mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	 3aa23fdd47
			
		
	
	
		3aa23fdd47
		
	
	
	
	
		
			
			ints. (In theory, other variables should be widened to long as well, but this won't ever be needed, since the len of a list is still an int.)
		
			
				
	
	
		
			1515 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1515 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /***********************************************************
 | |
| Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam,
 | |
| The Netherlands.
 | |
| 
 | |
|                         All Rights Reserved
 | |
| 
 | |
| Permission to use, copy, modify, and distribute this software and its
 | |
| documentation for any purpose and without fee is hereby granted,
 | |
| provided that the above copyright notice appear in all copies and that
 | |
| both that copyright notice and this permission notice appear in
 | |
| supporting documentation, and that the names of Stichting Mathematisch
 | |
| Centrum or CWI or Corporation for National Research Initiatives or
 | |
| CNRI not be used in advertising or publicity pertaining to
 | |
| distribution of the software without specific, written prior
 | |
| permission.
 | |
| 
 | |
| While CWI is the initial source for this software, a modified version
 | |
| is made available by the Corporation for National Research Initiatives
 | |
| (CNRI) at the Internet address ftp://ftp.python.org.
 | |
| 
 | |
| STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
 | |
| REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
 | |
| MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
 | |
| CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
 | |
| DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
 | |
| PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
 | |
| TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 | |
| PERFORMANCE OF THIS SOFTWARE.
 | |
| 
 | |
| ******************************************************************/
 | |
| 
 | |
| /* List object implementation */
 | |
| 
 | |
| #include "Python.h"
 | |
| 
 | |
| #ifdef STDC_HEADERS
 | |
| #include <stddef.h>
 | |
| #else
 | |
| #include <sys/types.h>		/* For size_t */
 | |
| #endif
 | |
| 
 | |
| #define ROUNDUP(n, PyTryBlock) \
 | |
| 	((((n)+(PyTryBlock)-1)/(PyTryBlock))*(PyTryBlock))
 | |
| 
 | |
| static int
 | |
| roundupsize(n)
 | |
| 	int n;
 | |
| {
 | |
| 	if (n < 500)
 | |
| 		return ROUNDUP(n, 10);
 | |
| 	else
 | |
| 		return ROUNDUP(n, 100);
 | |
| }
 | |
| 
 | |
| #define NRESIZE(var, type, nitems) PyMem_RESIZE(var, type, roundupsize(nitems))
 | |
| 
 | |
| PyObject *
 | |
| PyList_New(size)
 | |
| 	int size;
 | |
| {
 | |
| 	int i;
 | |
| 	PyListObject *op;
 | |
| 	size_t nbytes;
 | |
| 	if (size < 0) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	nbytes = size * sizeof(PyObject *);
 | |
| 	/* Check for overflow */
 | |
| 	if (nbytes / sizeof(PyObject *) != (size_t)size) {
 | |
| 		return PyErr_NoMemory();
 | |
| 	}
 | |
| 	op = (PyListObject *) malloc(sizeof(PyListObject));
 | |
| 	if (op == NULL) {
 | |
| 		return PyErr_NoMemory();
 | |
| 	}
 | |
| 	if (size <= 0) {
 | |
| 		op->ob_item = NULL;
 | |
| 	}
 | |
| 	else {
 | |
| 		op->ob_item = (PyObject **) malloc(nbytes);
 | |
| 		if (op->ob_item == NULL) {
 | |
| 			free((ANY *)op);
 | |
| 			return PyErr_NoMemory();
 | |
| 		}
 | |
| 	}
 | |
| 	op->ob_type = &PyList_Type;
 | |
| 	op->ob_size = size;
 | |
| 	for (i = 0; i < size; i++)
 | |
| 		op->ob_item[i] = NULL;
 | |
| 	_Py_NewReference(op);
 | |
| 	return (PyObject *) op;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_Size(op)
 | |
| 	PyObject *op;
 | |
| {
 | |
| 	if (!PyList_Check(op)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	else
 | |
| 		return ((PyListObject *)op) -> ob_size;
 | |
| }
 | |
| 
 | |
| static PyObject *indexerr;
 | |
| 
 | |
| PyObject *
 | |
| PyList_GetItem(op, i)
 | |
| 	PyObject *op;
 | |
| 	int i;
 | |
| {
 | |
| 	if (!PyList_Check(op)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
 | |
| 		if (indexerr == NULL)
 | |
| 			indexerr = PyString_FromString(
 | |
| 				"list index out of range");
 | |
| 		PyErr_SetObject(PyExc_IndexError, indexerr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return ((PyListObject *)op) -> ob_item[i];
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_SetItem(op, i, newitem)
 | |
| 	register PyObject *op;
 | |
| 	register int i;
 | |
| 	register PyObject *newitem;
 | |
| {
 | |
| 	register PyObject *olditem;
 | |
| 	register PyObject **p;
 | |
| 	if (!PyList_Check(op)) {
 | |
| 		Py_XDECREF(newitem);
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
 | |
| 		Py_XDECREF(newitem);
 | |
| 		PyErr_SetString(PyExc_IndexError,
 | |
| 				"list assignment index out of range");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	p = ((PyListObject *)op) -> ob_item + i;
 | |
| 	olditem = *p;
 | |
| 	*p = newitem;
 | |
| 	Py_XDECREF(olditem);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ins1(self, where, v)
 | |
| 	PyListObject *self;
 | |
| 	int where;
 | |
| 	PyObject *v;
 | |
| {
 | |
| 	int i;
 | |
| 	PyObject **items;
 | |
| 	if (v == NULL) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	items = self->ob_item;
 | |
| 	NRESIZE(items, PyObject *, self->ob_size+1);
 | |
| 	if (items == NULL) {
 | |
| 		PyErr_NoMemory();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (where < 0)
 | |
| 		where = 0;
 | |
| 	if (where > self->ob_size)
 | |
| 		where = self->ob_size;
 | |
| 	for (i = self->ob_size; --i >= where; )
 | |
| 		items[i+1] = items[i];
 | |
| 	Py_INCREF(v);
 | |
| 	items[where] = v;
 | |
| 	self->ob_item = items;
 | |
| 	self->ob_size++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_Insert(op, where, newitem)
 | |
| 	PyObject *op;
 | |
| 	int where;
 | |
| 	PyObject *newitem;
 | |
| {
 | |
| 	if (!PyList_Check(op)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return ins1((PyListObject *)op, where, newitem);
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_Append(op, newitem)
 | |
| 	PyObject *op;
 | |
| 	PyObject *newitem;
 | |
| {
 | |
| 	if (!PyList_Check(op)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return ins1((PyListObject *)op,
