|  * broken by the IEEE round-even rule.  Otherwise ties are broken by
 | |
|  * biased rounding (add half and chop).
 | |
|  *
 | |
|  * Inspired loosely by William D. Clinger's paper "How to Read Floating
 | |
|  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
 | |
|  *
 | |
|  * Modifications:
 | |
|  *
 | |
|  *      1. We only require IEEE, IBM, or VAX double-precision
 | |
|  *              arithmetic (not IEEE double-extended).
 | |
|  *      2. We get by with floating-point arithmetic in a case that
 | |
|  *              Clinger missed -- when we're computing d * 10^n
 | |
|  *              for a small integer d and the integer n is not too
 | |
|  *              much larger than 22 (the maximum integer k for which
 | |
|  *              we can represent 10^k exactly), we may be able to
 | |
|  *              compute (d*10^k) * 10^(e-k) with just one roundoff.
 | |
|  *      3. Rather than a bit-at-a-time adjustment of the binary
 | |
|  *              result in the hard case, we use floating-point
 | |
|  *              arithmetic to determine the adjustment to within
 | |
|  *              one bit; only in really hard cases do we need to
 | |
|  *              compute a second residual.
 | |
|  *      4. Because of 3., we don't need a large table of powers of 10
 | |
|  *              for ten-to-e (just some small tables, e.g. of 10^k
 | |
|  *              for 0 <= k <= 22).
 | |
|  */
 | |
| 
 | |
| /* Linking of Python's #defines to Gay's #defines starts here. */
 | |
| 
 | |
| #include "Python.h"
 | |
| 
 | |
| /* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile
 | |
|    the following code */
 | |
| #ifndef PY_NO_SHORT_FLOAT_REPR
 | |
| 
 | |
| #include "float.h"
 | |
| 
 | |
| #define MALLOC PyMem_Malloc
 | |
| #define FREE PyMem_Free
 | |
| 
 | |
| /* This code should also work for ARM mixed-endian format on little-endian
 | |
|    machines, where doubles have byte order 45670123 (in increasing address
 | |
|    order, 0 being the least significant byte). */
 | |
| #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
 | |
| #  define IEEE_8087
 | |
| #endif
 | |
| #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
 | |
|   defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
 | |
| #  define IEEE_MC68k
 | |
| #endif
 | |
| #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
 | |
| #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
 | |
| #endif
 | |
| 
 | |
| /* The code below assumes that the endianness of integers matches the
 | |
|    endianness of the two 32-bit words of a double.  Check this. */
 | |
| #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
 | |
|                                  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
 | |
| #error "doubles and ints have incompatible endianness"
 | |
| #endif
 | |
| 
 | |
| #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
 | |
| #error "doubles and ints have incompatible endianness"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T)
 | |
| typedef PY_UINT32_T ULong;
 | |
| typedef PY_INT32_T Long;
 | |
| #else
 | |
| #error "Failed to find an exact-width 32-bit integer type"
 | |
| #endif
 | |
| 
 | |
| #if defined(HAVE_UINT64_T)
 | |
| #define ULLong PY_UINT64_T
 | |
| #else
 | |
| #undef ULLong
 | |
| #endif
 | |
| 
 | |
| #undef DEBUG
 | |
| #ifdef Py_DEBUG
 | |
| #define DEBUG
 | |
| #endif
 | |
| 
 | |
| /* End Python #define linking */
 | |
| 
 | |
| #ifdef DEBUG
 | |
| #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
 | |
| #endif
 | |
| 
 | |
| #ifndef PRIVATE_MEM
 | |
| #define PRIVATE_MEM 2304
 | |
| #endif
 | |
| #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
 | |
| static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| typedef union { double d; ULong L[2]; } U;
 | |
| 
 | |
| #ifdef IEEE_8087
 | |
| #define word0(x) (x)->L[1]
 | |
| #define word1(x) (x)->L[0]
 | |
| #else
 | |
| #define word0(x) (x)->L[0]
 | |
| #define word1(x) (x)->L[1]
 | |
| #endif
 | |
| #define dval(x) (x)->d
 | |
| 
 | |
| #ifndef STRTOD_DIGLIM
 | |
| #define STRTOD_DIGLIM 40
 | |
| #endif
 | |
| 
 | |
| /* maximum permitted exponent value for strtod; exponents larger than
 | |
|    MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
 | |
|    should fit into an int. */
 | |
| #ifndef MAX_ABS_EXP
 | |
| #define MAX_ABS_EXP 19999U
 | |
| #endif
 | |
| 
 | |
| /* The following definition of Storeinc is appropriate for MIPS processors.
 | |
|  * An alternative that might be better on some machines is
 | |
|  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
 | |
|  */
 | |
| #if defined(IEEE_8087)
 | |
| #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
 | |
|                          ((unsigned short *)a)[0] = (unsigned short)c, a++)
 | |
| #else
 | |
| #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
 | |
|                          ((unsigned short *)a)[1] = (unsigned short)c, a++)
 | |
| #endif
 | |
| 
 | |
| /* #define P DBL_MANT_DIG */
 | |
| /* Ten_pmax = floor(P*log(2)/log(5)) */
 | |
| /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
 | |
| /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
 | |
| /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
 | |
| 
 | |
| #define Exp_shift  20
 | |
| #define Exp_shift1 20
 | |
| #define Exp_msk1    0x100000
 | |
| #define Exp_msk11   0x100000
 | |
| #define Exp_mask  0x7ff00000
 | |
| #define P 53
 | |
| #define Nbits 53
 | |
| #define Bias 1023
 | |
| #define Emax 1023
 | |
| #define Emin (-1022)
 | |
| #define Etiny (-1074)  /* smallest denormal is 2**Etiny */
 | |
| #define Exp_1  0x3ff00000
 | |
| #define Exp_11 0x3ff00000
 | |
| #define Ebits 11
 | |
| #define Frac_mask  0xfffff
 | |
| #define Frac_mask1 0xfffff
 | |
| #define Ten_pmax 22
 | |
| #define Bletch 0x10
 | |
| #define Bndry_mask  0xfffff
 | |
| #define Bndry_mask1 0xfffff
 | |
| #define Sign_bit 0x80000000
 | |
| #define Log2P 1
 | |
| #define Tiny0 0
 | |
| #define Tiny1 1
 | |
| #define Quick_max 14
 | |
| #define Int_max 14
 | |
| 
 | |
| #ifndef Flt_Rounds
 | |
| #ifdef FLT_ROUNDS
 | |
| #define Flt_Rounds FLT_ROUNDS
 | |
| #else
 | |
| #define Flt_Rounds 1
 | |
| #endif
 | |
| #endif /*Flt_Rounds*/
 | |
| 
 | |
| #define Rounding Flt_Rounds
 | |
| 
 | |
| #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
 | |
| #define Big1 0xffffffff
 | |
| 
 | |
| /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
 | |
| 
 | |
| typedef struct BCinfo BCinfo;
 | |
| struct
 | |
| BCinfo {
 | |
|     int e0, nd, nd0, scale;
 | |
| };
 | |
| 
 | |
| #define FFFFFFFF 0xffffffffUL
 | |
| 
 | |
| #define Kmax 7
 | |
| 
 | |
| /* struct Bigint is used to represent arbitrary-precision integers.  These
 | |
|    integers are stored in sign-magnitude format, with the magnitude stored as
 | |
|    an array of base 2**32 digits.  Bigints are always normalized: if x is a
 | |
|    Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
 | |
| 
 | |
|    The Bigint fields are as follows:
 | |
| 
 | |
|      - next is a header used by Balloc and Bfree to keep track of lists
 | |
|          of freed Bigints;  it's also used for the linked list of
 | |
|          powers of 5 of the form 5**2**i used by pow5mult.
 | |
|      - k indicates which pool this Bigint was allocated from
 | |
|      - maxwds is the maximum number of words space was allocated for
 | |
|        (usually maxwds == 2**k)
 | |
|      - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
 | |
|        (ignored on inputs, set to 0 on outputs) in almost all operations
 | |
|        involving Bigints: a notable exception is the diff function, which
 | |
|        ignores signs on inputs but sets the sign of the output correctly.
 | |
|      - wds is the actual number of significant words
 | |
|      - x contains the vector of words (digits) for this Bigint, from least
 | |
|        significant (x[0]) to most significant (x[wds-1]).
 | |
| */
 | |
| 
 | |
| struct
 | |
| Bigint {
 | |
|     struct Bigint *next;
 | |
|     int k, maxwds, sign, wds;
 | |
|     ULong x[1];
 | |
| };
 | |
| 
 | |
| typedef struct Bigint Bigint;
 | |
| 
 | |
| #ifndef Py_USING_MEMORY_DEBUGGER
 | |
| 
 | |
| /* Memory management: memory is allocated from, and returned to, Kmax+1 pools
 | |
|    of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
 | |
|    1 << k.  These pools are maintained as linked lists, with freelist[k]
 | |
|    pointing to the head of the list for pool k.
 | |
| 
 | |
|    On allocation, if there's no free slot in the appropriate pool, MALLOC is
 | |
|    called to get more memory.  This memory is not returned to the system until
 | |
|    Python quits.  There's also a private memory pool that's allocated from
 | |
|    in preference to using MALLOC.
 | |
| 
 | |
|    For Bigints with more than (1 << Kmax) digits (which implies at least 1233
 | |
|    decimal digits), memory is directly allocated using MALLOC, and freed using
 | |
|    FREE.
 | |
| 
 | |
|    XXX: it would be easy to bypass this memory-management system and
 | |
|    translate each call to Balloc into a call to PyMem_Malloc, and each
 | |
|    Bfree to PyMem_Free.  Investigate whether this has any significant
 | |
|    performance on impact. */
 | |
| 
 | |
| static Bigint *freelist[Kmax+1];
 | |
| 
 | |
| /* Allocate space for a Bigint with up to 1<<k digits */
 | |
| 
 | |
| static Bigint *
 | |
| Balloc(int k)
 | |
| {
 | |
|     int x;
 | |
|     Bigint *rv;
 | |
|     unsigned int len;
 | |
| 
 | |
|     if (k <= Kmax && (rv = freelist[k]))
 | |
|         freelist[k] = rv->next;
 | |
|     else {
 | |
|         x = 1 << k;
 | |
|         len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
 | |
|             /sizeof(double);
 | |
|         if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
 | |
|             rv = (Bigint*)pmem_next;
 | |
|             pmem_next += len;
 | |
|         }
 | |
|         else {
 | |
|             rv = (Bigint*)MALLOC(len*sizeof(double));
 | |
|             if (rv == NULL)
 | |
|                 return NULL;
 | |
|         }
 | |
|         rv->k = k;
 | |
|         rv->maxwds = x;
 | |
|     }
 | |
|     rv->sign = rv->wds = 0;
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| /* Free a Bigint allocated with Balloc */
 | |
| 
 | |
| static void
 | |
| Bfree(Bigint *v)
 | |
| {
 | |
|     if (v) {
 | |
|         if (v->k > Kmax)
 | |
|             FREE((void*)v);
 | |
|         else {
 | |
|             v->next = freelist[v->k];
 | |
|             freelist[v->k] = v;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
 | |
|    PyMem_Free directly in place of the custom memory allocation scheme above.
