mirror of
				https://github.com/python/cpython.git
				synced 2025-10-25 18:54:53 +00:00 
			
		
		
		
	 cf8941c603
			
		
	
	
		cf8941c603
		
			
		
	
	
	
	
		
			
			* gh-132876: workaround broken ldexp() on Windows 10 ldexp() fails to round subnormal results before Windows 11, so hide their bug. Co-authored-by: Tim Peters <tim.peters@gmail.com>
		
			
				
	
	
		
			2950 lines
		
	
	
	
		
			123 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			2950 lines
		
	
	
	
		
			123 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Python test set -- math module
 | |
| # XXXX Should not do tests around zero only
 | |
| 
 | |
| from test.support import verbose, requires_IEEE_754
 | |
| from test import support
 | |
| import unittest
 | |
| import fractions
 | |
| import itertools
 | |
| import decimal
 | |
| import math
 | |
| import os
 | |
| import platform
 | |
| import random
 | |
| import struct
 | |
| import sys
 | |
| 
 | |
| 
 | |
| eps = 1E-05
 | |
| NAN = float('nan')
 | |
| INF = float('inf')
 | |
| NINF = float('-inf')
 | |
| FLOAT_MAX = sys.float_info.max
 | |
| FLOAT_MIN = sys.float_info.min
 | |
| 
 | |
| # detect evidence of double-rounding: fsum is not always correctly
 | |
| # rounded on machines that suffer from double rounding.
 | |
| x, y = 1e16, 2.9999 # use temporary values to defeat peephole optimizer
 | |
| HAVE_DOUBLE_ROUNDING = (x + y == 1e16 + 4)
 | |
| 
 | |
| # locate file with test values
 | |
| if __name__ == '__main__':
 | |
|     file = sys.argv[0]
 | |
| else:
 | |
|     file = __file__
 | |
| test_dir = os.path.dirname(file) or os.curdir
 | |
| math_testcases = os.path.join(test_dir, 'mathdata', 'math_testcases.txt')
 | |
| test_file = os.path.join(test_dir, 'mathdata', 'cmath_testcases.txt')
 | |
| 
 | |
| 
 | |
| def to_ulps(x):
 | |
|     """Convert a non-NaN float x to an integer, in such a way that
 | |
|     adjacent floats are converted to adjacent integers.  Then
 | |
|     abs(ulps(x) - ulps(y)) gives the difference in ulps between two
 | |
|     floats.
 | |
| 
 | |
|     The results from this function will only make sense on platforms
 | |
|     where native doubles are represented in IEEE 754 binary64 format.
 | |
| 
 | |
|     Note: 0.0 and -0.0 are converted to 0 and -1, respectively.
 | |
|     """
 | |
|     n = struct.unpack('<q', struct.pack('<d', x))[0]
 | |
|     if n < 0:
 | |
|         n = ~(n+2**63)
 | |
|     return n
 | |
| 
 | |
| 
 | |
| # Here's a pure Python version of the math.factorial algorithm, for
 | |
| # documentation and comparison purposes.
 | |
| #
 | |
| # Formula:
 | |
| #
 | |
| #   factorial(n) = factorial_odd_part(n) << (n - count_set_bits(n))
 | |
| #
 | |
| # where
 | |
| #
 | |
| #   factorial_odd_part(n) = product_{i >= 0} product_{0 < j <= n >> i; j odd} j
 | |
| #
 | |
| # The outer product above is an infinite product, but once i >= n.bit_length,
 | |
| # (n >> i) < 1 and the corresponding term of the product is empty.  So only the
 | |
| # finitely many terms for 0 <= i < n.bit_length() contribute anything.
 | |
| #
 | |
| # We iterate downwards from i == n.bit_length() - 1 to i == 0.  The inner
 | |
| # product in the formula above starts at 1 for i == n.bit_length(); for each i
 | |
| # < n.bit_length() we get the inner product for i from that for i + 1 by
 | |
| # multiplying by all j in {n >> i+1 < j <= n >> i; j odd}.  In Python terms,
 | |
| # this set is range((n >> i+1) + 1 | 1, (n >> i) + 1 | 1, 2).
 | |
| 
 | |
| def count_set_bits(n):
 | |
|     """Number of '1' bits in binary expansion of a nonnnegative integer."""
 | |
|     return 1 + count_set_bits(n & n - 1) if n else 0
 | |
| 
 | |
| def partial_product(start, stop):
 | |
|     """Product of integers in range(start, stop, 2), computed recursively.
 | |
|     start and stop should both be odd, with start <= stop.
 | |
| 
 | |
|     """
 | |
|     numfactors = (stop - start) >> 1
 | |
|     if not numfactors:
 | |
|         return 1
 | |
|     elif numfactors == 1:
 | |
|         return start
 | |
|     else:
 | |
|         mid = (start + numfactors) | 1
 | |
|         return partial_product(start, mid) * partial_product(mid, stop)
 | |
| 
 | |
| def py_factorial(n):
 | |
|     """Factorial of nonnegative integer n, via "Binary Split Factorial Formula"
 | |
|     described at http://www.luschny.de/math/factorial/binarysplitfact.html
 | |
| 
 | |
|     """
 | |
|     inner = outer = 1
 | |