 | |
| 		(int) ((PyListObject *)op)->ob_size, newitem);
 | |
| }
 | |
| 
 | |
| /* Methods */
 | |
| 
 | |
| static void
 | |
| list_dealloc(op)
 | |
| 	PyListObject *op;
 | |
| {
 | |
| 	int i;
 | |
| 	if (op->ob_item != NULL) {
 | |
| 		for (i = 0; i < op->ob_size; i++) {
 | |
| 			Py_XDECREF(op->ob_item[i]);
 | |
| 		}
 | |
| 		free((ANY *)op->ob_item);
 | |
| 	}
 | |
| 	free((ANY *)op);
 | |
| }
 | |
| 
 | |
| static int
 | |
| list_print(op, fp, flags)
 | |
| 	PyListObject *op;
 | |
| 	FILE *fp;
 | |
| 	int flags;
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	i = Py_ReprEnter((PyObject*)op);
 | |
| 	if (i != 0) {
 | |
| 		if (i < 0)
 | |
| 			return i;
 | |
| 		fprintf(fp, "[...]");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	fprintf(fp, "[");
 | |
| 	for (i = 0; i < op->ob_size; i++) {
 | |
| 		if (i > 0)
 | |
| 			fprintf(fp, ", ");
 | |
| 		if (PyObject_Print(op->ob_item[i], fp, 0) != 0) {
 | |
| 			Py_ReprLeave((PyObject *)op);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	fprintf(fp, "]");
 | |
| 	Py_ReprLeave((PyObject *)op);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_repr(v)
 | |
| 	PyListObject *v;
 | |
| {
 | |
| 	PyObject *s, *comma;
 | |
| 	int i;
 | |
| 
 | |
| 	i = Py_ReprEnter((PyObject*)v);
 | |
| 	if (i != 0) {
 | |
| 		if (i > 0)
 | |
| 			return PyString_FromString("[...]");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	s = PyString_FromString("[");
 | |
| 	comma = PyString_FromString(", ");
 | |
| 	for (i = 0; i < v->ob_size && s != NULL; i++) {
 | |
| 		if (i > 0)
 | |
| 			PyString_Concat(&s, comma);
 | |
| 		PyString_ConcatAndDel(&s, PyObject_Repr(v->ob_item[i]));
 | |
| 	}
 | |
| 	Py_XDECREF(comma);
 | |
| 	PyString_ConcatAndDel(&s, PyString_FromString("]"));
 | |
| 	Py_ReprLeave((PyObject *)v);
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| static int
 | |
| list_compare(v, w)
 | |
| 	PyListObject *v, *w;
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < v->ob_size && i < w->ob_size; i++) {
 | |
| 		int cmp = PyObject_Compare(v->ob_item[i], w->ob_item[i]);
 | |
| 		if (cmp != 0)
 | |
| 			return cmp;
 | |
| 	}
 | |
| 	return v->ob_size - w->ob_size;
 | |
| }
 | |
| 
 | |
| static int
 | |
| list_length(a)
 | |
| 	PyListObject *a;
 | |
| {
 | |
| 	return a->ob_size;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_item(a, i)
 | |
| 	PyListObject *a;
 | |
| 	int i;
 | |
| {
 | |
| 	if (i < 0 || i >= a->ob_size) {
 | |
| 		if (indexerr == NULL)
 | |
| 			indexerr = PyString_FromString(
 | |
| 				"list index out of range");
 | |
| 		PyErr_SetObject(PyExc_IndexError, indexerr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	Py_INCREF(a->ob_item[i]);
 | |
| 	return a->ob_item[i];
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_slice(a, ilow, ihigh)
 | |
| 	PyListObject *a;
 | |
| 	int ilow, ihigh;
 | |
| {
 | |
| 	PyListObject *np;
 | |
| 	int i;
 | |
| 	if (ilow < 0)
 | |
| 		ilow = 0;
 | |
| 	else if (ilow > a->ob_size)
 | |
| 		ilow = a->ob_size;
 | |
| 	if (ihigh < ilow)
 | |
| 		ihigh = ilow;
 | |
| 	else if (ihigh > a->ob_size)
 | |
| 		ihigh = a->ob_size;
 | |
| 	np = (PyListObject *) PyList_New(ihigh - ilow);
 | |
| 	if (np == NULL)
 | |
| 		return NULL;
 | |
| 	for (i = ilow; i < ihigh; i++) {
 | |
| 		PyObject *v = a->ob_item[i];
 | |
| 		Py_INCREF(v);
 | |
| 		np->ob_item[i - ilow] = v;
 | |
| 	}
 | |
| 	return (PyObject *)np;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyList_GetSlice(a, ilow, ihigh)
 | |
| 	PyObject *a;
 | |
| 	int ilow, ihigh;
 | |
| {
 | |
| 	if (!PyList_Check(a)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return list_slice((PyListObject *)a, ilow, ihigh);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_concat(a, bb)
 | |
| 	PyListObject *a;
 | |
| 	PyObject *bb;
 | |
| {
 | |
| 	int size;
 | |
| 	int i;
 | |
| 	PyListObject *np;
 | |
| 	if (!PyList_Check(bb)) {
 | |
| 		PyErr_BadArgument();
 | |
| 		return NULL;
 | |
| 	}
 | |
| #define b ((PyListObject *)bb)
 | |
| 	size = a->ob_size + b->ob_size;
 | |
| 	np = (PyListObject *) PyList_New(size);
 | |
| 	if (np == NULL) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	for (i = 0; i < a->ob_size; i++) {
 | |
| 		PyObject *v = a->ob_item[i];
 | |
| 		Py_INCREF(v);
 | |
| 		np->ob_item[i] = v;
 | |
| 	}
 | |
| 	for (i = 0; i < b->ob_size; i++) {
 | |
| 		PyObject *v = b->ob_item[i];
 | |
| 		Py_INCREF(v);
 | |
| 		np->ob_item[i + a->ob_size] = v;
 | |
| 	}
 | |
| 	return (PyObject *)np;
 | |
| #undef b
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| list_repeat(a, n)
 | |
| 	PyListObject *a;
 | |
| 	int n;
 | |
| {
 | |
| 	int i, j;
 | |
| 	int size;
 | |
| 	PyListObject *np;
 | |
| 	PyObject **p;
 | |
| 	if (n < 0)
 | |
| 		n = 0;
 | |
| 	size = a->ob_size * n;
 | |
| 	np = (PyListObject *) PyList_New(size);
 | |
| 	if (np == NULL)
 | |
| 		return NULL;
 | |
| 	p = np->ob_item;
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		for (j = 0; j < a->ob_size; j++) {
 | |
| 			*p = a->ob_item[j];
 | |
| 			Py_INCREF(*p);
 | |
| 			p++;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *) np;
 | |
| }
 | |
| 
 | |
| static int
 | |
| list_ass_slice(a, ilow, ihigh, v)
 | |
| 	PyListObject *a;
 | |
| 	int ilow, ihigh;
 | |
| 	PyObject *v;
 | |
| {
 | |
| 	/* Because [X]DECREF can recursively invoke list operations on
 | |
| 	   this list, we must postpone all [X]DECREF activity until
 | |
| 	   after the list is back in its canonical shape.  Therefore
 | |
| 	   we must allocate an additional array, 'recycle', into which
 | |
| 	   we temporarily copy the items that are deleted from the
 | |
| 	   list. :-( */
 | |
| 	PyObject **recycle, **p;
 | |
| 	PyObject **item;
 | |
| 	int n; /* Size of replacement list */
 | |
| 	int d; /* Change in size */
 | |
| 	int k; /* Loop index */
 | |
| #define b ((PyListObject *)v)
 | |
| 	if (v == NULL)
 | |
| 		n = 0;
 | |
| 	else if (PyList_Check(v)) {
 | |
| 		n = b->ob_size;
 | |
| 		if (a == b) {
 | |
| 			/* Special case "a[i:j] = a" -- copy b first */
 | |
| 			int ret;
 | |
| 			v = list_slice(b, 0, n);
 | |
| 			ret = list_ass_slice(a, ilow, ihigh, v);
 | |