 | |
|    These are provided for the benefit of memory debugging tools like
 | |
|    Valgrind. */
 | |
| 
 | |
| /* Allocate space for a Bigint with up to 1<<k digits */
 | |
| 
 | |
| static Bigint *
 | |
| Balloc(int k)
 | |
| {
 | |
|     int x;
 | |
|     Bigint *rv;
 | |
|     unsigned int len;
 | |
| 
 | |
|     x = 1 << k;
 | |
|     len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
 | |
|         /sizeof(double);
 | |
| 
 | |
|     rv = (Bigint*)MALLOC(len*sizeof(double));
 | |
|     if (rv == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     rv->k = k;
 | |
|     rv->maxwds = x;
 | |
|     rv->sign = rv->wds = 0;
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| /* Free a Bigint allocated with Balloc */
 | |
| 
 | |
| static void
 | |
| Bfree(Bigint *v)
 | |
| {
 | |
|     if (v) {
 | |
|         FREE((void*)v);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif /* Py_USING_MEMORY_DEBUGGER */
 | |
| 
 | |
| #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
 | |
|                           y->wds*sizeof(Long) + 2*sizeof(int))
 | |
| 
 | |
| /* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
 | |
|    a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
 | |
|    On failure, return NULL.  In this case, b will have been already freed. */
 | |
| 
 | |
| static Bigint *
 | |
| multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
 | |
| {
 | |
|     int i, wds;
 | |
| #ifdef ULLong
 | |
|     ULong *x;
 | |
|     ULLong carry, y;
 | |
| #else
 | |
|     ULong carry, *x, y;
 | |
|     ULong xi, z;
 | |
| #endif
 | |
|     Bigint *b1;
 | |
| 
 | |
|     wds = b->wds;
 | |
|     x = b->x;
 | |
|     i = 0;
 | |
|     carry = a;
 | |
|     do {
 | |
| #ifdef ULLong
 | |
|         y = *x * (ULLong)m + carry;
 | |
|         carry = y >> 32;
 | |
|         *x++ = (ULong)(y & FFFFFFFF);
 | |
| #else
 | |
|         xi = *x;
 | |
|         y = (xi & 0xffff) * m + carry;
 | |
|         z = (xi >> 16) * m + (y >> 16);
 | |
|         carry = z >> 16;
 | |
|         *x++ = (z << 16) + (y & 0xffff);
 | |
| #endif
 | |
|     }
 | |
|     while(++i < wds);
 | |
|     if (carry) {
 | |
|         if (wds >= b->maxwds) {
 | |
|             b1 = Balloc(b->k+1);
 | |
|             if (b1 == NULL){
 | |
|                 Bfree(b);
 | |
|                 return NULL;
 | |
|             }
 | |
|             Bcopy(b1, b);
 | |
|             Bfree(b);
 | |
|             b = b1;
 | |
|         }
 | |
|         b->x[wds++] = (ULong)carry;
 | |
|         b->wds = wds;
 | |
|     }
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| /* convert a string s containing nd decimal digits (possibly containing a
 | |
|    decimal separator at position nd0, which is ignored) to a Bigint.  This
 | |
|    function carries on where the parsing code in _Py_dg_strtod leaves off: on
 | |
|    entry, y9 contains the result of converting the first 9 digits.  Returns
 | |
|    NULL on failure. */
 | |
| 
 | |
| static Bigint *
 | |
| s2b(const char *s, int nd0, int nd, ULong y9)
 | |
| {
 | |
|     Bigint *b;
 | |
|     int i, k;
 | |
|     Long x, y;
 | |
| 
 | |
|     x = (nd + 8) / 9;
 | |
|     for(k = 0, y = 1; x > y; y <<= 1, k++) ;
 | |
|     b = Balloc(k);
 | |
|     if (b == NULL)
 | |
|         return NULL;
 | |
|     b->x[0] = y9;
 | |
|     b->wds = 1;
 | |
| 
 | |
|     if (nd <= 9)
 | |
|       return b;
 | |
| 
 | |
|     s += 9;
 | |
|     for (i = 9; i < nd0; i++) {
 | |
|         b = multadd(b, 10, *s++ - '0');
 | |
|         if (b == NULL)
 | |
|             return NULL;
 | |
|     }
 | |
|     s++;
 | |
|     for(; i < nd; i++) {
 | |
|         b = multadd(b, 10, *s++ - '0');
 | |
|         if (b == NULL)
 | |
|             return NULL;
 | |
|     }
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| /* count leading 0 bits in the 32-bit integer x. */
 | |
| 
 | |
| static int
 | |
| hi0bits(ULong x)
 | |
| {
 | |
|     int k = 0;
 | |
| 
 | |
|     if (!(x & 0xffff0000)) {
 | |
|         k = 16;
 | |
|         x <<= 16;
 | |
|     }
 | |
|     if (!(x & 0xff000000)) {
 | |
|         k += 8;
 | |
|         x <<= 8;
 | |
|     }
 | |
|     if (!(x & 0xf0000000)) {
 | |
|         k += 4;
 | |
|         x <<= 4;
 | |
|     }
 | |
|     if (!(x & 0xc0000000)) {
 | |
|         k += 2;
 | |
|         x <<= 2;
 | |
|     }
 | |
|     if (!(x & 0x80000000)) {
 | |
|         k++;
 | |
|         if (!(x & 0x40000000))
 | |
|             return 32;
 | |
|     }
 | |
|     return k;
 | |
| }
 | |
| 
 | |
| /* count trailing 0 bits in the 32-bit integer y, and shift y right by that
 | |
|    number of bits. */
 | |
| 
 | |
| static int
 | |
| lo0bits(ULong *y)
 | |
| {
 | |
|     int k;
 | |
|     ULong x = *y;
 | |
| 
 | |
|     if (x & 7) {
 | |
|         if (x & 1)
 | |
|             return 0;
 | |
|         if (x & 2) {
 | |
|             *y = x >> 1;
 | |
|             return 1;
 | |
|         }
 | |
|         *y = x >> 2;
 | |
|         return 2;
 | |
|     }
 | |
|     k = 0;
 | |
|     if (!(x & 0xffff)) {
 | |
|         k = 16;
 | |
|         x >>= 16;
 | |
|     }
 | |
|     if (!(x & 0xff)) {
 | |
|         k += 8;
 | |
|         x >>= 8;
 | |
|     }
 | |
|     if (!(x & 0xf)) {
 | |
|         k += 4;
 | |
|         x >>= 4;
 | |
|     }
 | |
|     if (!(x & 0x3)) {
 | |
|         k += 2;
 | |
|         x >>= 2;
 | |
|     }
 | |
|     if (!(x & 1)) {
 | |
|         k++;
 | |
|         x >>= 1;
 | |
|         if (!x)
 | |
|             return 32;
 | |
|     }
 | |
|     *y = x;
 | |
|     return k;
 | |
| }
 | |
| 
 | |
| /* convert a small nonnegative integer to a Bigint */
 | |
| 
 | |
| static Bigint *
 | |
| i2b(int i)
 | |
| {
 | |
|     Bigint *b;
 | |
| 
 | |
|     b = Balloc(1);
 | |
|     if (b == NULL)
 | |
|         return NULL;
 | |
|     b->x[0] = i;
 | |
|     b->wds = 1;
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| /* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
 | |
|    the signs of a and b. */
 | |
| 
 | |
| static Bigint *
 | |
| mult(Bigint *a, Bigint *b)
 | |
| {
 | |
|     Bigint *c;
 | |
|     int k, wa, wb, wc;
 | |
|     ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
 | |
|     ULong y;
 | |
| #ifdef ULLong
 | |
|     ULLong carry, z;
 | |
| #else
 | |
|     ULong carry, z;
 | |
|     ULong z2;
 | |
| #endif
 | |
| 
 | |
|     if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
 | |
|         c = Balloc(0);
 | |
|         if (c == NULL)
 | |
|             return NULL;
 | |
|         c->wds = 1;
 | |
|         c->x[0] = 0;
 | |
|         return c;
 | |
|     }
 | |
| 
 | |
|     if (a->wds < b->wds) {
 | |
|         c = a;
 | |
|         a = b;
 | |
|         b = c;
 | |
|     }
 | |
|     k = a->k;
 | |
|     wa = a->wds;
 | |
|     wb = b->wds;
 | |
|     wc = wa + wb;
 | |
|     if (wc > a->maxwds)
 | |
|         k++;
 | |
|     c = Balloc(k);
 | |
|     if (c == NULL)
 | |
|         return NULL;
 | |
|     for(x = c->x, xa = x + wc; x < xa; x++)
 | |
|         *x = 0;
 | |
|     xa = a->x;
 | |
|     xae = xa + wa;
 | |
|     xb = b->x;
 | |
|     xbe = xb + wb;
 | |
|     xc0 = c->x;
 | |
| #ifdef ULLong
 | |
|     for(; xb < xbe; xc0++) {
 | |
|         if ((y = *xb++)) {
 | |
|             x = xa;
 | |
|             xc = xc0;
 | |
|             carry = 0;
 | |
|             do {
 | |
|                 z = *x++ * (ULLong)y + *xc + carry;
 | |
|                 carry = z >> 32;
 | |
|                 *xc++ = (ULong)(z & FFFFFFFF);
 | |
|             }
 | |
|             while(x < xae);
 | |
|             *xc = (ULong)carry;
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     for(; xb < xbe; xb++, xc0++) {
 | |
|         if (y = *xb & 0xffff) {
 | |
|             x = xa;
 | |
|             xc = xc0;
 | |
|             carry = 0;
 | |
|             do {
 | |
|                 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
 | |
|                 carry = z >> 16;
 | |
|                 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
 | |
|                 carry = z2 >> 16;
 | |
|                 Storeinc(xc, z2, z);
 | |
|             }
 | |
|             while(x < xae);
 | |
|             *xc = carry;
 | |
|         }
 | |
|         if (y = *xb >> 16) {
 | |
|             x = xa;
 | |
|             xc = xc0;
 | |
|             carry = 0;
 | |
|             z2 = *xc;
 | |
|             do {
 | |
|                 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
 | |
|                 carry = z >> 16;
 | |
|                 Storeinc(xc, z, z2);
 | |
|                 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
 | |
|                 carry = z2 >> 16;
 | |
|             }
 | |
|             while(x < xae);
 | |
|             *xc = z2;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
 | |
|     c->wds = wc;
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| #ifndef Py_USING_MEMORY_DEBUGGER
 | |
| 
 | |
| /* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */
 | |
| 
 | |
| static Bigint *p5s;
 | |
| 
 | |
| /* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
 | |
|    failure; if the returned pointer is distinct from b then the original
 | |
|    Bigint b will have been Bfree'd.   Ignores the sign of b. */
 | |
| 
 | |
| static Bigint *
 | |
| pow5mult(Bigint *b, int k)
 | |
| {
 | |
|     Bigint *b1, *p5, *p51;
 | |
|     int i;
 | |
|     static int p05[3] = { 5, 25, 125 };
 | |
| 
 | |
|     if ((i = k & 3)) {
 | |
|         b = multadd(b, p05[i-1], 0);
 | |
|         if (b == NULL)
 | |
|             return NULL;
 | |
|     }
 | |
| 
 | |
|     if (!(k >>= 2))
 | |
|         return b;
 | |
|     p5 = p5s;
 | |
|     if (!p5) {
 | |
|         /* first time */
 | |
|         p5 = i2b(625);
 | |
|         if (p5 == NULL) {
 | |
|             Bfree(b);
 | |
|             return NULL;
 | |
|         }
 | |
|         p5s = p5;
 | |
|         p5->next = 0;
 | |
|     }
 | |
|     for(;;) {
 | |
|         if (k & 1) {
 | |
|             b1 = mult(b, p5);
 | |
|             Bfree(b);
 | |
|             b = b1;
 | |
|             if (b == NULL)
 | |
|                 return NULL;
 | |
|         }
 | |
|         if (!(k >>= 1))
 | |
|             break;
 | |
|         p51 = p5->next;
 | |
|         if (!p51) {
 | |
|             p51 = mult(p5,p5);
 | |
|             if (p51 == NULL) {
 | |
|                 Bfree(b);
 | |
|                 return NULL;
 | |
|             }
 | |
|             p51->next = 0;