|     for i in reversed(range(n.bit_length())):
 | |
|         inner *= partial_product((n >> i + 1) + 1 | 1, (n >> i) + 1 | 1)
 | |
|         outer *= inner
 | |
|     return outer << (n - count_set_bits(n))
 | |
| 
 | |
| def ulp_abs_check(expected, got, ulp_tol, abs_tol):
 | |
|     """Given finite floats `expected` and `got`, check that they're
 | |
|     approximately equal to within the given number of ulps or the
 | |
|     given absolute tolerance, whichever is bigger.
 | |
| 
 | |
|     Returns None on success and an error message on failure.
 | |
|     """
 | |
|     ulp_error = abs(to_ulps(expected) - to_ulps(got))
 | |
|     abs_error = abs(expected - got)
 | |
| 
 | |
|     # Succeed if either abs_error <= abs_tol or ulp_error <= ulp_tol.
 | |
|     if abs_error <= abs_tol or ulp_error <= ulp_tol:
 | |
|         return None
 | |
|     else:
 | |
|         fmt = ("error = {:.3g} ({:d} ulps); "
 | |
|                "permitted error = {:.3g} or {:d} ulps")
 | |
|         return fmt.format(abs_error, ulp_error, abs_tol, ulp_tol)
 | |
| 
 | |
| def parse_mtestfile(fname):
 | |
|     """Parse a file with test values
 | |
| 
 | |
|     -- starts a comment
 | |
|     blank lines, or lines containing only a comment, are ignored
 | |
|     other lines are expected to have the form
 | |
|       id fn arg -> expected [flag]*
 | |
| 
 | |
|     """
 | |
|     with open(fname, encoding="utf-8") as fp:
 | |
|         for line in fp:
 | |
|             # strip comments, and skip blank lines
 | |
|             if '--' in line:
 | |
|                 line = line[:line.index('--')]
 | |
|             if not line.strip():
 | |
|                 continue
 | |
| 
 | |
|             lhs, rhs = line.split('->')
 | |
|             id, fn, arg = lhs.split()
 | |
|             rhs_pieces = rhs.split()
 | |
|             exp = rhs_pieces[0]
 | |
|             flags = rhs_pieces[1:]
 | |
| 
 | |
|             yield (id, fn, float(arg), float(exp), flags)
 | |
| 
 | |
| 
 | |
| def parse_testfile(fname):
 | |
|     """Parse a file with test values
 | |
| 
 | |
|     Empty lines or lines starting with -- are ignored
 | |
|     yields id, fn, arg_real, arg_imag, exp_real, exp_imag
 | |
|     """
 | |
|     with open(fname, encoding="utf-8") as fp:
 | |
|         for line in fp:
 | |
|             # skip comment lines and blank lines
 | |
|             if line.startswith('--') or not line.strip():
 | |
|                 continue
 | |
| 
 | |
|             lhs, rhs = line.split('->')
 | |
|             id, fn, arg_real, arg_imag = lhs.split()
 | |
|             rhs_pieces = rhs.split()
 | |
|             exp_real, exp_imag = rhs_pieces[0], rhs_pieces[1]
 | |
|             flags = rhs_pieces[2:]
 | |
| 
 | |
|             yield (id, fn,
 | |
|                    float(arg_real), float(arg_imag),
 | |
|                    float(exp_real), float(exp_imag),
 | |
|                    flags)
 | |
| 
 | |
| 
 | |
| def result_check(expected, got, ulp_tol=5, abs_tol=0.0):
 | |
|     # Common logic of MathTests.(ftest, test_testcases, test_mtestcases)
 | |
|     """Compare arguments expected and got, as floats, if either
 | |
|     is a float, using a tolerance expressed in multiples of
 | |
|     ulp(expected) or absolutely (if given and greater).
 | |
| 
 | |
|     As a convenience, when neither argument is a float, and for
 | |
|     non-finite floats, exact equality is demanded. Also, nan==nan
 | |
|     as far as this function is concerned.
 | |
| 
 | |
|     Returns None on success and an error message on failure.
 | |
|     """
 | |
| 
 | |
|     # Check exactly equal (applies also to strings representing exceptions)
 | |
|     if got == expected:
 | |
|         if not got and not expected:
 | |
|             if math.copysign(1, got) != math.copysign(1, expected):
 | |
|                 return f"expected {expected}, got {got} (zero has wrong sign)"
 | |
|         return None
 | |
| 
 | |
|     failure = "not equal"
 | |
| 
 | |
|     # Turn mixed float and int comparison (e.g. floor()) to all-float
 | |
|     if isinstance(expected, float) and isinstance(got, int):
 | |
|         got = float(got)
 | |
|     elif isinstance(got, float) and isinstance(expected, int):
 | |
|         expected = float(expected)
 | |
| 
 | |
|     if isinstance(expected, float) and isinstance(got, float):
 | |
|         if math.isnan(expected) and math.isnan(got):
 | |