| 			Py_DECREF(v);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_BadArgument();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (ilow < 0)
 | |
| 		ilow = 0;
 | |
| 	else if (ilow > a->ob_size)
 | |
| 		ilow = a->ob_size;
 | |
| 	if (ihigh < ilow)
 | |
| 		ihigh = ilow;
 | |
| 	else if (ihigh > a->ob_size)
 | |
| 		ihigh = a->ob_size;
 | |
| 	item = a->ob_item;
 | |
| 	d = n - (ihigh-ilow);
 | |
| 	if (ihigh > ilow)
 | |
| 		p = recycle = PyMem_NEW(PyObject *, (ihigh-ilow));
 | |
| 	else
 | |
| 		p = recycle = NULL;
 | |
| 	if (d <= 0) { /* Delete -d items; recycle ihigh-ilow items */
 | |
| 		for (k = ilow; k < ihigh; k++)
 | |
| 			*p++ = item[k];
 | |
| 		if (d < 0) {
 | |
| 			for (/*k = ihigh*/; k < a->ob_size; k++)
 | |
| 				item[k+d] = item[k];
 | |
| 			a->ob_size += d;
 | |
| 			NRESIZE(item, PyObject *, a->ob_size); /* Can't fail */
 | |
| 			a->ob_item = item;
 | |
| 		}
 | |
| 	}
 | |
| 	else { /* Insert d items; recycle ihigh-ilow items */
 | |
| 		NRESIZE(item, PyObject *, a->ob_size + d);
 | |
| 		if (item == NULL) {
 | |
| 			PyMem_XDEL(recycle);
 | |
| 			PyErr_NoMemory();
 | |
| 			return -1;
 | |
| 		}
 | |
| 		for (k = a->ob_size; --k >= ihigh; )
 | |
| 			item[k+d] = item[k];
 | |
| 		for (/*k = ihigh-1*/; k >= ilow; --k)
 | |
| 			*p++ = item[k];
 | |
| 		a->ob_item = item;
 | |
| 		a->ob_size += d;
 | |
| 	}
 | |
| 	for (k = 0; k < n; k++, ilow++) {
 | |
| 		PyObject *w = b->ob_item[k];
 | |
| 		Py_XINCREF(w);
 | |
| 		item[ilow] = w;
 | |
| 	}
 | |
| 	if (recycle) {
 | |
| 		while (--p >= recycle)
 | |
| 			Py_XDECREF(*p);
 | |
| 		PyMem_DEL(recycle);
 | |
| 	}
 | |
| 	return 0;
 | |
| #undef b
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_SetSlice(a, ilow, ihigh, v)
 | |
| 	PyObject *a;
 | |
| 	int ilow, ihigh;
 | |
| 	PyObject *v;
 | |
| {
 | |
| 	if (!PyList_Check(a)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
 | |
| }
 | |
| 
 | |
| static int
 | |
| list_ass_item(a, i, v)
 | |
| 	PyListObject *a;
 | |
| 	int i;
 | |
| 	PyObject *v;
 | |
| {
 | |
| 	PyObject *old_value;
 | |
| 	if (i < 0 || i >= a->ob_size) {
 | |
| 		PyErr_SetString(PyExc_IndexError,
 | |
| 				"list assignment index out of range");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (v == NULL)
 | |
| 		return list_ass_slice(a, i, i+1, v);
 | |
| 	Py_INCREF(v);
 | |
| 	old_value = a->ob_item[i];
 | |
| 	a->ob_item[i] = v;
 | |
| 	Py_DECREF(old_value); 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| ins(self, where, v)
 | |
| 	PyListObject *self;
 | |
| 	int where;
 | |
| 	PyObject *v;
 | |
| {
 | |
| 	if (ins1(self, where, v) != 0)
 | |
| 		return NULL;
 | |
| 	Py_INCREF(Py_None);
 | |
| 	return Py_None;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listinsert(self, args)
 | |
| 	PyListObject *self;
 | |
| 	PyObject *args;
 | |
| {
 | |
| 	int i;
 | |
| 	PyObject *v;
 | |
| 	if (!PyArg_Parse(args, "(iO)", &i, &v))
 | |
| 		return NULL;
 | |
| 	return ins(self, i, v);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listappend(self, args)
 | |
| 	PyListObject *self;
 | |
| 	PyObject *args;
 | |
| {
 | |
| 	PyObject *v;
 | |
| 	if (!PyArg_Parse(args, "O", &v))
 | |
| 		return NULL;
 | |
| 	return ins(self, (int) self->ob_size, v);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listextend(self, args)
 | |
| 	PyListObject *self;
 | |
| 	PyObject *args;
 | |
| {
 | |
| 	PyObject *b = NULL, *res = NULL;
 | |
| 	PyObject **items;
 | |
| 	int selflen = PyList_GET_SIZE(self);
 | |
| 	int blen;
 | |
| 	register int i;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O", &b))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!PyList_Check(b)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"list.extend() argument must be a list");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (PyList_GET_SIZE(b) == 0) {
 | |
| 		/* short circuit when b is empty */
 | |
| 		Py_INCREF(Py_None);
 | |
| 		return Py_None;
 | |
| 	}
 | |
| 	if (self == (PyListObject*)b) {
 | |
| 		/* as in list_ass_slice() we must special case the
 | |
| 		 * situation: a.extend(a)
 | |
| 		 *
 | |
| 		 * XXX: I think this way ought to be faster than using
 | |
| 		 * list_slice() the way list_ass_slice() does.
 | |
| 		 */
 | |
| 		b = PyList_New(selflen);
 | |
| 		if (!b)
 | |
| 			return NULL;
 | |
| 		for (i = 0; i < selflen; i++) {
 | |
| 			PyObject *o = PyList_GET_ITEM(self, i);
 | |
| 			Py_INCREF(o);
 | |
| 			PyList_SET_ITEM(b, i, o);
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 		/* we want b to have the same refcount semantics for the
 | |
| 		 * Py_XDECREF() in the finally clause regardless of which
 | |
| 		 * branch in the above conditional we took.
 | |
| 		 */
 | |
| 		Py_INCREF(b);
 | |
| 
 | |
| 	blen = PyList_GET_SIZE(b);
 | |
| 	/* resize a using idiom */
 | |
| 	items = self->ob_item;
 | |
| 	NRESIZE(items, PyObject*, selflen + blen);
 | |
| 	if (items == NULL ) {
 | |
| 		PyErr_NoMemory();
 | |
| 		goto finally;
 | |
| 	}
 | |
| 	self->ob_item = items;
 | |
| 
 | |
| 	/* populate the end self with b's items */
 | |
| 	for (i = 0; i < blen; i++) {
 | |
| 		PyObject *o = PyList_GET_ITEM(b, i);
 | |
| 		Py_INCREF(o);
 | |
| 		PyList_SET_ITEM(self, self->ob_size++, o);
 | |
| 	}
 | |
| 	res = Py_None;
 | |
| 	Py_INCREF(res);
 | |
|   finally:
 | |
| 	Py_XDECREF(b);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *
 | |
| listpop(self, args)
 | |
| 	PyListObject *self;
 | |
| 	PyObject *args;
 | |
| {
 | |
| 	int i = -1;
 | |
| 	PyObject *v;
 | |
| 	if (!PyArg_ParseTuple(args, "|i", &i))
 | |
| 		return NULL;
 | |
| 	if (self->ob_size == 0) {
 | |
| 		/* Special-case most common failure cause */
 | |
| 		PyErr_SetString(PyExc_IndexError, "pop from empty list");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (i < 0)
 | |
| 		i += self->ob_size;
 | |
| 	if (i < 0 || i >= self->ob_size) {
 | |
| 		PyErr_SetString(PyExc_IndexError, "pop index out of range");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	v = self->ob_item[i];
 | |
| 	Py_INCREF(v);
 | |
| 	if (list_ass_slice(self, i, i+1, (PyObject *)NULL) != 0) {
 | |
| 		Py_DECREF(v);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /* New quicksort implementation for arrays of object pointers.