 | |
|             p5->next = p51;
 | |
|         }
 | |
|         p5 = p51;
 | |
|     }
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Version of pow5mult that doesn't cache powers of 5. Provided for
 | |
|    the benefit of memory debugging tools like Valgrind. */
 | |
| 
 | |
| static Bigint *
 | |
| pow5mult(Bigint *b, int k)
 | |
| {
 | |
|     Bigint *b1, *p5, *p51;
 | |
|     int i;
 | |
|     static int p05[3] = { 5, 25, 125 };
 | |
| 
 | |
|     if ((i = k & 3)) {
 | |
|         b = multadd(b, p05[i-1], 0);
 | |
|         if (b == NULL)
 | |
|             return NULL;
 | |
|     }
 | |
| 
 | |
|     if (!(k >>= 2))
 | |
|         return b;
 | |
|     p5 = i2b(625);
 | |
|     if (p5 == NULL) {
 | |
|         Bfree(b);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     for(;;) {
 | |
|         if (k & 1) {
 | |
|             b1 = mult(b, p5);
 | |
|             Bfree(b);
 | |
|             b = b1;
 | |
|             if (b == NULL) {
 | |
|                 Bfree(p5);
 | |
|                 return NULL;
 | |
|             }
 | |
|         }
 | |
|         if (!(k >>= 1))
 | |
|             break;
 | |
|         p51 = mult(p5, p5);
 | |
|         Bfree(p5);
 | |
|         p5 = p51;
 | |
|         if (p5 == NULL) {
 | |
|             Bfree(b);
 | |
|             return NULL;
 | |
|         }
 | |
|     }
 | |
|     Bfree(p5);
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| #endif /* Py_USING_MEMORY_DEBUGGER */
 | |
| 
 | |
| /* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
 | |
|    or NULL on failure.  If the returned pointer is distinct from b then the
 | |
|    original b will have been Bfree'd.   Ignores the sign of b. */
 | |
| 
 | |
| static Bigint *
 | |
| lshift(Bigint *b, int k)
 | |
| {
 | |
|     int i, k1, n, n1;
 | |
|     Bigint *b1;
 | |
|     ULong *x, *x1, *xe, z;
 | |
| 
 | |
|     if (!k || (!b->x[0] && b->wds == 1))
 | |
|         return b;
 | |
| 
 | |
|     n = k >> 5;
 | |
|     k1 = b->k;
 | |
|     n1 = n + b->wds + 1;
 | |
|     for(i = b->maxwds; n1 > i; i <<= 1)
 | |
|         k1++;
 | |
|     b1 = Balloc(k1);
 | |
|     if (b1 == NULL) {
 | |
|         Bfree(b);
 | |
|         return NULL;
 | |
|     }
 | |
|     x1 = b1->x;
 | |
|     for(i = 0; i < n; i++)
 | |
|         *x1++ = 0;
 | |
|     x = b->x;
 | |
|     xe = x + b->wds;
 | |
|     if (k &= 0x1f) {
 | |
|         k1 = 32 - k;
 | |
|         z = 0;
 | |
|         do {
 | |
|             *x1++ = *x << k | z;
 | |
|             z = *x++ >> k1;
 | |
|         }
 | |
|         while(x < xe);
 | |
|         if ((*x1 = z))
 | |
|             ++n1;
 | |
|     }
 | |
|     else do
 | |
|              *x1++ = *x++;
 | |
|         while(x < xe);
 | |
|     b1->wds = n1 - 1;
 | |
|     Bfree(b);
 | |
|     return b1;
 | |
| }
 | |
| 
 | |
| /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
 | |
|    1 if a > b.  Ignores signs of a and b. */
 | |
| 
 | |
| static int
 | |
| cmp(Bigint *a, Bigint *b)
 | |
| {
 | |
|     ULong *xa, *xa0, *xb, *xb0;
 | |
|     int i, j;
 | |
| 
 | |
|     i = a->wds;
 | |
|     j = b->wds;
 | |
| #ifdef DEBUG
 | |
|     if (i > 1 && !a->x[i-1])
 | |
|         Bug("cmp called with a->x[a->wds-1] == 0");
 | |
|     if (j > 1 && !b->x[j-1])
 | |
|         Bug("cmp called with b->x[b->wds-1] == 0");
 | |
| #endif
 | |
|     if (i -= j)
 | |
|         return i;
 | |
|     xa0 = a->x;
 | |
|     xa = xa0 + j;
 | |
|     xb0 = b->x;
 | |
|     xb = xb0 + j;
 | |
|     for(;;) {
 | |
|         if (*--xa != *--xb)
 | |
|             return *xa < *xb ? -1 : 1;
 | |
|         if (xa <= xa0)
 | |
|             break;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Take the difference of Bigints a and b, returning a new Bigint.  Returns
 | |
|    NULL on failure.  The signs of a and b are ignored, but the sign of the
 | |
|    result is set appropriately. */
 | |
| 
 | |
| static Bigint *
 | |
| diff(Bigint *a, Bigint *b)
 | |
| {
 | |
|     Bigint *c;
 | |
|     int i, wa, wb;
 | |
|     ULong *xa, *xae, *xb, *xbe, *xc;
 | |
| #ifdef ULLong
 | |
|     ULLong borrow, y;
 | |
| #else
 | |
|     ULong borrow, y;
 | |
|     ULong z;
 | |
| #endif
 | |
| 
 | |
|     i = cmp(a,b);
 | |
|     if (!i) {
 | |
|         c = Balloc(0);
 | |
|         if (c == NULL)
 | |
|             return NULL;
 | |
|         c->wds = 1;
 | |
|         c->x[0] = 0;
 | |
|         return c;
 | |
|     }
 | |
|     if (i < 0) {
 | |
|         c = a;
 | |
|         a = b;
 | |
|         b = c;
 | |
|         i = 1;
 | |
|     }
 | |
|     else
 | |
|         i = 0;
 | |
|     c = Balloc(a->k);
 | |
|     if (c == NULL)
 | |
|         return NULL;
 | |
|     c->sign = i;
 | |
|     wa = a->wds;
 | |
|     xa = a->x;
 | |
|     xae = xa + wa;
 | |
|     wb = b->wds;
 | |
|     xb = b->x;
 | |
|     xbe = xb + wb;
 | |
|     xc = c->x;
 | |
|     borrow = 0;
 | |
| #ifdef ULLong
 | |
|     do {
 | |
|         y = (ULLong)*xa++ - *xb++ - borrow;
 | |
|         borrow = y >> 32 & (ULong)1;
 | |
|         *xc++ = (ULong)(y & FFFFFFFF);
 | |
|     }
 | |
|     while(xb < xbe);
 | |
|     while(xa < xae) {
 | |
|         y = *xa++ - borrow;
 | |
|         borrow = y >> 32 & (ULong)1;
 | |
|         *xc++ = (ULong)(y & FFFFFFFF);
 | |
|     }
 | |
| #else
 | |
|     do {
 | |
|         y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
 | |
|         borrow = (y & 0x10000) >> 16;
 | |
|         z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
 | |
|         borrow = (z & 0x10000) >> 16;
 | |
|         Storeinc(xc, z, y);
 | |
|     }
 | |
|     while(xb < xbe);
 | |
|     while(xa < xae) {
 | |
|         y = (*xa & 0xffff) - borrow;
 | |
|         borrow = (y & 0x10000) >> 16;
 | |
|         z = (*xa++ >> 16) - borrow;
 | |
|         borrow = (z & 0x10000) >> 16;
 | |
|         Storeinc(xc, z, y);
 | |
|     }
 | |
| #endif
 | |
|     while(!*--xc)
 | |
|         wa--;
 | |
|     c->wds = wa;
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| /* Given a positive normal double x, return the difference between x and the
 | |
|    next double up.  Doesn't give correct results for subnormals. */
 | |
| 
 | |
| static double
 | |
| ulp(U *x)
 | |
| {
 | |
|     Long L;
 | |
|     U u;
 | |
| 
 | |
|     L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
 | |
|     word0(&u) = L;
 | |
|     word1(&u) = 0;
 | |
|     return dval(&u);
 | |
| }
 | |
| 
 | |
| /* Convert a Bigint to a double plus an exponent */
 | |
| 
 | |
| static double
 | |
| b2d(Bigint *a, int *e)
 | |
| {
 | |
|     ULong *xa, *xa0, w, y, z;
 | |
|     int k;
 | |
|     U d;
 | |
| 
 | |
|     xa0 = a->x;
 | |
|     xa = xa0 + a->wds;
 | |
|     y = *--xa;
 | |
| #ifdef DEBUG
 | |
|     if (!y) Bug("zero y in b2d");
 | |
| #endif
 | |
|     k = hi0bits(y);
 | |
|     *e = 32 - k;
 | |
|     if (k < Ebits) {
 | |
|         word0(&d) = Exp_1 | y >> (Ebits - k);
 | |
|         w = xa > xa0 ? *--xa : 0;
 | |
|         word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
 | |
|         goto ret_d;
 | |
|     }
 | |
|     z = xa > xa0 ? *--xa : 0;
 | |
|     if (k -= Ebits) {
 | |
|         word0(&d) = Exp_1 | y << k | z >> (32 - k);
 | |
|         y = xa > xa0 ? *--xa : 0;
 | |
|         word1(&d) = z << k | y >> (32 - k);
 | |
|     }
 | |
|     else {
 | |
|         word0(&d) = Exp_1 | y;
 | |
|         word1(&d) = z;
 | |
|     }
 | |
|   ret_d:
 | |
|     return dval(&d);
 | |
| }
 | |
| 
 | |
| /* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
 | |
|    except that it accepts the scale parameter used in _Py_dg_strtod (which
 | |
|    should be either 0 or 2*P), and the normalization for the return value is
 | |
|    different (see below).  On input, d should be finite and nonnegative, and d
 | |
|    / 2**scale should be exactly representable as an IEEE 754 double.
 | |
| 
 | |
|    Returns a Bigint b and an integer e such that
 | |
| 
 | |
|      dval(d) / 2**scale = b * 2**e.
 | |
| 
 | |
|    Unlike d2b, b is not necessarily odd: b and e are normalized so
 | |
|    that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
 | |
|    and e == Etiny.  This applies equally to an input of 0.0: in that
 | |
|    case the return values are b = 0 and e = Etiny.
 | |
| 
 | |
|    The above normalization ensures that for all possible inputs d,
 | |
|    2**e gives ulp(d/2**scale).
 | |
| 
 | |
|    Returns NULL on failure.
 | |
| */
 | |
| 
 | |
| static Bigint *
 | |
| sd2b(U *d, int scale, int *e)
 | |
| {
 | |
|     Bigint *b;
 | |
| 
 | |
|     b = Balloc(1);
 | |
|     if (b == NULL)
 | |
|         return NULL;
 | |
|     
 | |
|     /* First construct b and e assuming that scale == 0. */
 | |
|     b->wds = 2;
 | |
|     b->x[0] = word1(d);
 | |
|     b->x[1] = word0(d) & Frac_mask;
 | |
|     *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
 | |
|     if (*e < Etiny)
 | |
|         *e = Etiny;
 | |
|     else
 | |
|         b->x[1] |= Exp_msk1;
 | |
| 
 | |
|     /* Now adjust for scale, provided that b != 0. */
 | |
|     if (scale && (b->x[0] || b->x[1])) {
 | |
|         *e -= scale;
 | |
|         if (*e < Etiny) {
 | |
|             scale = Etiny - *e;
 | |
|             *e = Etiny;
 | |
|             /* We can't shift more than P-1 bits without shifting out a 1. */
 | |
|             assert(0 < scale && scale <= P - 1);
 | |
|             if (scale >= 32) {
 | |
|                 /* The bits shifted out should all be zero. */
 | |
|                 assert(b->x[0] == 0);
 | |
|                 b->x[0] = b->x[1];
 | |
|                 b->x[1] = 0;
 | |
|                 scale -= 32;
 | |
|             }
 | |
|             if (scale) {
 | |
|                 /* The bits shifted out should all be zero. */
 | |
|                 assert(b->x[0] << (32 - scale) == 0);
 | |
|                 b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
 | |
|                 b->x[1] >>= scale;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* Ensure b is normalized. */
 | |
|     if (!b->x[1])
 | |
|         b->wds = 1;
 | |
| 
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| /* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
 | |
| 
 | |
|    Given a finite nonzero double d, return an odd Bigint b and exponent *e
 | |
|    such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
 | |
|    significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
 | |
| 
 | |
|    If d is zero, then b == 0, *e == -1010, *bbits = 0.