|             # Pass, since both nan
 | |
|             failure = None
 | |
|         elif math.isinf(expected) or math.isinf(got):
 | |
|             # We already know they're not equal, drop through to failure
 | |
|             pass
 | |
|         else:
 | |
|             # Both are finite floats (now). Are they close enough?
 | |
|             failure = ulp_abs_check(expected, got, ulp_tol, abs_tol)
 | |
| 
 | |
|     # arguments are not equal, and if numeric, are too far apart
 | |
|     if failure is not None:
 | |
|         fail_fmt = "expected {!r}, got {!r}"
 | |
|         fail_msg = fail_fmt.format(expected, got)
 | |
|         fail_msg += ' ({})'.format(failure)
 | |
|         return fail_msg
 | |
|     else:
 | |
|         return None
 | |
| 
 | |
| class FloatLike:
 | |
|     def __init__(self, value):
 | |
|         self.value = value
 | |
| 
 | |
|     def __float__(self):
 | |
|         return self.value
 | |
| 
 | |
| class IntSubclass(int):
 | |
|     pass
 | |
| 
 | |
| # Class providing an __index__ method.
 | |
| class MyIndexable(object):
 | |
|     def __init__(self, value):
 | |
|         self.value = value
 | |
| 
 | |
|     def __index__(self):
 | |
|         return self.value
 | |
| 
 | |
| class BadDescr:
 | |
|     def __get__(self, obj, objtype=None):
 | |
|         raise ValueError
 | |
| 
 | |
| class MathTests(unittest.TestCase):
 | |
| 
 | |
|     def ftest(self, name, got, expected, ulp_tol=5, abs_tol=0.0):
 | |
|         """Compare arguments expected and got, as floats, if either
 | |
|         is a float, using a tolerance expressed in multiples of
 | |
|         ulp(expected) or absolutely, whichever is greater.
 | |
| 
 | |
|         As a convenience, when neither argument is a float, and for
 | |
|         non-finite floats, exact equality is demanded. Also, nan==nan
 | |
|         in this function.
 | |
|         """
 | |
|         failure = result_check(expected, got, ulp_tol, abs_tol)
 | |
|         if failure is not None:
 | |
|             self.fail("{}: {}".format(name, failure))
 | |
| 
 | |
|     def testConstants(self):
 | |
|         # Ref: Abramowitz & Stegun (Dover, 1965)
 | |
|         self.ftest('pi', math.pi, 3.141592653589793238462643)
 | |
|         self.ftest('e', math.e, 2.718281828459045235360287)
 | |
|         self.assertEqual(math.tau, 2*math.pi)
 | |
| 
 | |
|     def testAcos(self):
 | |
|         self.assertRaises(TypeError, math.acos)
 | |
|         self.ftest('acos(-1)', math.acos(-1), math.pi)
 | |
|         self.ftest('acos(0)', math.acos(0), math.pi/2)
 | |
|         self.ftest('acos(1)', math.acos(1), 0)
 | |
|         self.assertRaises(ValueError, math.acos, INF)
 | |
|         self.assertRaises(ValueError, math.acos, NINF)
 | |
|         self.assertRaises(ValueError, math.acos, 1 + eps)
 | |
|         self.assertRaises(ValueError, math.acos, -1 - eps)
 | |
|         self.assertTrue(math.isnan(math.acos(NAN)))
 | |
| 
 | |
|     def testAcosh(self):
 | |
|         self.assertRaises(TypeError, math.acosh)
 | |
|         self.ftest('acosh(1)', math.acosh(1), 0)
 | |
|         self.ftest('acosh(2)', math.acosh(2), 1.3169578969248168)
 | |
|         self.assertRaises(ValueError, math.acosh, 0)
 | |
|         self.assertRaises(ValueError, math.acosh, -1)
 | |
|         self.assertEqual(math.acosh(INF), INF)
 | |
|         self.assertRaises(ValueError, math.acosh, NINF)
 | |
|         self.assertTrue(math.isnan(math.acosh(NAN)))
 | |
| 
 | |
|     def testAsin(self):
 | |
|         self.assertRaises(TypeError, math.asin)
 | |
|         self.ftest('asin(-1)', math.asin(-1), -math.pi/2)
 | |
|         self.ftest('asin(0)', math.asin(0), 0)
 | |
|         self.ftest('asin(1)', math.asin(1), math.pi/2)
 | |
|         self.assertRaises(ValueError, math.asin, INF)
 | |
|         self.assertRaises(ValueError, math.asin, NINF)
 | |
|         self.assertRaises(ValueError, math.asin, 1 + eps)
 | |
|         self.assertRaises(ValueError, math.asin, -1 - eps)
 | |
|         self.assertTrue(math.isnan(math.asin(NAN)))
 | |
| 
 | |
|     def testAsinh(self):
 | |
|         self.assertRaises(TypeError, math.asinh)
 | |
|         self.ftest('asinh(0)', math.asinh(0), 0)
 | |
|         self.ftest('asinh(1)', math.asinh(1), 0.88137358701954305)
 | |
|         self.ftest('asinh(-1)', math.asinh(-1), -0.88137358701954305)
 | |
|         self.assertEqual(math.asinh(INF), INF)
 | |
|         self.assertEqual(math.asinh(NINF), NINF)