 | |
|    Thanks to discussions with Tim Peters. */
 | |
| 
 | |
| /* CMPERROR is returned by our comparison function when an error
 | |
|    occurred.  This is the largest negative integer (0x80000000 on a
 | |
|    32-bit system). */
 | |
| #define CMPERROR ( (int) ((unsigned int)1 << (8*sizeof(int) - 1)) )
 | |
| 
 | |
| /* Comparison function.  Takes care of calling a user-supplied
 | |
|    comparison function (any callable Python object).  Calls the
 | |
|    standard comparison function, PyObject_Compare(), if the user-
 | |
|    supplied function is NULL. */
 | |
| 
 | |
| static int
 | |
| docompare(x, y, compare)
 | |
| 	PyObject *x;
 | |
| 	PyObject *y;
 | |
| 	PyObject *compare;
 | |
| {
 | |
| 	PyObject *args, *res;
 | |
| 	int i;
 | |
| 
 | |
| 	if (compare == NULL) {
 | |
| 		i = PyObject_Compare(x, y);
 | |
| 		if (i && PyErr_Occurred())
 | |
| 			i = CMPERROR;
 | |
| 		return i;
 | |
| 	}
 | |
| 
 | |
| 	args = Py_BuildValue("(OO)", x, y);
 | |
| 	if (args == NULL)
 | |
| 		return CMPERROR;
 | |
| 	res = PyEval_CallObject(compare, args);
 | |
| 	Py_DECREF(args);
 | |
| 	if (res == NULL)
 | |
| 		return CMPERROR;
 | |
| 	if (!PyInt_Check(res)) {
 | |
| 		Py_DECREF(res);
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 				"comparison function should return int");
 | |
| 		return CMPERROR;
 | |
| 	}
 | |
| 	i = PyInt_AsLong(res);
 | |
| 	Py_DECREF(res);
 | |
| 	if (i < 0)
 | |
| 		return -1;
 | |
| 	if (i > 0)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* MINSIZE is the smallest array that will get a full-blown samplesort
 | |
|    treatment; smaller arrays are sorted using binary insertion.  It must
 | |
|    be at least 7 for the samplesort implementation to work.  Binary
 | |
|    insertion does fewer compares, but can suffer O(N**2) data movement.
 | |
|    The more expensive compares, the larger MINSIZE should be. */
 | |
| #define MINSIZE 100
 | |
| 
 | |
| /* MINPARTITIONSIZE is the smallest array slice samplesort will bother to
 | |
|    partition; smaller slices are passed to binarysort.  It must be at
 | |
|    least 2, and no larger than MINSIZE.  Setting it higher reduces the #
 | |
|    of compares slowly, but increases the amount of data movement quickly.
 | |
|    The value here was chosen assuming a compare costs ~25x more than
 | |
|    swapping a pair of memory-resident pointers -- but under that assumption,
 | |
|    changing the value by a few dozen more or less has aggregate effect
 | |
|    under 1%.  So the value is crucial, but not touchy <wink>. */
 | |
| #define MINPARTITIONSIZE 40
 | |
| 
 | |
| /* MAXMERGE is the largest number of elements we'll always merge into
 | |
|    a known-to-be sorted chunk via binary insertion, regardless of the
 | |
|    size of that chunk.  Given a chunk of N sorted elements, and a group
 | |
|    of K unknowns, the largest K for which it's better to do insertion
 | |
|    (than a full-blown sort) is a complicated function of N and K mostly
 | |
|    involving the expected number of compares and data moves under each
 | |
|    approach, and the relative cost of those operations on a specific
 | |
|    architecure.  The fixed value here is conservative, and should be a
 | |
|    clear win regardless of architecture or N. */
 | |
| #define MAXMERGE 15
 | |
| 
 | |
| /* STACKSIZE is the size of our work stack.  A rough estimate is that
 | |
|    this allows us to sort arrays of size N where
 | |
|    N / ln(N) = MINPARTITIONSIZE * 2**STACKSIZE, so 60 is more than enough
 | |
|    for arrays of size 2**64.  Because we push the biggest partition
 | |
|    first, the worst case occurs when all subarrays are always partitioned
 | |
|    exactly in two. */
 | |
| #define STACKSIZE 60
 | |
| 
 | |
| 
 | |
| #define SETK(X,Y) if ((k = docompare(X,Y,compare))==CMPERROR) goto fail
 | |
| 
 | |
| /* binarysort is the best method for sorting small arrays: it does
 | |
|    few compares, but can do data movement quadratic in the number of
 | |
|    elements.
 | |
|    [lo, hi) is a contiguous slice of a list, and is sorted via
 | |
|    binary insertion.
 | |
|    On entry, must have lo <= start <= hi, and that [lo, start) is already
 | |
|    sorted (pass start == lo if you don't know!).
 | |
|    If docompare complains (returns CMPERROR) return -1, else 0.
 | |
|    Even in case of error, the output slice will be some permutation of
 | |
|    the input (nothing is lost or duplicated).
 | |
| */
 | |
| 
 | |
| static int
 | |
| binarysort(lo, hi, start, compare)
 | |
| 	PyObject **lo;
 | |
| 	PyObject **hi;
 | |
| 	PyObject **start;
 | |
| 	PyObject *compare;/* Comparison function object, or NULL for default */
 | |
| {
 | |
| 	/* assert lo <= start <= hi
 | |
| 	   assert [lo, start) is sorted */
 | |
| 	register int k;
 | |
| 	register PyObject **l, **p, **r;
 | |
| 	register PyObject *pivot;
 | |
| 
 | |
| 	if (lo == start)
 | |
| 		++start;
 | |
| 	for (; start < hi; ++start) {
 | |
| 		/* set l to where *start belongs */
 | |
| 		l = lo;
 | |
| 		r = start;
 | |
| 		pivot = *r;
 | |
| 		do {
 | |
| 			p = l + ((r - l) >> 1);
 | |
| 			SETK(pivot, *p);
 | |
| 			if (k < 0)
 | |
| 				r = p;
 | |
| 			else
 | |
| 				l = p + 1;
 | |
| 		} while (l < r);
 | |
| 		/* Pivot should go at l -- slide over to make room.
 | |
| 		   Caution: using memmove is much slower under MSVC 5;
 | |
| 		   we're not usually moving many slots. */
 | |
| 		for (p = start; p > l; --p)
 | |
| 			*p = *(p-1);
 | |
| 		*l = pivot;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
|  fail:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* samplesortslice is the sorting workhorse.
 | |
|    [lo, hi) is a contiguous slice of a list, to be sorted in place.
 | |
|    On entry, must have lo <= hi,
 | |
|    If docompare complains (returns CMPERROR) return -1, else 0.