 | |
|  */
 | |
| 
 | |
| static Bigint *
 | |
| d2b(U *d, int *e, int *bits)
 | |
| {
 | |
|     Bigint *b;
 | |
|     int de, k;
 | |
|     ULong *x, y, z;
 | |
|     int i;
 | |
| 
 | |
|     b = Balloc(1);
 | |
|     if (b == NULL)
 | |
|         return NULL;
 | |
|     x = b->x;
 | |
| 
 | |
|     z = word0(d) & Frac_mask;
 | |
|     word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
 | |
|     if ((de = (int)(word0(d) >> Exp_shift)))
 | |
|         z |= Exp_msk1;
 | |
|     if ((y = word1(d))) {
 | |
|         if ((k = lo0bits(&y))) {
 | |
|             x[0] = y | z << (32 - k);
 | |
|             z >>= k;
 | |
|         }
 | |
|         else
 | |
|             x[0] = y;
 | |
|         i =
 | |
|             b->wds = (x[1] = z) ? 2 : 1;
 | |
|     }
 | |
|     else {
 | |
|         k = lo0bits(&z);
 | |
|         x[0] = z;
 | |
|         i =
 | |
|             b->wds = 1;
 | |
|         k += 32;
 | |
|     }
 | |
|     if (de) {
 | |
|         *e = de - Bias - (P-1) + k;
 | |
|         *bits = P - k;
 | |
|     }
 | |
|     else {
 | |
|         *e = de - Bias - (P-1) + 1 + k;
 | |
|         *bits = 32*i - hi0bits(x[i-1]);
 | |
|     }
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| /* Compute the ratio of two Bigints, as a double.  The result may have an
 | |
|    error of up to 2.5 ulps. */
 | |
| 
 | |
| static double
 | |
| ratio(Bigint *a, Bigint *b)
 | |
| {
 | |
|     U da, db;
 | |
|     int k, ka, kb;
 | |
| 
 | |
|     dval(&da) = b2d(a, &ka);
 | |
|     dval(&db) = b2d(b, &kb);
 | |
|     k = ka - kb + 32*(a->wds - b->wds);
 | |
|     if (k > 0)
 | |
|         word0(&da) += k*Exp_msk1;
 | |
|     else {
 | |
|         k = -k;
 | |
|         word0(&db) += k*Exp_msk1;
 | |
|     }
 | |
|     return dval(&da) / dval(&db);
 | |
| }
 | |
| 
 | |
| static const double
 | |
| tens[] = {
 | |
|     1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
 | |
|     1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
 | |
|     1e20, 1e21, 1e22
 | |
| };
 | |
| 
 | |
| static const double
 | |
| bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
 | |
| static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
 | |
|                                    9007199254740992.*9007199254740992.e-256
 | |
|                                    /* = 2^106 * 1e-256 */
 | |
| };
 | |
| /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
 | |
| /* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
 | |
| #define Scale_Bit 0x10
 | |
| #define n_bigtens 5
 | |
| 
 | |
| #define ULbits 32
 | |
| #define kshift 5
 | |
| #define kmask 31
 | |
| 
 | |
| 
 | |
| static int
 | |
| dshift(Bigint *b, int p2)
 | |
| {
 | |
|     int rv = hi0bits(b->x[b->wds-1]) - 4;
 | |
|     if (p2 > 0)
 | |
|         rv -= p2;
 | |
|     return rv & kmask;
 | |
| }
 | |
| 
 | |
| /* special case of Bigint division.  The quotient is always in the range 0 <=
 | |
|    quotient < 10, and on entry the divisor S is normalized so that its top 4
 | |
|    bits (28--31) are zero and bit 27 is set. */
 | |
| 
 | |
| static int
 | |
| quorem(Bigint *b, Bigint *S)
 | |
| {
 | |
|     int n;
 | |
|     ULong *bx, *bxe, q, *sx, *sxe;
 | |
| #ifdef ULLong
 | |
|     ULLong borrow, carry, y, ys;
 | |
| #else
 | |
|     ULong borrow, carry, y, ys;
 | |
|     ULong si, z, zs;
 | |
| #endif
 | |
| 
 | |
|     n = S->wds;
 | |
| #ifdef DEBUG
 | |
|     /*debug*/ if (b->wds > n)
 | |
|         /*debug*/       Bug("oversize b in quorem");
 | |
| #endif
 | |
|     if (b->wds < n)
 | |
|         return 0;
 | |
|     sx = S->x;
 | |
|     sxe = sx + --n;
 | |
|     bx = b->x;
 | |
|     bxe = bx + n;
 | |
|     q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
 | |
| #ifdef DEBUG
 | |
|     /*debug*/ if (q > 9)
 | |
|         /*debug*/       Bug("oversized quotient in quorem");
 | |
| #endif
 | |
|     if (q) {
 | |
|         borrow = 0;
 | |
|         carry = 0;
 | |
|         do {
 | |
| #ifdef ULLong
 | |
|             ys = *sx++ * (ULLong)q + carry;
 | |
|             carry = ys >> 32;
 | |
|             y = *bx - (ys & FFFFFFFF) - borrow;
 | |
|             borrow = y >> 32 & (ULong)1;
 | |
|             *bx++ = (ULong)(y & FFFFFFFF);
 | |
| #else
 | |
|             si = *sx++;
 | |
|             ys = (si & 0xffff) * q + carry;
 | |
|             zs = (si >> 16) * q + (ys >> 16);
 | |
|             carry = zs >> 16;
 | |
|             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
 | |
|             borrow = (y & 0x10000) >> 16;
 | |
|             z = (*bx >> 16) - (zs & 0xffff) - borrow;
 | |
|             borrow = (z & 0x10000) >> 16;
 | |
|             Storeinc(bx, z, y);
 | |
| #endif
 | |
|         }
 | |
|         while(sx <= sxe);
 | |
|         if (!*bxe) {
 | |
|             bx = b->x;
 | |
|             while(--bxe > bx && !*bxe)
 | |
|                 --n;
 | |
|             b->wds = n;
 | |
|         }
 | |
|     }
 | |
|     if (cmp(b, S) >= 0) {
 | |
|         q++;
 | |
|         borrow = 0;
 | |
|         carry = 0;
 | |
|         bx = b->x;
 | |
|         sx = S->x;
 | |
|         do {
 | |
| #ifdef ULLong
 | |
|             ys = *sx++ + carry;
 | |
|             carry = ys >> 32;
 | |
|             y = *bx - (ys & FFFFFFFF) - borrow;
 | |
|             borrow = y >> 32 & (ULong)1;
 | |
|             *bx++ = (ULong)(y & FFFFFFFF);
 | |
| #else
 | |
|             si = *sx++;
 | |
|             ys = (si & 0xffff) + carry;
 | |
|             zs = (si >> 16) + (ys >> 16);
 | |
|             carry = zs >> 16;
 | |
|             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
 | |
|             borrow = (y & 0x10000) >> 16;
 | |
|             z = (*bx >> 16) - (zs & 0xffff) - borrow;
 | |
|             borrow = (z & 0x10000) >> 16;
 | |
|             Storeinc(bx, z, y);
 | |
| #endif
 | |
|         }
 | |
|         while(sx <= sxe);
 | |
|         bx = b->x;
 | |
|         bxe = bx + n;
 | |
|         if (!*bxe) {
 | |
|             while(--bxe > bx && !*bxe)
 | |
|                 --n;
 | |
|             b->wds = n;
 | |
|         }
 | |
|     }
 | |
|     return q;
 | |
| }
 | |
| 
 | |
| /* sulp(x) is a version of ulp(x) that takes bc.scale into account.
 | |
| 
 | |
|    Assuming that x is finite and nonnegative (positive zero is fine
 | |
|    here) and x / 2^bc.scale is exactly representable as a double,
 | |
|    sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
 | |
| 
 | |
| static double
 | |
| sulp(U *x, BCinfo *bc)
 | |
| {
 | |
|     U u;
 | |
| 
 | |
|     if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
 | |
|         /* rv/2^bc->scale is subnormal */
 | |
|         word0(&u) = (P+2)*Exp_msk1;
 | |
|         word1(&u) = 0;
 | |
|         return u.d;
 | |
|     }
 | |
|     else {
 | |
|         assert(word0(x) || word1(x)); /* x != 0.0 */
 | |
|         return ulp(x);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* The bigcomp function handles some hard cases for strtod, for inputs
 | |
|    with more than STRTOD_DIGLIM digits.  It's called once an initial
 | |
|    estimate for the double corresponding to the input string has
 | |
|    already been obtained by the code in _Py_dg_strtod.
 | |
| 
 | |
|    The bigcomp function is only called after _Py_dg_strtod has found a
 | |
|    double value rv such that either rv or rv + 1ulp represents the
 | |
|    correctly rounded value corresponding to the original string.  It
 | |
|    determines which of these two values is the correct one by
 | |
|    computing the decimal digits of rv + 0.5ulp and comparing them with
 | |
|    the corresponding digits of s0.
 | |
| 
 | |
|    In the following, write dv for the absolute value of the number represented
 | |
|    by the input string.
 | |
| 
 | |
|    Inputs:
 | |
| 
 | |
|      s0 points to the first significant digit of the input string.
 | |
| 
 | |
|      rv is a (possibly scaled) estimate for the closest double value to the
 | |
|         value represented by the original input to _Py_dg_strtod.  If
 | |
|         bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
 | |
|         the input value.
 | |
| 
 | |
|      bc is a struct containing information gathered during the parsing and
 | |
|         estimation steps of _Py_dg_strtod.  Description of fields follows:
 | |
| 
 | |
|         bc->e0 gives the exponent of the input value, such that dv = (integer
 | |
|            given by the bd->nd digits of s0) * 10**e0
 | |
| 
 | |
|         bc->nd gives the total number of significant digits of s0.  It will
 | |
|            be at least 1.
 | |
| 
 | |
|         bc->nd0 gives the number of significant digits of s0 before the
 | |
|            decimal separator.  If there's no decimal separator, bc->nd0 ==
 | |
|            bc->nd.
 | |
| 
 | |
|         bc->scale is the value used to scale rv to avoid doing arithmetic with
 | |
|            subnormal values.  It's either 0 or 2*P (=106).
 | |
| 
 | |
|    Outputs:
 | |
| 
 | |
|      On successful exit, rv/2^(bc->scale) is the closest double to dv.
 | |
| 
 | |
|      Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
 | |
| 
 | |
| static int
 | |
| bigcomp(U *rv, const char *s0, BCinfo *bc)
 | |
| {
 | |
|     Bigint *b, *d;
 | |
|     int b2, d2, dd, i, nd, nd0, odd, p2, p5;
 | |
| 
 | |
|     nd = bc->nd;
 | |
|     nd0 = bc->nd0;
 | |
|     p5 = nd + bc->e0;
 | |
|     b = sd2b(rv, bc->scale, &p2);
 | |
|     if (b == NULL)
 | |
|         return -1;
 | |
| 
 | |
|     /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
 | |
|        case, this is used for round to even. */
 | |
|     odd = b->x[0] & 1;
 | |
| 
 | |
|     /* left shift b by 1 bit and or a 1 into the least significant bit;
 | |
|        this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
 | |
|     b = lshift(b, 1);
 | |
|     if (b == NULL)
 | |
|         return -1;
 | |
|     b->x[0] |= 1;
 | |
|     p2--;
 | |
| 
 | |
|     p2 -= p5;
 | |
|     d = i2b(1);
 | |
|     if (d == NULL) {
 | |
|         Bfree(b);
 | |
|         return -1;
 | |
|     }
 | |
|     /* Arrange for convenient computation of quotients:
 | |
|      * shift left if necessary so divisor has 4 leading 0 bits.
 | |
|      */
 | |
|     if (p5 > 0) {
 | |
|         d = pow5mult(d, p5);
 | |
|         if (d == NULL) {
 | |
|             Bfree(b);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     else if (p5 < 0) {
 | |
|         b = pow5mult(b, -p5);
 | |
|         if (b == NULL) {
 | |
|             Bfree(d);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     if (p2 > 0) {
 | |
|         b2 = p2;
 | |
|         d2 = 0;
 | |
|     }
 | |
|     else {
 | |
|         b2 = 0;
 | |
|         d2 = -p2;
 | |
|     }
 | |
|     i = dshift(d, d2);
 | |
|     if ((b2 += i) > 0) {
 | |
|         b = lshift(b, b2);
 | |
|         if (b == NULL) {
 | |
|             Bfree(d);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     if ((d2 += i) > 0) {
 | |
|         d = lshift(d, d2);
 | |
|         if (d == NULL) {
 | |
|             Bfree(b);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
 | |
|      * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
 | |
|      * a number in the range [0.1, 1). */
 | |
|     if (cmp(b, d) >= 0)
 | |
|         /* b/d >= 1 */
 | |
|         dd = -1;
 | |
|     else {
 | |
|         i = 0;
 | |
|         for(;;) {
 | |
|             b = multadd(b, 10, 0);
 | |
|             if (b == NULL) {
 | |
|                 Bfree(d);
 | |
|                 return -1;
 | |
|             }
 | |
|             dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
 | |
|             i++;
 | |
| 
 | |
|             if (dd)
 | |
|                 break;
 | |
|             if (!b->x[0] && b->wds == 1) {
 | |
|                 /* b/d == 0 */
 | |
|                 dd = i < nd;
 | |
|                 break;
 | |
|             }
 | |
|             if (!(i < nd)) {
 | |
|                 /* b/d != 0, but digits of s0 exhausted */
 | |
|                 dd = -1;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     Bfree(b);
 | |
|     Bfree(d);
 | |
|     if (dd > 0 || (dd == 0 && odd))
 | |
|         dval(rv) += sulp(rv, bc);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| double
 | |
| _Py_dg_strtod(const char *s00, char **se)
 | |
| {
 | |
|     int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
 | |
|     int esign, i, j, k, lz, nd, nd0, odd, sign;
 | |
|     const char *s, *s0, *s1;
 | |
|     double aadj, aadj1;
 | |
|     U aadj2, adj, rv, rv0;
 | |
|     ULong y, z, abs_exp;
 | |
|     Long L;
 | |
|     BCinfo bc;
 | |
|     Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
 | |
| 
 | |
|     dval(&rv) = 0.;
 | |
| 
 | |
|     /* Start parsing. */
 | |
|     c = *(s = s00);
 | |
| 
 | |
|     /* Parse optional sign, if present. */
 | |
|     sign = 0;
 | |
|     switch (c) {
 | |
|     case '-':
 | |
|         sign = 1;
 | |
|         /* no break */
 | |
|     case '+':
 | |
|         c = *++s;
 | |
|     }
 | |
| 
 | |
|     /* Skip leading zeros: lz is true iff there were leading zeros. */
 | |
|     s1 = s;
 | |
|     while (c == '0')
 | |
|         c = *++s;
 | |
|     lz = s != s1;
 | |
| 
 | |
|     /* Point s0 at the first nonzero digit (if any).  nd0 will be the position
 | |
|        of the point relative to s0.  nd will be the total number of digits
 | |
|        ignoring leading zeros. */
 | |
|     s0 = s1 = s;
 | |
|     while ('0' <= c && c <= '9')
 | |
|         c = *++s;
 | |
|     nd0 = nd = s - s1;
 | |
| 
 | |
|     /* Parse decimal point and following digits. */
 | |
|     if (c == '.') {
 | |
|         c = *++s;
 | |
|         if (!nd) {
 | |
|             s1 = s;
 | |
|             while (c == '0')
 | |
|                 c = *++s;
 | |
|             lz = lz || s != s1;
 | |
|             nd0 -= s - s1;
 | |
|             s0 = s;
 | |
|         }
 | |
|         s1 = s;
 | |
|         while ('0' <= c && c <= '9')
 | |
|             c = *++s;
 | |
|         nd += s - s1;
 | |
|     }
 | |
| 
 | |
|     /* Now lz is true if and only if there were leading zero digits, and nd
 | |
|        gives the total number of digits ignoring leading zeros.  A valid input
 | |
|        must have at least one digit. */
 | |
|     if (!nd && !lz) {
 | |
|         if (se)
 | |
|             *se = (char *)s00;
 | |
|         goto parse_error;
 | |
|     }
 | |
| 
 | |
|     /* Parse exponent. */
 | |
|     e = 0;
 | |
|     if (c == 'e' || c == 'E') {
 | |
|         s00 = s;
 | |
|         c = *++s;
 | |
| 
 | |
|         /* Exponent sign. */
 | |
|         esign = 0;
 | |
|         switch (c) {
 | |
|         case '-':
 | |
|             esign = 1;
 | |
|             /* no break */
 | |
|         case '+':
 | |
|             c = *++s;
 | |
|         }
 | |
| 
 | |
|         /* Skip zeros.  lz is true iff there are leading zeros. */
 | |
|         s1 = s;
 | |
|         while (c == '0')
 | |
|             c = *++s;
 | |
|         lz = s != s1;
 | |
| 
 | |
|         /* Get absolute value of the exponent. */
 | |
|         s1 = s;
 | |
|         abs_exp = 0;
 | |
|         while ('0' <= c && c <= '9') {
 | |
|             abs_exp = 10*abs_exp + (c - '0');
 | |
|             c = *++s;
 | |
|         }
 | |
| 
 | |
|         /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
 | |
|            there are at most 9 significant exponent digits then overflow is
 | |
|            impossible. */
 | |
|         if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
 | |
|             e = (int)MAX_ABS_EXP;
 | |
|         else
 | |
|             e = (int)abs_exp;
 | |
|         if (esign)
 | |
|             e = -e;
 | |
| 
 | |
|         /* A valid exponent must have at least one digit. */
 | |
|         if (s == s1 && !lz)
 | |
|             s = s00;
 | |
|     }
 | |
| 
 | |
|     /* Adjust exponent to take into account position of the point. */
 | |
|     e -= nd - nd0;
 | |
|     if (nd0 <= 0)
 | |
|         nd0 = nd;
 | |
| 
 | |
|     /* Finished parsing.  Set se to indicate how far we parsed */
 | |
|     if (se)
 | |
|         *se = (char *)s;
 | |
| 
 | |
|     /* If all digits were zero, exit with return value +-0.0.  Otherwise,
 | |
|        strip trailing zeros: scan back until we hit a nonzero digit. */
 | |
|     if (!nd)
 | |
|         goto ret;
 | |
|     for (i = nd; i > 0; ) {
 | |
|         --i;
 | |
|         if (s0[i < nd0 ? i : i+1] != '0') {
 | |
|             ++i;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     e += nd - i;
 | |
|     nd = i;
 | |
|     if (nd0 > nd)
 | |
|         nd0 = nd;
 | |
| 
 | |
|     /* Summary of parsing results.  After parsing, and dealing with zero
 | |
|      * inputs, we have values s0, nd0, nd, e, sign, where:
 | |
|      *
 | |
|      *  - s0 points to the first significant digit of the input string
 | |
|      *
 | |
|      *  - nd is the total number of significant digits (here, and
 | |
|      *    below, 'significant digits' means the set of digits of the
 | |
|      *    significand of the input that remain after ignoring leading
 | |
|      *    and trailing zeros).