 | |
|         self.assertTrue(math.isnan(math.asinh(NAN)))
 | |
| 
 | |
|     def testAtan(self):
 | |
|         self.assertRaises(TypeError, math.atan)
 | |
|         self.ftest('atan(-1)', math.atan(-1), -math.pi/4)
 | |
|         self.ftest('atan(0)', math.atan(0), 0)
 | |
|         self.ftest('atan(1)', math.atan(1), math.pi/4)
 | |
|         self.ftest('atan(inf)', math.atan(INF), math.pi/2)
 | |
|         self.ftest('atan(-inf)', math.atan(NINF), -math.pi/2)
 | |
|         self.assertTrue(math.isnan(math.atan(NAN)))
 | |
| 
 | |
|     def testAtanh(self):
 | |
|         self.assertRaises(TypeError, math.atan)
 | |
|         self.ftest('atanh(0)', math.atanh(0), 0)
 | |
|         self.ftest('atanh(0.5)', math.atanh(0.5), 0.54930614433405489)
 | |
|         self.ftest('atanh(-0.5)', math.atanh(-0.5), -0.54930614433405489)
 | |
|         self.assertRaises(ValueError, math.atanh, 1)
 | |
|         self.assertRaises(ValueError, math.atanh, -1)
 | |
|         self.assertRaises(ValueError, math.atanh, INF)
 | |
|         self.assertRaises(ValueError, math.atanh, NINF)
 | |
|         self.assertTrue(math.isnan(math.atanh(NAN)))
 | |
| 
 | |
|     def testAtan2(self):
 | |
|         self.assertRaises(TypeError, math.atan2)
 | |
|         self.ftest('atan2(-1, 0)', math.atan2(-1, 0), -math.pi/2)
 | |
|         self.ftest('atan2(-1, 1)', math.atan2(-1, 1), -math.pi/4)
 | |
|         self.ftest('atan2(0, 1)', math.atan2(0, 1), 0)
 | |
|         self.ftest('atan2(1, 1)', math.atan2(1, 1), math.pi/4)
 | |
|         self.ftest('atan2(1, 0)', math.atan2(1, 0), math.pi/2)
 | |
|         self.ftest('atan2(1, -1)', math.atan2(1, -1), 3*math.pi/4)
 | |
| 
 | |
|         # math.atan2(0, x)
 | |
|         self.ftest('atan2(0., -inf)', math.atan2(0., NINF), math.pi)
 | |
|         self.ftest('atan2(0., -2.3)', math.atan2(0., -2.3), math.pi)
 | |
|         self.ftest('atan2(0., -0.)', math.atan2(0., -0.), math.pi)
 | |
|         self.assertEqual(math.atan2(0., 0.), 0.)
 | |
|         self.assertEqual(math.atan2(0., 2.3), 0.)
 | |
|         self.assertEqual(math.atan2(0., INF), 0.)
 | |
|         self.assertTrue(math.isnan(math.atan2(0., NAN)))
 | |
|         # math.atan2(-0, x)
 | |
|         self.ftest('atan2(-0., -inf)', math.atan2(-0., NINF), -math.pi)
 | |
|         self.ftest('atan2(-0., -2.3)', math.atan2(-0., -2.3), -math.pi)
 | |
|         self.ftest('atan2(-0., -0.)', math.atan2(-0., -0.), -math.pi)
 | |
|         self.assertEqual(math.atan2(-0., 0.), -0.)
 | |
|         self.assertEqual(math.atan2(-0., 2.3), -0.)
 | |
|         self.assertEqual(math.atan2(-0., INF), -0.)
 | |
|         self.assertTrue(math.isnan(math.atan2(-0., NAN)))
 | |
|         # math.atan2(INF, x)
 | |
|         self.ftest('atan2(inf, -inf)', math.atan2(INF, NINF), math.pi*3/4)
 | |
|         self.ftest('atan2(inf, -2.3)', math.atan2(INF, -2.3), math.pi/2)
 | |
|         self.ftest('atan2(inf, -0.)', math.atan2(INF, -0.0), math.pi/2)
 | |
|         self.ftest('atan2(inf, 0.)', math.atan2(INF, 0.0), math.pi/2)
 | |
|         self.ftest('atan2(inf, 2.3)', math.atan2(INF, 2.3), math.pi/2)
 | |
|         self.ftest('atan2(inf, inf)', math.atan2(INF, INF), math.pi/4)
 | |
|         self.assertTrue(math.isnan(math.atan2(INF, NAN)))
 | |
|         # math.atan2(NINF, x)
 | |
|         self.ftest('atan2(-inf, -inf)', math.atan2(NINF, NINF), -math.pi*3/4)
 | |
|         self.ftest('atan2(-inf, -2.3)', math.atan2(NINF, -2.3), -math.pi/2)
 | |
|         self.ftest('atan2(-inf, -0.)', math.atan2(NINF, -0.0), -math.pi/2)
 | |
|         self.ftest('atan2(-inf, 0.)', math.atan2(NINF, 0.0), -math.pi/2)
 | |
|         self.ftest('atan2(-inf, 2.3)', math.atan2(NINF, 2.3), -math.pi/2)
 | |
|         self.ftest('atan2(-inf, inf)', math.atan2(NINF, INF), -math.pi/4)
 | |
|         self.assertTrue(math.isnan(math.atan2(NINF, NAN)))
 | |
|         # math.atan2(+finite, x)
 | |
|         self.ftest('atan2(2.3, -inf)', math.atan2(2.3, NINF), math.pi)
 | |
|         self.ftest('atan2(2.3, -0.)', math.atan2(2.3, -0.), math.pi/2)
 | |
|         self.ftest('atan2(2.3, 0.)', math.atan2(2.3, 0.), math.pi/2)
 | |
|         self.assertEqual(math.atan2(2.3, INF), 0.)
 | |
|         self.assertTrue(math.isnan(math.atan2(2.3, NAN)))
 | |
|         # math.atan2(-finite, x)
 | |
|         self.ftest('atan2(-2.3, -inf)', math.atan2(-2.3, NINF), -math.pi)
 | |