 | |
|    Even in case of error, the output slice will be some permutation of
 | |
|    the input (nothing is lost or duplicated).
 | |
| 
 | |
|    samplesort is basically quicksort on steroids:  a power of 2 close
 | |
|    to n/ln(n) is computed, and that many elements (less 1) are picked at
 | |
|    random from the array and sorted.  These 2**k - 1 elements are then
 | |
|    used as preselected pivots for an equal number of quicksort
 | |
|    partitioning steps, partitioning the slice into 2**k chunks each of
 | |
|    size about ln(n).  These small final chunks are then usually handled
 | |
|    by binarysort.  Note that when k=1, this is roughly the same as an
 | |
|    ordinary quicksort using a random pivot, and when k=2 this is roughly
 | |
|    a median-of-3 quicksort.  From that view, using k ~= lg(n/ln(n)) makes
 | |
|    this a "median of n/ln(n)" quicksort.  You can also view it as a kind
 | |
|    of bucket sort, where 2**k-1 bucket boundaries are picked dynamically.
 | |
| 
 | |
|    The large number of samples makes a quadratic-time case almost
 | |
|    impossible, and asymptotically drives the average-case number of
 | |
|    compares from quicksort's 2 N ln N (or 12/7 N ln N for the median-of-
 | |
|    3 variant) down to N lg N.
 | |
| 
 | |
|    We also play lots of low-level tricks to cut the number of compares.
 | |
|    
 | |
|    Very obscure:  To avoid using extra memory, the PPs are stored in the
 | |
|    array and shuffled around as partitioning proceeds.  At the start of a
 | |
|    partitioning step, we'll have 2**m-1 (for some m) PPs in sorted order,
 | |
|    adjacent (either on the left or the right!) to a chunk of X elements
 | |
|    that are to be partitioned: P X or X P.  In either case we need to
 | |
|    shuffle things *in place* so that the 2**(m-1) smaller PPs are on the
 | |
|    left, followed by the PP to be used for this step (that's the middle
 | |
|    of the PPs), followed by X, followed by the 2**(m-1) larger PPs:
 | |
|        P X or X P -> Psmall pivot X Plarge
 | |
|    and the order of the PPs must not be altered.  It can take a while
 | |
|    to realize this isn't trivial!  It can take even longer <wink> to
 | |
|    understand why the simple code below works, using only 2**(m-1) swaps.
 | |
|    The key is that the order of the X elements isn't necessarily
 | |
|    preserved:  X can end up as some cyclic permutation of its original
 | |
|    order.  That's OK, because X is unsorted anyway.  If the order of X
 | |
|    had to be preserved too, the simplest method I know of using O(1)
 | |
|    scratch storage requires len(X) + 2**(m-1) swaps, spread over 2 passes.
 | |
|    Since len(X) is typically several times larger than 2**(m-1), that
 | |
|    would slow things down.
 | |
| */
 | |
| 
 | |
| struct SamplesortStackNode {
 | |
| 	/* Represents a slice of the array, from (& including) lo up
 | |
| 	   to (but excluding) hi.  "extra" additional & adjacent elements
 | |
| 	   are pre-selected pivots (PPs), spanning [lo-extra, lo) if
 | |
| 	   extra > 0, or [hi, hi-extra) if extra < 0.  The PPs are
 | |
| 	   already sorted, but nothing is known about the other elements
 | |
| 	   in [lo, hi). |extra| is always one less than a power of 2.
 | |
| 	   When extra is 0, we're out of PPs, and the slice must be
 | |
| 	   sorted by some other means. */
 | |
| 	PyObject **lo;
 | |
| 	PyObject **hi;
 | |
| 	int extra;
 | |
| };
 | |
| 
 | |
| /* The number of PPs we want is 2**k - 1, where 2**k is as close to
 | |
|    N / ln(N) as possible.  So k ~= lg(N / ln(N)).  Calling libm routines
 | |
|    is undesirable, so cutoff values are canned in the "cutoff" table
 | |
|    below:  cutoff[i] is the smallest N such that k == CUTOFFBASE + i. */
 | |
| #define CUTOFFBASE 4
 | |
| static long cutoff[] = {
 | |
| 	43,        /* smallest N such that k == 4 */
 | |
| 	106,       /* etc */
 | |
| 	250,
 | |
| 	576,
 | |
| 	1298,
 | |
| 	2885,
 | |
| 	6339,
 | |
| 	13805,
 | |
| 	29843,
 | |
| 	64116,
 | |
| 	137030,
 | |
| 	291554,
 | |
| 	617916,
 | |
| 	1305130,
 | |
| 	2748295,
 | |
| 	5771662,
 | |
| 	12091672,
 | |
| 	25276798,
 | |
| 	52734615,
 | |
| 	109820537,
 | |
| 	228324027,
 | |
| 	473977813,
 | |
| 	982548444,   /* smallest N such that k == 26 */
 | |
| 	2034159050   /* largest N that fits in signed 32-bit; k == 27 */
 | |
| };
 | |
| 
 | |
| static int
 | |
| samplesortslice(lo, hi, compare)
 | |
| 	PyObject **lo;
 | |
| 	PyObject **hi;
 | |
| 	PyObject *compare;/* Comparison function object, or NULL for default */
 | |
| {
 | |
| 	register PyObject **l, **r;
 | |
| 	register PyObject *tmp, *pivot;
 | |
| 	register int k;
 | |
| 	int n, extra, top, extraOnRight;
 | |
| 	struct SamplesortStackNode stack[STACKSIZE];
 | |
| 
 | |
| 	/* assert lo <= hi */
 | |
| 	n = hi - lo;
 | |
| 
 | |
| 	/* ----------------------------------------------------------
 | |
| 	 * Special cases
 | |
| 	 * --------------------------------------------------------*/
 | |
| 	if (n < 2)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Set r to the largest value such that [lo,r) is sorted.
 | |
| 	   This catches the already-sorted case, the all-the-same
 | |
| 	   case, and the appended-a-few-elements-to-a-sorted-list case.
 | |
| 	   If the array is unsorted, we're very likely to get out of
 | |
| 	   the loop fast, so the test is cheap if it doesn't pay off.
 | |
| 	*/
 | |
| 	/* assert lo < hi */
 | |
| 	for (r = lo+1; r < hi; ++r) {
 | |
| 		SETK(*r, *(r-1));
 | |
| 		if (k < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	/* [lo,r) is sorted, [r,hi) unknown.  Get out cheap if there are
 | |
| 	   few unknowns, or few elements in total. */
 | |
| 	if (hi - r <= MAXMERGE || n < MINSIZE)
 | |
| 		return binarysort(lo, hi, r, compare);
 | |
| 
 | |
| 	/* Check for the array already being reverse-sorted.  Typical
 | |
| 	   benchmark-driven silliness <wink>. */
 | |
| 	/* assert lo < hi */
 | |
| 	for (r = lo+1; r < hi; ++r) {
 | |
| 		SETK(*(r-1), *r);
 | |
| 		if (k < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (hi - r <= MAXMERGE) {
 | |
| 		/* Reverse the reversed prefix, then insert the tail */
 | |
| 		PyObject **originalr = r;
 | |
| 		l = lo;
 | |
| 		do {
 | |
| 			--r;
 | |
| 			tmp = *l; *l = *r; *r = tmp;
 | |
| 			++l;
 | |
| 		} while (l < r);
 | |
| 		return binarysort(lo, hi, originalr, compare);
 | |
| 	}
 | |
| 
 | |
| 	/* ----------------------------------------------------------
 | |
| 	 * Normal case setup: a large array without obvious pattern.