 | |
|      *
 | |
|      *  - nd0 indicates the position of the decimal point, if present; it
 | |
|      *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
 | |
|      *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
 | |
|      *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
 | |
|      *    nd0 == nd, then s0[nd0] could be any non-digit character.)
 | |
|      *
 | |
|      *  - e is the adjusted exponent: the absolute value of the number
 | |
|      *    represented by the original input string is n * 10**e, where
 | |
|      *    n is the integer represented by the concatenation of
 | |
|      *    s0[0:nd0] and s0[nd0+1:nd+1]
 | |
|      *
 | |
|      *  - sign gives the sign of the input:  1 for negative, 0 for positive
 | |
|      *
 | |
|      *  - the first and last significant digits are nonzero
 | |
|      */
 | |
| 
 | |
|     /* put first DBL_DIG+1 digits into integer y and z.
 | |
|      *
 | |
|      *  - y contains the value represented by the first min(9, nd)
 | |
|      *    significant digits
 | |
|      *
 | |
|      *  - if nd > 9, z contains the value represented by significant digits
 | |
|      *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
 | |
|      *    gives the value represented by the first min(16, nd) sig. digits.
 | |
|      */
 | |
| 
 | |
|     bc.e0 = e1 = e;
 | |
|     y = z = 0;
 | |
|     for (i = 0; i < nd; i++) {
 | |
|         if (i < 9)
 | |
|             y = 10*y + s0[i < nd0 ? i : i+1] - '0';
 | |
|         else if (i < DBL_DIG+1)
 | |
|             z = 10*z + s0[i < nd0 ? i : i+1] - '0';
 | |
|         else
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
 | |
|     dval(&rv) = y;
 | |
|     if (k > 9) {
 | |
|         dval(&rv) = tens[k - 9] * dval(&rv) + z;
 | |
|     }
 | |
|     bd0 = 0;
 | |
|     if (nd <= DBL_DIG
 | |
|         && Flt_Rounds == 1
 | |
|         ) {
 | |
|         if (!e)
 | |
|             goto ret;
 | |
|         if (e > 0) {
 | |
|             if (e <= Ten_pmax) {
 | |
|                 dval(&rv) *= tens[e];
 | |
|                 goto ret;
 | |
|             }
 | |
|             i = DBL_DIG - nd;
 | |
|             if (e <= Ten_pmax + i) {
 | |
|                 /* A fancier test would sometimes let us do
 | |
|                  * this for larger i values.
 | |
|                  */
 | |
|                 e -= i;
 | |
|                 dval(&rv) *= tens[i];
 | |
|                 dval(&rv) *= tens[e];
 | |
|                 goto ret;
 | |
|             }
 | |
|         }
 | |
|         else if (e >= -Ten_pmax) {
 | |
|             dval(&rv) /= tens[-e];
 | |
|             goto ret;
 | |
|         }
 | |
|     }
 | |
|     e1 += nd - k;
 | |
| 
 | |
|     bc.scale = 0;
 | |
| 
 | |
|     /* Get starting approximation = rv * 10**e1 */
 | |
| 
 | |
|     if (e1 > 0) {
 | |
|         if ((i = e1 & 15))
 | |
|             dval(&rv) *= tens[i];
 | |
|         if (e1 &= ~15) {
 | |
|             if (e1 > DBL_MAX_10_EXP)
 | |
|                 goto ovfl;
 | |
|             e1 >>= 4;
 | |
|             for(j = 0; e1 > 1; j++, e1 >>= 1)
 | |
|                 if (e1 & 1)
 | |
|                     dval(&rv) *= bigtens[j];
 | |
|             /* The last multiplication could overflow. */
 | |
|             word0(&rv) -= P*Exp_msk1;
 | |
|             dval(&rv) *= bigtens[j];
 | |
|             if ((z = word0(&rv) & Exp_mask)
 | |
|                 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
 | |
|                 goto ovfl;
 | |
|             if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
 | |
|                 /* set to largest number */
 | |
|                 /* (Can't trust DBL_MAX) */
 | |
|                 word0(&rv) = Big0;
 | |
|                 word1(&rv) = Big1;
 | |
|             }
 | |
|             else
 | |
|                 word0(&rv) += P*Exp_msk1;
 | |
|         }
 | |
|     }
 | |
|     else if (e1 < 0) {
 | |
|         /* The input decimal value lies in [10**e1, 10**(e1+16)).
 | |
| 
 | |
|            If e1 <= -512, underflow immediately.
 | |
|            If e1 <= -256, set bc.scale to 2*P.
 | |
| 
 | |
|            So for input value < 1e-256, bc.scale is always set;
 | |
|            for input value >= 1e-240, bc.scale is never set.
 | |
|            For input values in [1e-256, 1e-240), bc.scale may or may
 | |
|            not be set. */
 | |
| 
 | |
|         e1 = -e1;
 | |
|         if ((i = e1 & 15))
 | |
|             dval(&rv) /= tens[i];
 | |
|         if (e1 >>= 4) {
 | |
|             if (e1 >= 1 << n_bigtens)
 | |
|                 goto undfl;
 | |
|             if (e1 & Scale_Bit)
 | |
|                 bc.scale = 2*P;
 | |
|             for(j = 0; e1 > 0; j++, e1 >>= 1)
 | |
|                 if (e1 & 1)
 | |
|                     dval(&rv) *= tinytens[j];
 | |
|             if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
 | |
|                                             >> Exp_shift)) > 0) {
 | |
|                 /* scaled rv is denormal; clear j low bits */
 | |
|                 if (j >= 32) {
 | |
|                     word1(&rv) = 0;
 | |
|                     if (j >= 53)
 | |
|                         word0(&rv) = (P+2)*Exp_msk1;
 | |
|                     else
 | |
|                         word0(&rv) &= 0xffffffff << (j-32);
 | |
|                 }
 | |
|                 else
 | |
|                     word1(&rv) &= 0xffffffff << j;
 | |
|             }
 | |
|             if (!dval(&rv))
 | |
|                 goto undfl;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Now the hard part -- adjusting rv to the correct value.*/
 | |
| 
 | |
|     /* Put digits into bd: true value = bd * 10^e */
 | |
| 
 | |
|     bc.nd = nd;
 | |
|     bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
 | |
|                         /* to silence an erroneous warning about bc.nd0 */
 | |
|                         /* possibly not being initialized. */
 | |
|     if (nd > STRTOD_DIGLIM) {
 | |
|         /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
 | |
|         /* minimum number of decimal digits to distinguish double values */
 | |
|         /* in IEEE arithmetic. */
 | |
| 
 | |
|         /* Truncate input to 18 significant digits, then discard any trailing
 | |
|            zeros on the result by updating nd, nd0, e and y suitably. (There's
 | |
|            no need to update z; it's not reused beyond this point.) */
 | |
|         for (i = 18; i > 0; ) {
 | |
|             /* scan back until we hit a nonzero digit.  significant digit 'i'
 | |
|             is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
 | |
|             --i;
 | |
|             if (s0[i < nd0 ? i : i+1] != '0') {
 | |
|                 ++i;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         e += nd - i;
 | |
|         nd = i;
 | |
|         if (nd0 > nd)
 | |
|             nd0 = nd;
 | |
|         if (nd < 9) { /* must recompute y */
 | |
|             y = 0;
 | |
|             for(i = 0; i < nd0; ++i)
 | |
|                 y = 10*y + s0[i] - '0';
 | |
|             for(; i < nd; ++i)
 | |
|                 y = 10*y + s0[i+1] - '0';
 | |
|         }
 | |
|     }
 | |
|     bd0 = s2b(s0, nd0, nd, y);
 | |
|     if (bd0 == NULL)
 | |
|         goto failed_malloc;
 | |
| 
 | |
|     /* Notation for the comments below.  Write:
 | |
| 
 | |
|          - dv for the absolute value of the number represented by the original
 | |
|            decimal input string.
 | |
| 
 | |
|          - if we've truncated dv, write tdv for the truncated value.
 | |
|            Otherwise, set tdv == dv.
 | |
| 
 | |
|          - srv for the quantity rv/2^bc.scale; so srv is the current binary
 | |
|            approximation to tdv (and dv).  It should be exactly representable
 | |
|            in an IEEE 754 double.
 | |
|     */
 | |
| 
 | |
|     for(;;) {
 | |
| 
 | |
|         /* This is the main correction loop for _Py_dg_strtod.
 | |
| 
 | |
|            We've got a decimal value tdv, and a floating-point approximation
 | |
|            srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
 | |
|            close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
 | |
|            approximation if not.
 | |
| 
 | |
|            To determine whether srv is close enough to tdv, compute integers
 | |
|            bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
 | |
|            respectively, and then use integer arithmetic to determine whether
 | |
|            |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
 | |
|         */
 | |
| 
 | |
|         bd = Balloc(bd0->k);
 | |
|         if (bd == NULL) {
 | |
|             Bfree(bd0);
 | |
|             goto failed_malloc;
 | |
|         }
 | |
|         Bcopy(bd, bd0);
 | |
|         bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
 | |
|         if (bb == NULL) {
 | |
|             Bfree(bd);
 | |
|             Bfree(bd0);
 | |
|             goto failed_malloc;
 | |
|         }
 | |
|         /* Record whether lsb of bb is odd, in case we need this
 | |
|            for the round-to-even step later. */
 | |
|         odd = bb->x[0] & 1;
 | |
| 
 | |
|         /* tdv = bd * 10**e;  srv = bb * 2**bbe */
 | |
|         bs = i2b(1);
 | |
|         if (bs == NULL) {
 | |
|             Bfree(bb);
 | |
|             Bfree(bd);
 | |
|             Bfree(bd0);
 | |
|             goto failed_malloc;
 | |
|         }
 | |
| 
 | |
|         if (e >= 0) {
 | |
|             bb2 = bb5 = 0;
 | |
|             bd2 = bd5 = e;
 | |
|         }
 | |
|         else {
 | |
|             bb2 = bb5 = -e;
 | |
|             bd2 = bd5 = 0;
 | |
|         }
 | |
|         if (bbe >= 0)
 | |
|             bb2 += bbe;
 | |
|         else
 | |
|             bd2 -= bbe;
 | |
|         bs2 = bb2;
 | |
|         bb2++;
 | |
|         bd2++;
 | |
| 
 | |
|         /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
 | |
| 	   and bs == 1, so:
 | |
| 
 | |
|               tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
 | |
|               srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
 | |
| 	      0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
 | |
| 
 | |
| 	   It follows that:
 | |
| 
 | |
|               M * tdv = bd * 2**bd2 * 5**bd5
 | |
|               M * srv = bb * 2**bb2 * 5**bb5
 | |
|               M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
 | |
| 
 | |
| 	   for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
 | |
| 	   this fact is not needed below.)