|         self.ftest('atan2(-2.3, -0.)', math.atan2(-2.3, -0.), -math.pi/2)
 | |
|         self.ftest('atan2(-2.3, 0.)', math.atan2(-2.3, 0.), -math.pi/2)
 | |
|         self.assertEqual(math.atan2(-2.3, INF), -0.)
 | |
|         self.assertTrue(math.isnan(math.atan2(-2.3, NAN)))
 | |
|         # math.atan2(NAN, x)
 | |
|         self.assertTrue(math.isnan(math.atan2(NAN, NINF)))
 | |
|         self.assertTrue(math.isnan(math.atan2(NAN, -2.3)))
 | |
|         self.assertTrue(math.isnan(math.atan2(NAN, -0.)))
 | |
|         self.assertTrue(math.isnan(math.atan2(NAN, 0.)))
 | |
|         self.assertTrue(math.isnan(math.atan2(NAN, 2.3)))
 | |
|         self.assertTrue(math.isnan(math.atan2(NAN, INF)))
 | |
|         self.assertTrue(math.isnan(math.atan2(NAN, NAN)))
 | |
| 
 | |
|     def testCbrt(self):
 | |
|         self.assertRaises(TypeError, math.cbrt)
 | |
|         self.ftest('cbrt(0)', math.cbrt(0), 0)
 | |
|         self.ftest('cbrt(1)', math.cbrt(1), 1)
 | |
|         self.ftest('cbrt(8)', math.cbrt(8), 2)
 | |
|         self.ftest('cbrt(0.0)', math.cbrt(0.0), 0.0)
 | |
|         self.ftest('cbrt(-0.0)', math.cbrt(-0.0), -0.0)
 | |
|         self.ftest('cbrt(1.2)', math.cbrt(1.2), 1.062658569182611)
 | |
|         self.ftest('cbrt(-2.6)', math.cbrt(-2.6), -1.375068867074141)
 | |
|         self.ftest('cbrt(27)', math.cbrt(27), 3)
 | |
|         self.ftest('cbrt(-1)', math.cbrt(-1), -1)
 | |
|         self.ftest('cbrt(-27)', math.cbrt(-27), -3)
 | |
|         self.assertEqual(math.cbrt(INF), INF)
 | |
|         self.assertEqual(math.cbrt(NINF), NINF)
 | |
|         self.assertTrue(math.isnan(math.cbrt(NAN)))
 | |
| 
 | |
|     def testCeil(self):
 | |
|         self.assertRaises(TypeError, math.ceil)
 | |
|         self.assertEqual(int, type(math.ceil(0.5)))
 | |
|         self.assertEqual(math.ceil(0.5), 1)
 | |
|         self.assertEqual(math.ceil(1.0), 1)
 | |
|         self.assertEqual(math.ceil(1.5), 2)
 | |
|         self.assertEqual(math.ceil(-0.5), 0)
 | |
|         self.assertEqual(math.ceil(-1.0), -1)
 | |
|         self.assertEqual(math.ceil(-1.5), -1)
 | |
|         self.assertEqual(math.ceil(0.0), 0)
 | |
|         self.assertEqual(math.ceil(-0.0), 0)
 | |
|         #self.assertEqual(math.ceil(INF), INF)
 | |
|         #self.assertEqual(math.ceil(NINF), NINF)
 | |
|         #self.assertTrue(math.isnan(math.ceil(NAN)))
 | |
| 
 | |
|         class TestCeil:
 | |
|             def __ceil__(self):
 | |
|                 return 42
 | |
|         class FloatCeil(float):
 | |
|             def __ceil__(self):
 | |
|                 return 42
 | |
|         class TestNoCeil:
 | |
|             pass
 | |
|         class TestBadCeil:
 | |
|             __ceil__ = BadDescr()
 | |
|         self.assertEqual(math.ceil(TestCeil()), 42)
 | |
|         self.assertEqual(math.ceil(FloatCeil()), 42)
 | |
|         self.assertEqual(math.ceil(FloatLike(42.5)), 43)
 | |
|         self.assertRaises(TypeError, math.ceil, TestNoCeil())
 | |
|         self.assertRaises(ValueError, math.ceil, TestBadCeil())
 | |
| 
 | |
|         t = TestNoCeil()
 | |
|         t.__ceil__ = lambda *args: args
 | |
|         self.assertRaises(TypeError, math.ceil, t)
 | |
|         self.assertRaises(TypeError, math.ceil, t, 0)
 | |
| 
 | |
|         self.assertEqual(math.ceil(FloatLike(+1.0)), +1.0)
 | |
|         self.assertEqual(math.ceil(FloatLike(-1.0)), -1.0)
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def testCopysign(self):
 | |
|         self.assertEqual(math.copysign(1, 42), 1.0)
 | |
|         self.assertEqual(math.copysign(0., 42), 0.0)
 | |
|         self.assertEqual(math.copysign(1., -42), -1.0)
 | |
|         self.assertEqual(math.copysign(3, 0.), 3.0)
 | |
|         self.assertEqual(math.copysign(4., -0.), -4.0)
 | |
| 
 | |
|         self.assertRaises(TypeError, math.copysign)
 | |
|         # copysign should let us distinguish signs of zeros
 | |
|         self.assertEqual(math.copysign(1., 0.), 1.)
 | |
|         self.assertEqual(math.copysign(1., -0.), -1.)
 | |
|         self.assertEqual(math.copysign(INF, 0.), INF)
 | |
|         self.assertEqual(math.copysign(INF, -0.), NINF)
 | |
|         self.assertEqual(math.copysign(NINF, 0.), INF)
 | |
|         self.assertEqual(math.copysign(NINF, -0.), NINF)
 | |
|         # and of infinities
 | |
|         self.assertEqual(math.copysign(1., INF), 1.)
 | |
|         self.assertEqual(math.copysign(1., NINF), -1.)
 | |