 | |
| 	 * --------------------------------------------------------*/
 | |
| 
 | |
| 	/* extra := a power of 2 ~= n/ln(n), less 1.
 | |
| 	   First find the smallest extra s.t. n < cutoff[extra] */
 | |
| 	for (extra = 0;
 | |
| 	     extra < sizeof(cutoff) / sizeof(cutoff[0]);
 | |
| 	     ++extra) {
 | |
| 		if (n < cutoff[extra])
 | |
| 			break;
 | |
| 		/* note that if we fall out of the loop, the value of
 | |
| 		   extra still makes *sense*, but may be smaller than
 | |
| 		   we would like (but the array has more than ~= 2**31
 | |
| 		   elements in this case!) */ 
 | |
| 	}
 | |
| 	/* Now k == extra - 1 + CUTOFFBASE.  The smallest value k can
 | |
| 	   have is CUTOFFBASE-1, so
 | |
| 	   assert MINSIZE >= 2**(CUTOFFBASE-1) - 1 */
 | |
| 	extra = (1 << (extra - 1 + CUTOFFBASE)) - 1;
 | |
| 	/* assert extra > 0 and n >= extra */
 | |
| 
 | |
| 	/* Swap that many values to the start of the array.  The
 | |
| 	   selection of elements is pseudo-random, but the same on
 | |
| 	   every run (this is intentional! timing algorithm changes is
 | |
| 	   a pain if timing varies across runs).  */
 | |
| 	{
 | |
| 		unsigned int seed = n / extra;  /* arbitrary */
 | |
| 		unsigned int i;
 | |
| 		for (i = 0; i < (unsigned)extra; ++i) {
 | |
| 			/* j := random int in [i, n) */
 | |
| 			unsigned int j;
 | |
| 			seed = seed * 69069 + 7;
 | |
| 			j = i + seed % (n - i);
 | |
| 			tmp = lo[i]; lo[i] = lo[j]; lo[j] = tmp;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Recursively sort the preselected pivots. */
 | |
| 	if (samplesortslice(lo, lo + extra, compare) < 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	top = 0;          /* index of available stack slot */
 | |
| 	lo += extra;      /* point to first unknown */
 | |
| 	extraOnRight = 0; /* the PPs are at the left end */
 | |
| 
 | |
| 	/* ----------------------------------------------------------
 | |
| 	 * Partition [lo, hi), and repeat until out of work.
 | |
| 	 * --------------------------------------------------------*/
 | |
| 	for (;;) {
 | |
| 		/* assert lo <= hi, so n >= 0 */
 | |
| 		n = hi - lo;
 | |
| 
 | |
| 		/* We may not want, or may not be able, to partition:
 | |
| 		   If n is small, it's quicker to insert.
 | |
| 		   If extra is 0, we're out of pivots, and *must* use
 | |
| 		   another method.
 | |
| 		*/
 | |
| 		if (n < MINPARTITIONSIZE || extra == 0) {
 | |
| 			if (n >= MINSIZE) {
 | |
| 				/* assert extra == 0
 | |
| 				   This is rare, since the average size
 | |
| 				   of a final block is only about
 | |
| 				   ln(original n). */
 | |
| 				if (samplesortslice(lo, hi, compare) < 0)
 | |
| 					goto fail;
 | |
| 			}
 | |
| 			else {
 | |
| 				/* Binary insertion should be quicker,
 | |
| 				   and we can take advantage of the PPs
 | |
| 				   already being sorted. */
 | |
| 				if (extraOnRight && extra) {
 | |
| 					/* swap the PPs to the left end */
 | |
| 					k = extra;
 | |
| 					do {
 | |
| 						tmp = *lo;
 | |
| 						*lo = *hi;
 | |
| 						*hi = tmp;
 | |
| 						++lo; ++hi;
 | |
| 					} while (--k);
 | |
| 				}
 | |
| 				if (binarysort(lo - extra, hi, lo,
 | |
| 					       compare) < 0)
 | |
| 					goto fail;
 | |
| 			}
 | |
| 
 | |
| 			/* Find another slice to work on. */
 | |
| 			if (--top < 0)
 | |
| 				break;   /* no more -- done! */
 | |
| 			lo = stack[top].lo;
 | |
| 			hi = stack[top].hi;
 | |
| 			extra = stack[top].extra;
 | |
| 			extraOnRight = 0;
 | |
| 			if (extra < 0) {
 | |
| 				extraOnRight = 1;
 | |
| 				extra = -extra;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Pretend the PPs are indexed 0, 1, ..., extra-1.
 | |
| 		   Then our preselected pivot is at (extra-1)/2, and we
 | |
| 		   want to move the PPs before that to the left end of
 | |
| 		   the slice, and the PPs after that to the right end.
 | |
| 		   The following section changes extra, lo, hi, and the
 | |
| 		   slice such that:
 | |
| 		   [lo-extra, lo) contains the smaller PPs.
 | |
| 		   *lo == our PP.
 | |
| 		   (lo, hi) contains the unknown elements.
 | |
| 		   [hi, hi+extra) contains the larger PPs.
 | |
| 		*/
 | |
| 		k = extra >>= 1;  /* num PPs to move */ 
 | |
| 		if (extraOnRight) {
 | |
| 			/* Swap the smaller PPs to the left end.
 | |
| 			   Note that this loop actually moves k+1 items:
 | |
| 			   the last is our PP */
 | |
| 			do {
 | |
| 				tmp = *lo; *lo = *hi; *hi = tmp;
 | |
| 				++lo; ++hi;
 | |
| 			} while (k--);
 | |
| 		}
 | |
| 		else {
 | |
| 			/* Swap the larger PPs to the right end. */
 | |
| 			while (k--) {
 | |
| 				--lo; --hi;
 | |
| 				tmp = *lo; *lo = *hi; *hi = tmp;
 | |
| 			}
 | |
| 		}
 | |
| 		--lo;   /* *lo is now our PP */
 | |
| 		pivot = *lo;
 | |
| 
 | |
| 		/* Now an almost-ordinary quicksort partition step.
 | |
| 		   Note that most of the time is spent here!