 | |
|         */
 | |
| 
 | |
|         /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
 | |
|         i = bb2 < bd2 ? bb2 : bd2;
 | |
|         if (i > bs2)
 | |
|             i = bs2;
 | |
|         if (i > 0) {
 | |
|             bb2 -= i;
 | |
|             bd2 -= i;
 | |
|             bs2 -= i;
 | |
|         }
 | |
| 
 | |
|         /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
 | |
|         if (bb5 > 0) {
 | |
|             bs = pow5mult(bs, bb5);
 | |
|             if (bs == NULL) {
 | |
|                 Bfree(bb);
 | |
|                 Bfree(bd);
 | |
|                 Bfree(bd0);
 | |
|                 goto failed_malloc;
 | |
|             }
 | |
|             bb1 = mult(bs, bb);
 | |
|             Bfree(bb);
 | |
|             bb = bb1;
 | |
|             if (bb == NULL) {
 | |
|                 Bfree(bs);
 | |
|                 Bfree(bd);
 | |
|                 Bfree(bd0);
 | |
|                 goto failed_malloc;
 | |
|             }
 | |
|         }
 | |
|         if (bb2 > 0) {
 | |
|             bb = lshift(bb, bb2);
 | |
|             if (bb == NULL) {
 | |
|                 Bfree(bs);
 | |
|                 Bfree(bd);
 | |
|                 Bfree(bd0);
 | |
|                 goto failed_malloc;
 | |
|             }
 | |
|         }
 | |
|         if (bd5 > 0) {
 | |
|             bd = pow5mult(bd, bd5);
 | |
|             if (bd == NULL) {
 | |
|                 Bfree(bb);
 | |
|                 Bfree(bs);
 | |
|                 Bfree(bd0);
 | |
|                 goto failed_malloc;
 | |
|             }
 | |
|         }
 | |
|         if (bd2 > 0) {
 | |
|             bd = lshift(bd, bd2);
 | |
|             if (bd == NULL) {
 | |
|                 Bfree(bb);
 | |
|                 Bfree(bs);
 | |
|                 Bfree(bd0);
 | |
|                 goto failed_malloc;
 | |
|             }
 | |
|         }
 | |
|         if (bs2 > 0) {
 | |
|             bs = lshift(bs, bs2);
 | |
|             if (bs == NULL) {
 | |
|                 Bfree(bb);
 | |
|                 Bfree(bd);
 | |
|                 Bfree(bd0);
 | |
|                 goto failed_malloc;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
 | |
|            respectively.  Compute the difference |tdv - srv|, and compare
 | |
|            with 0.5 ulp(srv). */
 | |
| 
 | |
|         delta = diff(bb, bd);
 | |
|         if (delta == NULL) {
 | |
|             Bfree(bb);
 | |
|             Bfree(bs);
 | |
|             Bfree(bd);
 | |
|             Bfree(bd0);
 | |
|             goto failed_malloc;
 | |
|         }
 | |
|         dsign = delta->sign;
 | |
|         delta->sign = 0;
 | |
|         i = cmp(delta, bs);
 | |
|         if (bc.nd > nd && i <= 0) {
 | |
|             if (dsign)
 | |
|                 break;  /* Must use bigcomp(). */
 | |
| 
 | |
|             /* Here rv overestimates the truncated decimal value by at most
 | |
|                0.5 ulp(rv).  Hence rv either overestimates the true decimal
 | |
|                value by <= 0.5 ulp(rv), or underestimates it by some small
 | |
|                amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
 | |
|                the true decimal value, so it's possible to exit.
 | |
| 
 | |
|                Exception: if scaled rv is a normal exact power of 2, but not
 | |
|                DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
 | |
|                next double, so the correctly rounded result is either rv - 0.5
 | |
|                ulp(rv) or rv; in this case, use bigcomp to distinguish. */
 | |
| 
 | |
|             if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
 | |
|                 /* rv can't be 0, since it's an overestimate for some
 | |
|                    nonzero value.  So rv is a normal power of 2. */
 | |
|                 j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
 | |
|                 /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
 | |
|                    rv / 2^bc.scale >= 2^-1021. */
 | |
|                 if (j - bc.scale >= 2) {
 | |
|                     dval(&rv) -= 0.5 * sulp(&rv, &bc);
 | |
|                     break; /* Use bigcomp. */
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             {
 | |
|                 bc.nd = nd;
 | |
|                 i = -1; /* Discarded digits make delta smaller. */
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (i < 0) {
 | |
|             /* Error is less than half an ulp -- check for
 | |
|              * special case of mantissa a power of two.
 | |
|              */
 | |
|             if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
 | |
|                 || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
 | |
|                 ) {
 | |
|                 break;
 | |
|             }
 | |
|             if (!delta->x[0] && delta->wds <= 1) {
 | |
|                 /* exact result */
 | |
|                 break;
 | |
|             }
 | |
|             delta = lshift(delta,Log2P);
 | |
|             if (delta == NULL) {
 | |
|                 Bfree(bb);
 | |
|                 Bfree(bs);
 | |
|                 Bfree(bd);
 | |
|                 Bfree(bd0);
 | |
|                 goto failed_malloc;
 | |
|             }
 | |
|             if (cmp(delta, bs) > 0)
 | |
|                 goto drop_down;
 | |
|             break;
 | |
|         }
 | |
|         if (i == 0) {
 | |
|             /* exactly half-way between */
 | |
|             if (dsign) {
 | |
|                 if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
 | |
|                     &&  word1(&rv) == (
 | |
|                         (bc.scale &&
 | |
|                          (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
 | |
|                         (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
 | |
|                         0xffffffff)) {
 | |
|                     /*boundary case -- increment exponent*/
 | |
|                     word0(&rv) = (word0(&rv) & Exp_mask)
 | |
|                         + Exp_msk1
 | |
|                         ;
 | |
|                     word1(&rv) = 0;
 | |
|                     dsign = 0;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
 | |
|               drop_down:
 | |
|                 /* boundary case -- decrement exponent */
 | |
|                 if (bc.scale) {
 | |
|                     L = word0(&rv) & Exp_mask;
 | |
|                     if (L <= (2*P+1)*Exp_msk1) {
 | |
|                         if (L > (P+2)*Exp_msk1)
 | |
|                             /* round even ==> */
 | |
|                             /* accept rv */
 | |
|                             break;
 | |
|                         /* rv = smallest denormal */
 | |
|                         if (bc.nd > nd)
 | |
|                             break;
 | |
|                         goto undfl;
 | |
|                     }
 | |
|                 }
 | |
|                 L = (word0(&rv) & Exp_mask) - Exp_msk1;
 | |
|                 word0(&rv) = L | Bndry_mask1;
 | |
|                 word1(&rv) = 0xffffffff;
 | |
|                 break;
 | |
|             }
 | |
|             if (!odd)
 | |
|                 break;
 | |
|             if (dsign)
 | |
|                 dval(&rv) += sulp(&rv, &bc);
 | |
|             else {
 | |
|                 dval(&rv) -= sulp(&rv, &bc);
 | |
|                 if (!dval(&rv)) {
 | |
|                     if (bc.nd >nd)
 | |
|                         break;
 | |
|                     goto undfl;
 | |
|                 }
 | |
|             }
 | |
|             dsign = 1 - dsign;
 | |
|             break;
 | |
|         }
 | |
|         if ((aadj = ratio(delta, bs)) <= 2.) {
 | |
|             if (dsign)
 | |
|                 aadj = aadj1 = 1.;
 | |
|             else if (word1(&rv) || word0(&rv) & Bndry_mask) {
 | |
|                 if (word1(&rv) == Tiny1 && !word0(&rv)) {
 | |
|                     if (bc.nd >nd)
 | |
|                         break;
 | |
|                     goto undfl;
 | |
|                 }
 | |
|                 aadj = 1.;
 | |
|                 aadj1 = -1.;
 | |
|             }
 | |
|             else {
 | |
|                 /* special case -- power of FLT_RADIX to be */
 | |
|                 /* rounded down... */
 | |
| 
 | |
|                 if (aadj < 2./FLT_RADIX)
 | |
|                     aadj = 1./FLT_RADIX;
 | |
|                 else
 | |
|                     aadj *= 0.5;
 | |
|                 aadj1 = -aadj;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             aadj *= 0.5;
 | |
|             aadj1 = dsign ? aadj : -aadj;
 | |
|             if (Flt_Rounds == 0)
 | |
|                 aadj1 += 0.5;
 | |
|         }
 | |
|         y = word0(&rv) & Exp_mask;
 | |
| 
 | |
|         /* Check for overflow */
 | |
| 
 | |
|         if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
 | |
|             dval(&rv0) = dval(&rv);
 | |
|             word0(&rv) -= P*Exp_msk1;
 | |
|             adj.d = aadj1 * ulp(&rv);
 | |
|             dval(&rv) += adj.d;
 | |
|             if ((word0(&rv) & Exp_mask) >=
 | |
|                 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
 | |
|                 if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
 | |
|                     Bfree(bb);
 | |
|                     Bfree(bd);
 | |
|                     Bfree(bs);
 | |
|                     Bfree(bd0);
 | |
|                     Bfree(delta);
 | |
|                     goto ovfl;
 | |
|                 }
 | |
|                 word0(&rv) = Big0;
 | |
|                 word1(&rv) = Big1;
 | |
|                 goto cont;
 | |
|             }
 | |
|             else
 | |
|                 word0(&rv) += P*Exp_msk1;
 | |
|         }
 | |
|         else {
 | |
|             if (bc.scale && y <= 2*P*Exp_msk1) {
 | |
|                 if (aadj <= 0x7fffffff) {
 | |
|                     if ((z = (ULong)aadj) <= 0)
 | |
|                         z = 1;
 | |
|                     aadj = z;
 | |
|                     aadj1 = dsign ? aadj : -aadj;
 | |
|                 }
 | |
|                 dval(&aadj2) = aadj1;
 | |
|                 word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
 | |
|                 aadj1 = dval(&aadj2);
 | |
|             }
 | |
|             adj.d = aadj1 * ulp(&rv);
 | |
|             dval(&rv) += adj.d;
 | |
|         }
 | |
|         z = word0(&rv) & Exp_mask;
 | |
|         if (bc.nd == nd) {
 | |
|             if (!bc.scale)
 | |
|                 if (y == z) {
 | |
|                     /* Can we stop now? */
 | |
|                     L = (Long)aadj;
 | |
|                     aadj -= L;
 | |
|                     /* The tolerances below are conservative. */
 | |
|                     if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
 | |
|                         if (aadj < .4999999 || aadj > .5000001)
 | |
|                             break;
 | |
|                     }
 | |
|                     else if (aadj < .4999999/FLT_RADIX)
 | |
|                         break;
 | |
|                 }
 | |
|         }
 | |
|       cont:
 | |
|         Bfree(bb);
 | |
|         Bfree(bd);
 | |
|         Bfree(bs);
 | |
|         Bfree(delta);
 | |
|     }
 | |
|     Bfree(bb);
 | |
|     Bfree(bd);
 | |
|     Bfree(bs);
 | |
|     Bfree(bd0);
 | |
|     Bfree(delta);
 | |
|     if (bc.nd > nd) {
 | |
|         error = bigcomp(&rv, s0, &bc);
 | |
|         if (error)
 | |
|             goto failed_malloc;
 | |
|     }
 | |
| 
 | |
|     if (bc.scale) {
 | |
|         word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
 | |
|         word1(&rv0) = 0;
 | |
|         dval(&rv) *= dval(&rv0);
 | |
|     }
 | |
| 
 | |
|   ret:
 | |
|     return sign ? -dval(&rv) : dval(&rv);
 | |
| 
 | |
|   parse_error:
 | |
|     return 0.0;
 | |
| 
 | |
|   failed_malloc:
 | |
|     errno = ENOMEM;
 | |
|     return -1.0;
 | |
| 
 | |
|   undfl:
 | |
|     return sign ? -0.0 : 0.0;
 | |
| 
 | |
|   ovfl:
 | |
|     errno = ERANGE;
 | |
|     /* Can't trust HUGE_VAL */
 | |
|     word0(&rv) = Exp_mask;
 | |
|     word1(&rv) = 0;
 | |
|     return sign ? -dval(&rv) : dval(&rv);
 | |
| 
 | |
| }
 | |
| 
 | |
| static char *
 | |
| rv_alloc(int i)
 | |
| {
 | |
|     int j, k, *r;
 | |
| 
 | |
|     j = sizeof(ULong);
 | |
|     for(k = 0;
 | |
|         sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
 | |
|         j <<= 1)
 | |
|         k++;
 | |
|     r = (int*)Balloc(k);
 | |
|     if (r == NULL)
 | |
|         return NULL;
 | |
|     *r = k;
 | |
|     return (char *)(r+1);
 | |
| }
 | |
| 
 | |
| static char *
 | |
| nrv_alloc(char *s, char **rve, int n)
 | |
| {
 | |
|     char *rv, *t;
 | |
| 
 | |
|     rv = rv_alloc(n);
 | |
|     if (rv == NULL)
 | |
|         return NULL;
 | |
|     t = rv;
 | |
|     while((*t = *s++)) t++;
 | |
|     if (rve)
 | |
|         *rve = t;
 | |
|     return rv;
 | |
| }
 | |
| 
 | |
| /* freedtoa(s) must be used to free values s returned by dtoa
 | |
|  * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
 | |
|  * but for consistency with earlier versions of dtoa, it is optional
 | |
|  * when MULTIPLE_THREADS is not defined.