|         self.assertEqual(math.copysign(INF, INF), INF)
 | |
|         self.assertEqual(math.copysign(INF, NINF), NINF)
 | |
|         self.assertEqual(math.copysign(NINF, INF), INF)
 | |
|         self.assertEqual(math.copysign(NINF, NINF), NINF)
 | |
|         self.assertTrue(math.isnan(math.copysign(NAN, 1.)))
 | |
|         self.assertTrue(math.isnan(math.copysign(NAN, INF)))
 | |
|         self.assertTrue(math.isnan(math.copysign(NAN, NINF)))
 | |
|         self.assertTrue(math.isnan(math.copysign(NAN, NAN)))
 | |
|         # copysign(INF, NAN) may be INF or it may be NINF, since
 | |
|         # we don't know whether the sign bit of NAN is set on any
 | |
|         # given platform.
 | |
|         self.assertTrue(math.isinf(math.copysign(INF, NAN)))
 | |
|         # similarly, copysign(2., NAN) could be 2. or -2.
 | |
|         self.assertEqual(abs(math.copysign(2., NAN)), 2.)
 | |
| 
 | |
|     def testCos(self):
 | |
|         self.assertRaises(TypeError, math.cos)
 | |
|         self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0, abs_tol=math.ulp(1))
 | |
|         self.ftest('cos(0)', math.cos(0), 1)
 | |
|         self.ftest('cos(pi/2)', math.cos(math.pi/2), 0, abs_tol=math.ulp(1))
 | |
|         self.ftest('cos(pi)', math.cos(math.pi), -1)
 | |
|         try:
 | |
|             self.assertTrue(math.isnan(math.cos(INF)))
 | |
|             self.assertTrue(math.isnan(math.cos(NINF)))
 | |
|         except ValueError:
 | |
|             self.assertRaises(ValueError, math.cos, INF)
 | |
|             self.assertRaises(ValueError, math.cos, NINF)
 | |
|         self.assertTrue(math.isnan(math.cos(NAN)))
 | |
| 
 | |
|     @unittest.skipIf(sys.platform == 'win32' and platform.machine() in ('ARM', 'ARM64'),
 | |
|                     "Windows UCRT is off by 2 ULP this test requires accuracy within 1 ULP")
 | |
|     def testCosh(self):
 | |
|         self.assertRaises(TypeError, math.cosh)
 | |
|         self.ftest('cosh(0)', math.cosh(0), 1)
 | |
|         self.ftest('cosh(2)-2*cosh(1)**2', math.cosh(2)-2*math.cosh(1)**2, -1) # Thanks to Lambert
 | |
|         self.assertEqual(math.cosh(INF), INF)
 | |
|         self.assertEqual(math.cosh(NINF), INF)
 | |
|         self.assertTrue(math.isnan(math.cosh(NAN)))
 | |
| 
 | |
|     def testDegrees(self):
 | |
|         self.assertRaises(TypeError, math.degrees)
 | |
|         self.ftest('degrees(pi)', math.degrees(math.pi), 180.0)
 | |
|         self.ftest('degrees(pi/2)', math.degrees(math.pi/2), 90.0)
 | |
|         self.ftest('degrees(-pi/4)', math.degrees(-math.pi/4), -45.0)
 | |
|         self.ftest('degrees(0)', math.degrees(0), 0)
 | |
| 
 | |
|     def testExp(self):
 | |
|         self.assertRaises(TypeError, math.exp)
 | |
|         self.ftest('exp(-1)', math.exp(-1), 1/math.e)
 | |
|         self.ftest('exp(0)', math.exp(0), 1)
 | |
|         self.ftest('exp(1)', math.exp(1), math.e)
 | |
|         self.assertEqual(math.exp(INF), INF)
 | |
|         self.assertEqual(math.exp(NINF), 0.)
 | |
|         self.assertTrue(math.isnan(math.exp(NAN)))
 | |
|         self.assertRaises(OverflowError, math.exp, 1000000)
 | |
| 
 | |
|     def testExp2(self):
 | |
|         self.assertRaises(TypeError, math.exp2)
 | |
|         self.ftest('exp2(-1)', math.exp2(-1), 0.5)
 | |
|         self.ftest('exp2(0)', math.exp2(0), 1)
 | |
|         self.ftest('exp2(1)', math.exp2(1), 2)
 | |
|         self.ftest('exp2(2.3)', math.exp2(2.3), 4.924577653379665)
 | |
|         self.assertEqual(math.exp2(INF), INF)
 | |
|         self.assertEqual(math.exp2(NINF), 0.)
 | |
|         self.assertTrue(math.isnan(math.exp2(NAN)))
 | |
|         self.assertRaises(OverflowError, math.exp2, 1000000)
 | |
| 
 | |
|     def testFabs(self):
 | |
|         self.assertRaises(TypeError, math.fabs)
 | |
|         self.ftest('fabs(-1)', math.fabs(-1), 1)
 | |
|         self.ftest('fabs(0)', math.fabs(0), 0)
 | |
|         self.ftest('fabs(1)', math.fabs(1), 1)
 | |
| 
 | |
|     def testFactorial(self):
 | |
|         self.assertEqual(math.factorial(0), 1)
 | |
|         total = 1
 | |
|         for i in range(1, 1000):
 | |
|             total *= i
 | |
|             self.assertEqual(math.factorial(i), total)
 | |
|             self.assertEqual(math.factorial(i), py_factorial(i))
 | |
|         self.assertRaises(ValueError, math.factorial, -1)
 | |
|         self.assertRaises(ValueError, math.factorial, -10**100)
 | |
| 