 | |
| 		   Only odd thing is that we partition into < and >=,
 | |
| 		   instead of the usual <= and >=.  This helps when
 | |
| 		   there are lots of duplicates of different values,
 | |
| 		   because it eventually tends to make subfiles
 | |
| 		   "pure" (all duplicates), and we special-case for
 | |
| 		   duplicates later. */
 | |
| 		l = lo + 1;
 | |
| 		r = hi - 1;
 | |
| 		/* assert lo < l < r < hi (small n weeded out above) */
 | |
| 
 | |
| 		do {
 | |
| 			/* slide l right, looking for key >= pivot */
 | |
| 			do {
 | |
| 				SETK(*l, pivot);
 | |
| 				if (k < 0)
 | |
| 					++l;
 | |
| 				else
 | |
| 					break;
 | |
| 			} while (l < r);
 | |
| 
 | |
| 			/* slide r left, looking for key < pivot */
 | |
| 			while (l < r) {
 | |
| 				register PyObject *rval = *r--;
 | |
| 				SETK(rval, pivot);
 | |
| 				if (k < 0) {
 | |
| 					/* swap and advance */
 | |
| 					r[1] = *l;
 | |
| 					*l++ = rval;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		} while (l < r);
 | |
| 
 | |
| 		/* assert lo < r <= l < hi
 | |
| 		   assert r == l or r+1 == l
 | |
| 		   everything to the left of l is < pivot, and
 | |
| 		   everything to the right of r is >= pivot */
 | |
| 
 | |
| 		if (l == r) {
 | |
| 			SETK(*r, pivot);
 | |
| 			if (k < 0)
 | |
| 				++l;
 | |
| 			else
 | |
| 				--r;
 | |
| 		}
 | |
| 		/* assert lo <= r and r+1 == l and l <= hi
 | |
| 		   assert r == lo or a[r] < pivot
 | |
| 		   assert a[lo] is pivot
 | |
| 		   assert l == hi or a[l] >= pivot
 | |
| 		   Swap the pivot into "the middle", so we can henceforth
 | |
| 		   ignore it.
 | |
| 		*/
 | |
| 		*lo = *r;
 | |
| 		*r = pivot;
 | |
| 
 | |
| 		/* The following is true now, & will be preserved:
 | |
| 		   All in [lo,r) are < pivot
 | |
| 		   All in [r,l) == pivot (& so can be ignored)
 | |
| 		   All in [l,hi) are >= pivot */
 | |
| 
 | |
| 		/* Check for duplicates of the pivot.  One compare is
 | |
| 		   wasted if there are no duplicates, but can win big
 | |
| 		   when there are.
 | |
| 		   Tricky: we're sticking to "<" compares, so deduce
 | |
| 		   equality indirectly.  We know pivot <= *l, so they're
 | |
| 		   equal iff not pivot < *l.
 | |
| 		*/
 | |
| 		while (l < hi) {
 | |
| 			/* pivot <= *l known */
 | |
| 			SETK(pivot, *l);
 | |
| 			if (k < 0)
 | |
| 				break;
 | |
| 			else
 | |
| 				/* <= and not < implies == */
 | |
| 				++l;
 | |
| 		}
 | |
| 
 | |
| 		/* assert lo <= r < l <= hi
 | |
| 		   Partitions are [lo, r) and [l, hi) */
 | |
| 
 | |
| 		/* push fattest first; remember we still have extra PPs
 | |
| 		   to the left of the left chunk and to the right of
 | |
| 		   the right chunk! */
 | |
| 		/* assert top < STACKSIZE */
 | |
| 		if (r - lo <= hi - l) {
 | |
| 			/* second is bigger */
 | |
| 			stack[top].lo = l;
 | |
| 			stack[top].hi = hi;
 | |
| 			stack[top].extra = -extra;
 | |
| 			hi = r;
 | |
| 			extraOnRight = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* first is bigger */
 | |
| 			stack[top].lo = lo;
 | |
| 			stack[top].hi = r;
 | |
| 			stack[top].extra = extra;
 | |
| 			lo = l;
 | |
| 			extraOnRight = 1;
 | |
| 		}
 | |
| 		++top;
 | |
| 
 | |
| 	}   /* end of partitioning loop */
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  fail:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #undef SETK
 | |
| 
 | |
| staticforward PyTypeObject immutable_list_type;
 | |
| 
 | |
| static PyObject *
 | |
| listsort(self, compare)
 | |
| 	PyListObject *self;
 | |
| 	PyObject *compare;
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	self->ob_type = &immutable_list_type;
 | |
| 	err = samplesortslice(self->ob_item,
 | |
| 			      self->ob_item + self->ob_size,
 | |
| 			      compare);
 | |
| 	self->ob_type = &PyList_Type;
 | |
| 	if (err < 0)
 | |
| 		return NULL;
 | |
| 	Py_INCREF(Py_None);
 | |
| 	return Py_None;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_Sort(v)
 | |
| 	PyObject *v;
 | |
| {
 | |
| 	if (v == NULL || !PyList_Check(v)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	v = listsort((PyListObject *)v, (PyObject *)NULL);
 | |
| 	if (v == NULL)
 | |
| 		return -1;
 | |
| 	Py_DECREF(v);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listreverse(self, args)
 | |
| 	PyListObject *self;
 | |
| 	PyObject *args;
 | |
| {
 | |
| 	register PyObject **p, **q;
 | |
| 	register PyObject *tmp;
 | |
| 	
 | |
| 	if (args != NULL) {
 | |
| 		PyErr_BadArgument();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (self->ob_size > 1) {
 | |
| 		for (p = self->ob_item, q = self->ob_item + self->ob_size - 1;
 | |
| 						p < q; p++, q--) {
 | |
| 			tmp = *p;
 | |
| 			*p = *q;
 | |
| 			*q = tmp;
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	Py_INCREF(Py_None);
 | |
| 	return Py_None;
 | |
| }
 | |
| 
 | |
| int
 | |
| PyList_Reverse(v)
 | |
| 	PyObject *v;
 | |
| {
 | |
| 	if (v == NULL || !PyList_Check(v)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return -1;
 | |
| 	}
 | |
| 	v = listreverse((PyListObject *)v, (PyObject *)NULL);
 | |
| 	if (v == NULL)
 | |
| 		return -1;
 | |
| 	Py_DECREF(v);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| PyObject *
 | |
| PyList_AsTuple(v)
 | |
| 	PyObject *v;
 | |
| {
 | |
| 	PyObject *w;
 | |
| 	PyObject **p;
 | |
| 	int n;
 | |
| 	if (v == NULL || !PyList_Check(v)) {
 | |
| 		PyErr_BadInternalCall();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	n = ((PyListObject *)v)->ob_size;
 | |
| 	w = PyTuple_New(n);
 | |
| 	if (w == NULL)
 | |
| 		return NULL;
 | |
| 	p = ((PyTupleObject *)w)->ob_item;
 | |
| 	memcpy((ANY *)p,
 | |
| 	       (ANY *)((PyListObject *)v)->ob_item,
 | |
| 	       n*sizeof(PyObject *));
 | |
| 	while (--n >= 0) {
 | |
| 		Py_INCREF(*p);
 | |
| 		p++;
 | |
| 	}
 | |
| 	return w;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listindex(self, args)
 | |
| 	PyListObject *self;
 | |
| 	PyObject *args;
 | |
| {
 | |
| 	int i;
 | |
| 	
 | |
| 	if (args == NULL) {
 | |
| 		PyErr_BadArgument();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	for (i = 0; i < self->ob_size; i++) {
 | |
| 		if (PyObject_Compare(self->ob_item[i], args) == 0)
 | |
| 			return PyInt_FromLong((long)i);
 | |