 | |
|  */
 | |
| 
 | |
| void
 | |
| _Py_dg_freedtoa(char *s)
 | |
| {
 | |
|     Bigint *b = (Bigint *)((int *)s - 1);
 | |
|     b->maxwds = 1 << (b->k = *(int*)b);
 | |
|     Bfree(b);
 | |
| }
 | |
| 
 | |
| /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | |
|  *
 | |
|  * Inspired by "How to Print Floating-Point Numbers Accurately" by
 | |
|  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 | |
|  *
 | |
|  * Modifications:
 | |
|  *      1. Rather than iterating, we use a simple numeric overestimate
 | |
|  *         to determine k = floor(log10(d)).  We scale relevant
 | |
|  *         quantities using O(log2(k)) rather than O(k) multiplications.
 | |
|  *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | |
|  *         try to generate digits strictly left to right.  Instead, we
 | |
|  *         compute with fewer bits and propagate the carry if necessary
 | |
|  *         when rounding the final digit up.  This is often faster.
 | |
|  *      3. Under the assumption that input will be rounded nearest,
 | |
|  *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | |
|  *         That is, we allow equality in stopping tests when the
 | |
|  *         round-nearest rule will give the same floating-point value
 | |
|  *         as would satisfaction of the stopping test with strict
 | |
|  *         inequality.
 | |
|  *      4. We remove common factors of powers of 2 from relevant
 | |
|  *         quantities.
 | |
|  *      5. When converting floating-point integers less than 1e16,
 | |
|  *         we use floating-point arithmetic rather than resorting
 | |
|  *         to multiple-precision integers.
 | |
|  *      6. When asked to produce fewer than 15 digits, we first try
 | |
|  *         to get by with floating-point arithmetic; we resort to
 | |
|  *         multiple-precision integer arithmetic only if we cannot
 | |
|  *         guarantee that the floating-point calculation has given
 | |
|  *         the correctly rounded result.  For k requested digits and
 | |
|  *         "uniformly" distributed input, the probability is
 | |
|  *         something like 10^(k-15) that we must resort to the Long
 | |
|  *         calculation.
 | |
|  */
 | |
| 
 | |
| /* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
 | |
|    leakage, a successful call to _Py_dg_dtoa should always be matched by a
 | |
|    call to _Py_dg_freedtoa. */
 | |
| 
 | |
| char *
 | |
| _Py_dg_dtoa(double dd, int mode, int ndigits,
 | |
|             int *decpt, int *sign, char **rve)
 | |
| {
 | |
|     /*  Arguments ndigits, decpt, sign are similar to those
 | |
|         of ecvt and fcvt; trailing zeros are suppressed from
 | |
|         the returned string.  If not null, *rve is set to point
 | |
|         to the end of the return value.  If d is +-Infinity or NaN,
 | |
|         then *decpt is set to 9999.
 | |
| 
 | |
|         mode:
 | |
|         0 ==> shortest string that yields d when read in
 | |
|         and rounded to nearest.
 | |
|         1 ==> like 0, but with Steele & White stopping rule;
 | |
|         e.g. with IEEE P754 arithmetic , mode 0 gives
 | |
|         1e23 whereas mode 1 gives 9.999999999999999e22.
 | |
|         2 ==> max(1,ndigits) significant digits.  This gives a
 | |
|         return value similar to that of ecvt, except
 | |
|         that trailing zeros are suppressed.
 | |
|         3 ==> through ndigits past the decimal point.  This
 | |
|         gives a return value similar to that from fcvt,
 | |
|         except that trailing zeros are suppressed, and
 | |
|         ndigits can be negative.
 | |
|         4,5 ==> similar to 2 and 3, respectively, but (in
 | |
|         round-nearest mode) with the tests of mode 0 to
 | |
|         possibly return a shorter string that rounds to d.
 | |
|         With IEEE arithmetic and compilation with
 | |
|         -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
 | |
|         as modes 2 and 3 when FLT_ROUNDS != 1.
 | |
|         6-9 ==> Debugging modes similar to mode - 4:  don't try
 | |
|         fast floating-point estimate (if applicable).
 | |
| 
 | |
|         Values of mode other than 0-9 are treated as mode 0.
 | |
| 
 | |
|         Sufficient space is allocated to the return value
 | |
|         to hold the suppressed trailing zeros.
 | |
|     */
 | |
| 
 | |
|     int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
 | |
|         j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
 | |
|         spec_case, try_quick;
 | |
|     Long L;
 | |
|     int denorm;
 | |
|     ULong x;
 | |
|     Bigint *b, *b1, *delta, *mlo, *mhi, *S;
 | |
|     U d2, eps, u;
 | |
|     double ds;
 | |
|     char *s, *s0;
 | |
| 
 | |
|     /* set pointers to NULL, to silence gcc compiler warnings and make
 | |
|        cleanup easier on error */
 | |
|     mlo = mhi = S = 0;
 | |
|     s0 = 0;
 | |
| 
 | |
|     u.d = dd;
 | |
|     if (word0(&u) & Sign_bit) {
 | |
|         /* set sign for everything, including 0's and NaNs */
 | |
|         *sign = 1;
 | |
|         word0(&u) &= ~Sign_bit; /* clear sign bit */
 | |
|     }
 | |
|     else
 | |
|         *sign = 0;
 | |
| 
 | |
|     /* quick return for Infinities, NaNs and zeros */
 | |
|     if ((word0(&u) & Exp_mask) == Exp_mask)
 | |
|     {
 | |
|         /* Infinity or NaN */
 | |
|         *decpt = 9999;
 | |
|         if (!word1(&u) && !(word0(&u) & 0xfffff))
 | |
|             return nrv_alloc("Infinity", rve, 8);
 | |
|         return nrv_alloc("NaN", rve, 3);
 | |
|     }
 | |
|     if (!dval(&u)) {
 | |
|         *decpt = 1;
 | |
|         return nrv_alloc("0", rve, 1);
 | |
|     }
 | |
| 
 | |
|     /* compute k = floor(log10(d)).  The computation may leave k
 | |
|        one too large, but should never leave k too small. */
 | |
|     b = d2b(&u, &be, &bbits);
 | |
|     if (b == NULL)
 | |
|         goto failed_malloc;
 | |
|     if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
 | |
|         dval(&d2) = dval(&u);
 | |
|         word0(&d2) &= Frac_mask1;
 | |
|         word0(&d2) |= Exp_11;
 | |
| 
 | |
|         /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
 | |
|          * log10(x)      =  log(x) / log(10)
 | |
|          *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | |
|          * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
 | |
|          *
 | |
|          * This suggests computing an approximation k to log10(d) by
 | |
|          *
 | |
|          * k = (i - Bias)*0.301029995663981
 | |
|          *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | |
|          *
 | |
|          * We want k to be too large rather than too small.
 | |
|          * The error in the first-order Taylor series approximation
 | |
|          * is in our favor, so we just round up the constant enough
 | |
|          * to compensate for any error in the multiplication of
 | |
|          * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | |
|          * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | |
|          * adding 1e-13 to the constant term more than suffices.
 | |
|          * Hence we adjust the constant term to 0.1760912590558.
 | |
|          * (We could get a more accurate k by invoking log10,
 | |
|          *  but this is probably not worthwhile.)
 | |
|          */
 | |
| 
 | |
|         i -= Bias;
 | |
|         denorm = 0;
 | |
|     }
 | |
|     else {
 | |
|         /* d is denormalized */
 | |
| 
 | |
|         i = bbits + be + (Bias + (P-1) - 1);
 | |
|         x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
 | |
|             : word1(&u) << (32 - i);
 | |
|         dval(&d2) = x;
 | |
|         word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
 | |
|         i -= (Bias + (P-1) - 1) + 1;
 | |
|         denorm = 1;
 | |
|     }
 | |
|     ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
 | |
|         i*0.301029995663981;
 | |
|     k = (int)ds;
 | |
|     if (ds < 0. && ds != k)
 | |
|         k--;    /* want k = floor(ds) */
 | |
|     k_check = 1;
 | |
|     if (k >= 0 && k <= Ten_pmax) {
 | |
|         if (dval(&u) < tens[k])
 | |
|             k--;
 | |
|         k_check = 0;
 | |
|     }
 | |
|     j = bbits - i - 1;
 | |
|     if (j >= 0) {
 | |
|         b2 = 0;
 | |
|         s2 = j;
 | |
|     }
 | |
|     else {
 | |
|         b2 = -j;
 | |
|         s2 = 0;
 | |
|     }
 | |
|     if (k >= 0) {
 | |
|         b5 = 0;
 | |
|         s5 = k;
 | |
|         s2 += k;
 | |
|     }
 | |
|     else {
 | |
|         b2 -= k;
 | |
|         b5 = -k;
 | |
|         s5 = 0;
 | |
|     }
 | |
|     if (mode < 0 || mode > 9)
 | |
|         mode = 0;
 | |
| 
 | |
|     try_quick = 1;
 | |
| 
 | |
|     if (mode > 5) {
 | |
|         mode -= 4;
 | |
|         try_quick = 0;
 | |
|     }
 | |
|     leftright = 1;
 | |
|     ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
 | |
|     /* silence erroneous "gcc -Wall" warning. */
 | |
|     switch(mode) {
 | |
|     case 0:
 | |
|     case 1:
 | |
|         i = 18;
 | |
|         ndigits = 0;
 | |
|         break;
 | |
|     case 2:
 | |
|         leftright = 0;
 | |
|         /* no break */
 | |
|     case 4:
 | |
|         if (ndigits <= 0)
 | |
|             ndigits = 1;
 | |
|         ilim = ilim1 = i = ndigits;
 | |
|         break;
 | |
|     case 3:
 | |
|         leftright = 0;
 | |
|         /* no break */
 | |
|     case 5:
 | |
|         i = ndigits + k + 1;
 | |
|         ilim = i;
 | |
|         ilim1 = i - 1;
 | |
|         if (i <= 0)
 | |
|             i = 1;
 | |
|     }
 | |
|     s0 = rv_alloc(i);
 | |
|     if (s0 == NULL)
 | |
|         goto failed_malloc;
 | |
|     s = s0;
 | |
| 
 | |
| 
 | |
|     if (ilim >= 0 && ilim <= Quick_max && try_quick) {
 | |
| 
 | |
|         /* Try to get by with floating-point arithmetic. */
 | |
| 
 | |
|         i = 0;
 | |
|         dval(&d2) = dval(&u);
 | |
|         k0 = k;
 | |
|         ilim0 = ilim;
 | |
|         ieps = 2; /* conservative */
 | |
|         if (k > 0) {
 | |
|             ds = tens[k&0xf];
 | |
|             j = k >> 4;
 | |
|             if (j & Bletch) {
 | |
|                 /* prevent overflows */
 | |
|                 j &= Bletch - 1;
 | |
|                 dval(&u) /= bigtens[n_bigtens-1];
 | |
|                 ieps++;
 | |
|             }
 | |
|             for(; j; j >>= 1, i++)
 | |
|                 if (j & 1) {
 | |
|                     ieps++;
 | |
|                     ds *= bigtens[i];
 | |
|                 }
 | |
|             dval(&u) /= ds;
 | |
|         }
 | |
|         else if ((j1 = -k)) {
 | |
|             dval(&u) *= tens[j1 & 0xf];
 | |
|             for(j = j1 >> 4; j; j >>= 1, i++)
 | |
|                 if (j & 1) {
 | |
|                     ieps++;
 | |
|                     dval(&u) *= bigtens[i];
 | |
|                 }
 | |
|         }
 | |
|         if (k_check && dval(&u) < 1. && ilim > 0) {
 | |
|             if (ilim1 <= 0)
 | |
|                 goto fast_failed;
 | |
|             ilim = ilim1;
 | |
|             k--;
 | |
|             dval(&u) *= 10.;
 | |
|             ieps++;
 | |
|         }
 | |
|         dval(&eps) = ieps*dval(&u) + 7.;
 | |
|         word0(&eps) -= (P-1)*Exp_msk1;
 | |
|         if (ilim == 0) {
 | |
|             S = mhi = 0;
 | |
|             dval(&u) -= 5.;
 | |
|             if (dval(&u) > dval(&eps))
 | |
|                 goto one_digit;
 | |
|             if (dval(&u) < -dval(&eps))
 | |
|                 goto no_digits;
 | |
|             goto fast_failed;
 | |
|         }
 | |
|         if (leftright) {
 | |
|             /* Use Steele & White method of only
 | |
|              * generating digits needed.