 | |
|     def testFactorialNonIntegers(self):
 | |
|         self.assertRaises(TypeError, math.factorial, 5.0)
 | |
|         self.assertRaises(TypeError, math.factorial, 5.2)
 | |
|         self.assertRaises(TypeError, math.factorial, -1.0)
 | |
|         self.assertRaises(TypeError, math.factorial, -1e100)
 | |
|         self.assertRaises(TypeError, math.factorial, decimal.Decimal('5'))
 | |
|         self.assertRaises(TypeError, math.factorial, decimal.Decimal('5.2'))
 | |
|         self.assertRaises(TypeError, math.factorial, "5")
 | |
| 
 | |
|     # Other implementations may place different upper bounds.
 | |
|     @support.cpython_only
 | |
|     def testFactorialHugeInputs(self):
 | |
|         # Currently raises OverflowError for inputs that are too large
 | |
|         # to fit into a C long.
 | |
|         self.assertRaises(OverflowError, math.factorial, 10**100)
 | |
|         self.assertRaises(TypeError, math.factorial, 1e100)
 | |
| 
 | |
|     def testFloor(self):
 | |
|         self.assertRaises(TypeError, math.floor)
 | |
|         self.assertEqual(int, type(math.floor(0.5)))
 | |
|         self.assertEqual(math.floor(0.5), 0)
 | |
|         self.assertEqual(math.floor(1.0), 1)
 | |
|         self.assertEqual(math.floor(1.5), 1)
 | |
|         self.assertEqual(math.floor(-0.5), -1)
 | |
|         self.assertEqual(math.floor(-1.0), -1)
 | |
|         self.assertEqual(math.floor(-1.5), -2)
 | |
|         #self.assertEqual(math.ceil(INF), INF)
 | |
|         #self.assertEqual(math.ceil(NINF), NINF)
 | |
|         #self.assertTrue(math.isnan(math.floor(NAN)))
 | |
| 
 | |
|         class TestFloorIsNone(float):
 | |
|             __floor__ = None
 | |
|         class TestFloor:
 | |
|             def __floor__(self):
 | |
|                 return 42
 | |
|         class FloatFloor(float):
 | |
|             def __floor__(self):
 | |
|                 return 42
 | |
|         class TestNoFloor:
 | |
|             pass
 | |
|         class TestBadFloor:
 | |
|             __floor__ = BadDescr()
 | |
|         self.assertEqual(math.floor(TestFloor()), 42)
 | |
|         self.assertEqual(math.floor(FloatFloor()), 42)
 | |
|         self.assertEqual(math.floor(FloatLike(41.9)), 41)
 | |
|         self.assertRaises(TypeError, math.floor, TestNoFloor())
 | |
|         self.assertRaises(ValueError, math.floor, TestBadFloor())
 | |
|         self.assertRaises(TypeError, math.floor, TestFloorIsNone(3.5))
 | |
| 
 | |
|         t = TestNoFloor()
 | |
|         t.__floor__ = lambda *args: args
 | |
|         self.assertRaises(TypeError, math.floor, t)
 | |
|         self.assertRaises(TypeError, math.floor, t, 0)
 | |
| 
 | |
|         self.assertEqual(math.floor(FloatLike(+1.0)), +1.0)
 | |
|         self.assertEqual(math.floor(FloatLike(-1.0)), -1.0)
 | |
| 
 | |
|     def testFmod(self):
 | |
|         self.assertRaises(TypeError, math.fmod)
 | |
|         self.ftest('fmod(10, 1)', math.fmod(10, 1), 0.0)
 | |
|         self.ftest('fmod(10, 0.5)', math.fmod(10, 0.5), 0.0)
 | |
|         self.ftest('fmod(10, 1.5)', math.fmod(10, 1.5), 1.0)
 | |
|         self.ftest('fmod(-10, 1)', math.fmod(-10, 1), -0.0)
 | |
|         self.ftest('fmod(-10, 0.5)', math.fmod(-10, 0.5), -0.0)
 | |
|         self.ftest('fmod(-10, 1.5)', math.fmod(-10, 1.5), -1.0)
 | |
|         self.assertTrue(math.isnan(math.fmod(NAN, 1.)))
 | |
|         self.assertTrue(math.isnan(math.fmod(1., NAN)))
 | |
|         self.assertTrue(math.isnan(math.fmod(NAN, NAN)))
 | |
|         self.assertRaises(ValueError, math.fmod, 1., 0.)
 | |
|         self.assertRaises(ValueError, math.fmod, INF, 1.)
 | |
|         self.assertRaises(ValueError, math.fmod, NINF, 1.)
 | |
|         self.assertRaises(ValueError, math.fmod, INF, 0.)
 | |
|         self.assertEqual(math.fmod(3.0, INF), 3.0)
 | |
|         self.assertEqual(math.fmod(-3.0, INF), -3.0)
 | |
|         self.assertEqual(math.fmod(3.0, NINF), 3.0)
 | |
|         self.assertEqual(math.fmod(-3.0, NINF), -3.0)
 | |
|         self.assertEqual(math.fmod(0.0, 3.0), 0.0)
 | |
|         self.assertEqual(math.fmod(0.0, NINF), 0.0)
 | |
|         self.assertRaises(ValueError, math.fmod, INF, INF)
 | |
| 
 | |
|     def testFrexp(self):
 | |
|         self.assertRaises(TypeError, math.frexp)
 | |
| 
 | |
|         def testfrexp(name, result, expected):
 | |
|             (mant, exp), (emant, eexp) = result, expected
 | |