| 		if (PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listcount(self, args)
 | |
| 	PyListObject *self;
 | |
| 	PyObject *args;
 | |
| {
 | |
| 	int count = 0;
 | |
| 	int i;
 | |
| 	
 | |
| 	if (args == NULL) {
 | |
| 		PyErr_BadArgument();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	for (i = 0; i < self->ob_size; i++) {
 | |
| 		if (PyObject_Compare(self->ob_item[i], args) == 0)
 | |
| 			count++;
 | |
| 		if (PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	return PyInt_FromLong((long)count);
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| listremove(self, args)
 | |
| 	PyListObject *self;
 | |
| 	PyObject *args;
 | |
| {
 | |
| 	int i;
 | |
| 	
 | |
| 	if (args == NULL) {
 | |
| 		PyErr_BadArgument();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	for (i = 0; i < self->ob_size; i++) {
 | |
| 		if (PyObject_Compare(self->ob_item[i], args) == 0) {
 | |
| 			if (list_ass_slice(self, i, i+1,
 | |
| 					   (PyObject *)NULL) != 0)
 | |
| 				return NULL;
 | |
| 			Py_INCREF(Py_None);
 | |
| 			return Py_None;
 | |
| 		}
 | |
| 		if (PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static char append_doc[] =
 | |
| "L.append(object) -- append object to end";
 | |
| static char extend_doc[] =
 | |
| "L.extend(list) -- extend list by appending list elements";
 | |
| static char insert_doc[] =
 | |
| "L.insert(index, object) -- insert object before index";
 | |
| static char pop_doc[] =
 | |
| "L.pop([index]) -> item -- remove and return item at index (default last)";
 | |
| static char remove_doc[] =
 | |
| "L.remove(value) -- remove first occurrence of value";
 | |
| static char index_doc[] =
 | |
| "L.index(value) -> integer -- return index of first occurrence of value";
 | |
| static char count_doc[] =
 | |
| "L.count(value) -> integer -- return number of occurrences of value";
 | |
| static char reverse_doc[] =
 | |
| "L.reverse() -- reverse *IN PLACE*";
 | |
| static char sort_doc[] =
 | |
| "L.sort([cmpfunc]) -- sort *IN PLACE*; if given, cmpfunc(x, y) -> -1, 0, 1";
 | |
| 
 | |
| static PyMethodDef list_methods[] = {
 | |
| 	{"append",	(PyCFunction)listappend, 0, append_doc},
 | |
| 	{"insert",	(PyCFunction)listinsert, 0, insert_doc},
 | |
| 	{"extend",      (PyCFunction)listextend, 1, extend_doc},
 | |
| 	{"pop",		(PyCFunction)listpop, 1, pop_doc},
 | |
| 	{"remove",	(PyCFunction)listremove, 0, remove_doc},
 | |
| 	{"index",	(PyCFunction)listindex, 0, index_doc},
 | |
| 	{"count",	(PyCFunction)listcount, 0, count_doc},
 | |
| 	{"reverse",	(PyCFunction)listreverse, 0, reverse_doc},
 | |
| 	{"sort",	(PyCFunction)listsort, 0, sort_doc},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| list_getattr(f, name)
 | |
| 	PyListObject *f;
 | |
| 	char *name;
 | |
| {
 | |
| 	return Py_FindMethod(list_methods, (PyObject *)f, name);
 | |
| }
 | |
| 
 | |
| static PySequenceMethods list_as_sequence = {
 | |
| 	(inquiry)list_length, /*sq_length*/
 | |
| 	(binaryfunc)list_concat, /*sq_concat*/
 | |
| 	(intargfunc)list_repeat, /*sq_repeat*/
 | |
| 	(intargfunc)list_item, /*sq_item*/
 | |
| 	(intintargfunc)list_slice, /*sq_slice*/
 | |
| 	(intobjargproc)list_ass_item, /*sq_ass_item*/
 | |
| 	(intintobjargproc)list_ass_slice, /*sq_ass_slice*/
 | |
| };
 | |
| 
 | |
| PyTypeObject PyList_Type = {
 | |
| 	PyObject_HEAD_INIT(&PyType_Type)
 | |
| 	0,
 | |
| 	"list",
 | |
| 	sizeof(PyListObject),
 | |
| 	0,
 | |
| 	(destructor)list_dealloc, /*tp_dealloc*/
 | |
| 	(printfunc)list_print, /*tp_print*/
 | |
| 	(getattrfunc)list_getattr, /*tp_getattr*/
 | |
| 	0,		/*tp_setattr*/
 | |
| 	(cmpfunc)list_compare, /*tp_compare*/
 | |
| 	(reprfunc)list_repr, /*tp_repr*/
 | |
| 	0,		/*tp_as_number*/
 | |
| 	&list_as_sequence,	/*tp_as_sequence*/
 | |
| 	0,		/*tp_as_mapping*/
 | |
| };
 | |
| 
 | |
| 
 | |
| /* During a sort, we really can't have anyone modifying the list; it could
 | |
|    cause core dumps.  Thus, we substitute a dummy type that raises an
 | |
|    explanatory exception when a modifying operation is used.  Caveat:
 | |
|    comparisons may behave differently; but I guess it's a bad idea anyway to
 | |
|    compare a list that's being sorted... */
 | |
| 
 | |
| static PyObject *
 | |
| immutable_list_op(/*No args!*/)
 | |
| {
 | |
| 	PyErr_SetString(PyExc_TypeError,
 | |
| 			"a list cannot be modified while it is being sorted");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyMethodDef immutable_list_methods[] = {
 | |
| 	{"append",	(PyCFunction)immutable_list_op},
 | |
| 	{"insert",	(PyCFunction)immutable_list_op},
 | |
| 	{"remove",	(PyCFunction)immutable_list_op},
 | |
| 	{"index",	(PyCFunction)listindex},
 | |
| 	{"count",	(PyCFunction)listcount},
 | |
| 	{"reverse",	(PyCFunction)immutable_list_op},
 | |
| 	{"sort",	(PyCFunction)immutable_list_op},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| static PyObject *
 | |
| immutable_list_getattr(f, name)
 | |
| 	PyListObject *f;
 | |
| 	char *name;
 | |
| {
 | |
| 	return Py_FindMethod(immutable_list_methods, (PyObject *)f, name);
 | |
| }
 | |
| 
 | |
| static int
 | |
| immutable_list_ass(/*No args!*/)
 | |
| {
 | |
| 	immutable_list_op();
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static PySequenceMethods immutable_list_as_sequence = {
 | |
| 	(inquiry)list_length, /*sq_length*/
 | |
| 	(binaryfunc)list_concat, /*sq_concat*/
 | |
| 	(intargfunc)list_repeat, /*sq_repeat*/
 | |
| 	(intargfunc)list_item, /*sq_item*/
 | |
| 	(intintargfunc)list_slice, /*sq_slice*/
 | |
| 	(intobjargproc)immutable_list_ass, /*sq_ass_item*/
 | |
| 	(intintobjargproc)immutable_list_ass, /*sq_ass_slice*/
 | |
| };
 | |
| 
 | |
| static PyTypeObject immutable_list_type = {
 | |
| 	PyObject_HEAD_INIT(&PyType_Type)
 | |
| 	0,
 | |
| 	"list (immutable, during sort)",
 | |
| 	sizeof(PyListObject),
 | |
| 	0,
 | |
| 	0,		/*tp_dealloc*/ /* Cannot happen */
 | |
| 	(printfunc)list_print, /*tp_print*/
 | |
| 	(getattrfunc)immutable_list_getattr, /*tp_getattr*/
 | |
| 	0,		/*tp_setattr*/
 | |
| 	0,		/*tp_compare*/ /* Won't be called */
 | |
| 	(reprfunc)list_repr, /*tp_repr*/
 | |
| 	0,		/*tp_as_number*/
 | |
| 	&immutable_list_as_sequence,	/*tp_as_sequence*/
 | |
| 	0,		/*tp_as_mapping*/
 | |
| };
 | |
| 
 |