 | |
|              */
 | |
|             dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
 | |
|             for(i = 0;;) {
 | |
|                 L = (Long)dval(&u);
 | |
|                 dval(&u) -= L;
 | |
|                 *s++ = '0' + (int)L;
 | |
|                 if (dval(&u) < dval(&eps))
 | |
|                     goto ret1;
 | |
|                 if (1. - dval(&u) < dval(&eps))
 | |
|                     goto bump_up;
 | |
|                 if (++i >= ilim)
 | |
|                     break;
 | |
|                 dval(&eps) *= 10.;
 | |
|                 dval(&u) *= 10.;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             /* Generate ilim digits, then fix them up. */
 | |
|             dval(&eps) *= tens[ilim-1];
 | |
|             for(i = 1;; i++, dval(&u) *= 10.) {
 | |
|                 L = (Long)(dval(&u));
 | |
|                 if (!(dval(&u) -= L))
 | |
|                     ilim = i;
 | |
|                 *s++ = '0' + (int)L;
 | |
|                 if (i == ilim) {
 | |
|                     if (dval(&u) > 0.5 + dval(&eps))
 | |
|                         goto bump_up;
 | |
|                     else if (dval(&u) < 0.5 - dval(&eps)) {
 | |
|                         while(*--s == '0');
 | |
|                         s++;
 | |
|                         goto ret1;
 | |
|                     }
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|       fast_failed:
 | |
|         s = s0;
 | |
|         dval(&u) = dval(&d2);
 | |
|         k = k0;
 | |
|         ilim = ilim0;
 | |
|     }
 | |
| 
 | |
|     /* Do we have a "small" integer? */
 | |
| 
 | |
|     if (be >= 0 && k <= Int_max) {
 | |
|         /* Yes. */
 | |
|         ds = tens[k];
 | |
|         if (ndigits < 0 && ilim <= 0) {
 | |
|             S = mhi = 0;
 | |
|             if (ilim < 0 || dval(&u) <= 5*ds)
 | |
|                 goto no_digits;
 | |
|             goto one_digit;
 | |
|         }
 | |
|         for(i = 1;; i++, dval(&u) *= 10.) {
 | |
|             L = (Long)(dval(&u) / ds);
 | |
|             dval(&u) -= L*ds;
 | |
|             *s++ = '0' + (int)L;
 | |
|             if (!dval(&u)) {
 | |
|                 break;
 | |
|             }
 | |
|             if (i == ilim) {
 | |
|                 dval(&u) += dval(&u);
 | |
|                 if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
 | |
|                   bump_up:
 | |
|                     while(*--s == '9')
 | |
|                         if (s == s0) {
 | |
|                             k++;
 | |
|                             *s = '0';
 | |
|                             break;
 | |
|                         }
 | |
|                     ++*s++;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         goto ret1;
 | |
|     }
 | |
| 
 | |
|     m2 = b2;
 | |
|     m5 = b5;
 | |
|     if (leftright) {
 | |
|         i =
 | |
|             denorm ? be + (Bias + (P-1) - 1 + 1) :
 | |
|             1 + P - bbits;
 | |
|         b2 += i;
 | |
|         s2 += i;
 | |
|         mhi = i2b(1);
 | |
|         if (mhi == NULL)
 | |
|             goto failed_malloc;
 | |
|     }
 | |
|     if (m2 > 0 && s2 > 0) {
 | |
|         i = m2 < s2 ? m2 : s2;
 | |
|         b2 -= i;
 | |
|         m2 -= i;
 | |
|         s2 -= i;
 | |
|     }
 | |
|     if (b5 > 0) {
 | |
|         if (leftright) {
 | |
|             if (m5 > 0) {
 | |
|                 mhi = pow5mult(mhi, m5);
 | |
|                 if (mhi == NULL)
 | |
|                     goto failed_malloc;
 | |
|                 b1 = mult(mhi, b);
 | |
|                 Bfree(b);
 | |
|                 b = b1;
 | |
|                 if (b == NULL)
 | |
|                     goto failed_malloc;
 | |
|             }
 | |
|             if ((j = b5 - m5)) {
 | |
|                 b = pow5mult(b, j);
 | |
|                 if (b == NULL)
 | |
|                     goto failed_malloc;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             b = pow5mult(b, b5);
 | |
|             if (b == NULL)
 | |
|                 goto failed_malloc;
 | |
|         }
 | |
|     }
 | |
|     S = i2b(1);
 | |
|     if (S == NULL)
 | |
|         goto failed_malloc;
 | |
|     if (s5 > 0) {
 | |
|         S = pow5mult(S, s5);
 | |
|         if (S == NULL)
 | |
|             goto failed_malloc;
 | |
|     }
 | |
| 
 | |
|     /* Check for special case that d is a normalized power of 2. */
 | |
| 
 | |
|     spec_case = 0;
 | |
|     if ((mode < 2 || leftright)
 | |
|         ) {
 | |
|         if (!word1(&u) && !(word0(&u) & Bndry_mask)
 | |
|             && word0(&u) & (Exp_mask & ~Exp_msk1)
 | |
|             ) {
 | |
|             /* The special case */
 | |
|             b2 += Log2P;
 | |
|             s2 += Log2P;
 | |
|             spec_case = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Arrange for convenient computation of quotients:
 | |
|      * shift left if necessary so divisor has 4 leading 0 bits.
 | |
|      *
 | |
|      * Perhaps we should just compute leading 28 bits of S once
 | |
|      * and for all and pass them and a shift to quorem, so it
 | |
|      * can do shifts and ors to compute the numerator for q.
 | |
|      */
 | |
| #define iInc 28
 | |
|     i = dshift(S, s2);
 | |
|     b2 += i;
 | |
|     m2 += i;
 | |
|     s2 += i;
 | |
|     if (b2 > 0) {
 | |
|         b = lshift(b, b2);
 | |
|         if (b == NULL)
 | |
|             goto failed_malloc;
 | |
|     }
 | |
|     if (s2 > 0) {
 | |
|         S = lshift(S, s2);
 | |
|         if (S == NULL)
 | |
|             goto failed_malloc;
 | |
|     }
 | |
|     if (k_check) {
 | |
|         if (cmp(b,S) < 0) {
 | |
|             k--;
 | |
|             b = multadd(b, 10, 0);      /* we botched the k estimate */
 | |
|             if (b == NULL)
 | |
|                 goto failed_malloc;
 | |
|             if (leftright) {
 | |
|                 mhi = multadd(mhi, 10, 0);
 | |
|                 if (mhi == NULL)
 | |
|                     goto failed_malloc;
 | |
|             }
 | |
|             ilim = ilim1;
 | |
|         }
 | |
|     }
 | |
|     if (ilim <= 0 && (mode == 3 || mode == 5)) {
 | |
|         if (ilim < 0) {
 | |
|             /* no digits, fcvt style */
 | |
|           no_digits:
 | |
|             k = -1 - ndigits;
 | |
|             goto ret;
 | |
|         }
 | |
|         else {
 | |
|             S = multadd(S, 5, 0);
 | |
|             if (S == NULL)
 | |
|                 goto failed_malloc;
 | |
|             if (cmp(b, S) <= 0)
 | |
|                 goto no_digits;
 | |
|         }
 | |
|       one_digit:
 | |
|         *s++ = '1';
 | |
|         k++;
 | |
|         goto ret;
 | |
|     }
 | |
|     if (leftright) {
 | |
|         if (m2 > 0) {
 | |
|             mhi = lshift(mhi, m2);
 | |
|             if (mhi == NULL)
 | |
|                 goto failed_malloc;
 | |
|         }
 | |
| 
 | |
|         /* Compute mlo -- check for special case
 | |
|          * that d is a normalized power of 2.
 | |
|          */
 | |
| 
 | |
|         mlo = mhi;
 | |
|         if (spec_case) {
 | |
|             mhi = Balloc(mhi->k);
 | |
|             if (mhi == NULL)
 | |
|                 goto failed_malloc;
 | |
|             Bcopy(mhi, mlo);
 | |
|             mhi = lshift(mhi, Log2P);
 | |
|             if (mhi == NULL)
 | |
|                 goto failed_malloc;
 | |
|         }
 | |
| 
 | |
|         for(i = 1;;i++) {
 | |
|             dig = quorem(b,S) + '0';
 | |
|             /* Do we yet have the shortest decimal string
 | |
|              * that will round to d?
 | |
|              */
 | |
|             j = cmp(b, mlo);
 | |
|             delta = diff(S, mhi);
 | |
|             if (delta == NULL)
 | |
|                 goto failed_malloc;
 | |
|             j1 = delta->sign ? 1 : cmp(b, delta);
 | |
|             Bfree(delta);
 | |
|             if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
 | |
|                 ) {
 | |
|                 if (dig == '9')
 | |
|                     goto round_9_up;
 | |
|                 if (j > 0)
 | |
|                     dig++;
 | |
|                 *s++ = dig;
 | |
|                 goto ret;
 | |
|             }
 | |
|             if (j < 0 || (j == 0 && mode != 1
 | |
|                           && !(word1(&u) & 1)
 | |
|                     )) {
 | |
|                 if (!b->x[0] && b->wds <= 1) {
 | |
|                     goto accept_dig;
 | |
|                 }
 | |
|                 if (j1 > 0) {
 | |
|                     b = lshift(b, 1);
 | |
|                     if (b == NULL)
 | |
|                         goto failed_malloc;
 | |
|                     j1 = cmp(b, S);
 | |
|                     if ((j1 > 0 || (j1 == 0 && dig & 1))
 | |
|                         && dig++ == '9')
 | |
|                         goto round_9_up;
 | |
|                 }
 | |
|               accept_dig:
 | |
|                 *s++ = dig;
 | |
|                 goto ret;
 | |
|             }
 | |
|             if (j1 > 0) {
 | |
|                 if (dig == '9') { /* possible if i == 1 */
 | |
|                   round_9_up:
 | |
|                     *s++ = '9';
 | |
|                     goto roundoff;
 | |
|                 }
 | |
|                 *s++ = dig + 1;
 | |
|                 goto ret;
 | |
|             }
 | |
|             *s++ = dig;
 | |
|             if (i == ilim)
 | |
|                 break;
 | |
|             b = multadd(b, 10, 0);
 | |
|             if (b == NULL)
 | |
|                 goto failed_malloc;
 | |
|             if (mlo == mhi) {
 | |
|                 mlo = mhi = multadd(mhi, 10, 0);
 | |
|                 if (mlo == NULL)
 | |
|                     goto failed_malloc;
 | |
|             }
 | |
|             else {
 | |
|                 mlo = multadd(mlo, 10, 0);
 | |
|                 if (mlo == NULL)
 | |
|                     goto failed_malloc;
 | |
|                 mhi = multadd(mhi, 10, 0);
 | |
|                 if (mhi == NULL)
 | |
|                     goto failed_malloc;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|         for(i = 1;; i++) {
 | |
|             *s++ = dig = quorem(b,S) + '0';
 | |
|             if (!b->x[0] && b->wds <= 1) {
 | |
|                 goto ret;
 | |
|             }
 | |
|             if (i >= ilim)
 | |
|                 break;
 | |
|             b = multadd(b, 10, 0);
 | |
|             if (b == NULL)
 | |
|                 goto failed_malloc;
 | |
|         }
 | |
| 
 | |
|     /* Round off last digit */
 | |
| 
 | |
|     b = lshift(b, 1);
 | |
|     if (b == NULL)
 | |
|         goto failed_malloc;
 | |
|     j = cmp(b, S);
 | |
|     if (j > 0 || (j == 0 && dig & 1)) {
 | |
|       roundoff:
 | |
|         while(*--s == '9')
 | |
|             if (s == s0) {
 | |
|                 k++;
 | |
|                 *s++ = '1';
 | |
|                 goto ret;
 | |
|             }
 | |
|         ++*s++;
 | |
|     }
 | |
|     else {
 | |
|         while(*--s == '0');
 | |
|         s++;
 | |
|     }
 | |
|   ret:
 | |
|     Bfree(S);
 | |
|     if (mhi) {
 | |
|         if (mlo && mlo != mhi)
 | |
|             Bfree(mlo);
 | |
|         Bfree(mhi);
 | |
|     }
 | |
|   ret1:
 | |
|     Bfree(b);
 | |
|     *s = 0;
 | |
|     *decpt = k + 1;
 | |
|     if (rve)
 | |
|         *rve = s;
 | |
|     return s0;
 | |
|   failed_malloc:
 | |
|     if (S)
 | |
|         Bfree(S);
 | |
|     if (mlo && mlo != mhi)
 | |
|         Bfree(mlo);
 | |
|     if (mhi)
 | |
|         Bfree(mhi);
 | |
|     if (b)
 | |
|         Bfree(b);
 | |
|     if (s0)
 | |
|         _Py_dg_freedtoa(s0);
 | |
|     return NULL;
 | |
| }
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif  /* PY_NO_SHORT_FLOAT_REPR */
 | 