|             if abs(mant-emant) > eps or exp != eexp:
 | |
|                 self.fail('%s returned %r, expected %r'%\
 | |
|                           (name, result, expected))
 | |
| 
 | |
|         testfrexp('frexp(-1)', math.frexp(-1), (-0.5, 1))
 | |
|         testfrexp('frexp(0)', math.frexp(0), (0, 0))
 | |
|         testfrexp('frexp(1)', math.frexp(1), (0.5, 1))
 | |
|         testfrexp('frexp(2)', math.frexp(2), (0.5, 2))
 | |
| 
 | |
|         self.assertEqual(math.frexp(INF)[0], INF)
 | |
|         self.assertEqual(math.frexp(NINF)[0], NINF)
 | |
|         self.assertTrue(math.isnan(math.frexp(NAN)[0]))
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     @unittest.skipIf(HAVE_DOUBLE_ROUNDING,
 | |
|                          "fsum is not exact on machines with double rounding")
 | |
|     def testFsum(self):
 | |
|         # math.fsum relies on exact rounding for correct operation.
 | |
|         # There's a known problem with IA32 floating-point that causes
 | |
|         # inexact rounding in some situations, and will cause the
 | |
|         # math.fsum tests below to fail; see issue #2937.  On non IEEE
 | |
|         # 754 platforms, and on IEEE 754 platforms that exhibit the
 | |
|         # problem described in issue #2937, we simply skip the whole
 | |
|         # test.
 | |
| 
 | |
|         # Python version of math.fsum, for comparison.  Uses a
 | |
|         # different algorithm based on frexp, ldexp and integer
 | |
|         # arithmetic.
 | |
|         from sys import float_info
 | |
|         mant_dig = float_info.mant_dig
 | |
|         etiny = float_info.min_exp - mant_dig
 | |
| 
 | |
|         def msum(iterable):
 | |
|             """Full precision summation.  Compute sum(iterable) without any
 | |
|             intermediate accumulation of error.  Based on the 'lsum' function
 | |
|             at https://code.activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-full-p/
 | |
| 
 | |
|             """
 | |
|             tmant, texp = 0, 0
 | |
|             for x in iterable:
 | |
|                 mant, exp = math.frexp(x)
 | |
|                 mant, exp = int(math.ldexp(mant, mant_dig)), exp - mant_dig
 | |
|                 if texp > exp:
 | |
|                     tmant <<= texp-exp
 | |
|                     texp = exp
 | |
|                 else:
 | |
|                     mant <<= exp-texp
 | |
|                 tmant += mant
 | |
|             # Round tmant * 2**texp to a float.  The original recipe
 | |
|             # used float(str(tmant)) * 2.0**texp for this, but that's
 | |
|             # a little unsafe because str -> float conversion can't be
 | |
|             # relied upon to do correct rounding on all platforms.
 | |
|             tail = max(len(bin(abs(tmant)))-2 - mant_dig, etiny - texp)
 | |
|             if tail > 0:
 | |
|                 h = 1 << (tail-1)
 | |
|                 tmant = tmant // (2*h) + bool(tmant & h and tmant & 3*h-1)
 | |
|                 texp += tail
 | |
|             return math.ldexp(tmant, texp)
 | |
| 
 | |
|         test_values = [
 | |
|             ([], 0.0),
 | |
|             ([0.0], 0.0),
 | |
|             ([1e100, 1.0, -1e100, 1e-100, 1e50, -1.0, -1e50], 1e-100),
 | |
|             ([1e100, 1.0, -1e100, 1e-100, 1e50, -1, -1e50], 1e-100),
 | |
|             ([2.0**53, -0.5, -2.0**-54], 2.0**53-1.0),
 | |
|             ([2.0**53, 1.0, 2.0**-100], 2.0**53+2.0),
 | |
|             ([2.0**53+10.0, 1.0, 2.0**-100], 2.0**53+12.0),
 | |
|             ([2.0**53-4.0, 0.5, 2.0**-54], 2.0**53-3.0),
 | |
|             ([1./n for n in range(1, 1001)],
 | |
|              float.fromhex('0x1.df11f45f4e61ap+2')),
 | |
|             ([(-1.)**n/n for n in range(1, 1001)],
 | |
|              float.fromhex('-0x1.62a2af1bd3624p-1')),
 | |
|             ([1e16, 1., 1e-16], 10000000000000002.0),
 | |
|             ([1e16-2., 1.-2.**-53, -(1e16-2.), -(1.-2.**-53)], 0.0),
 | |
|             # exercise code for resizing partials array
 | |
|             ([2.**n - 2.**(n+50) + 2.**(n+52) for n in range(-1074, 972, 2)] +
 | |
|              [-2.**1022],
 | |
|              float.fromhex('0x1.5555555555555p+970')),
 | |
|             ]
 | |
| 
 | |
|         # Telescoping sum, with exact differences (due to Sterbenz)
 | |
|         terms = [1.7**i for i in range(1001)]
 | |
|         test_values.append((
 | |
|             [terms[i+1] - terms[i] for i in range(1000)] + [-terms[1000]],
 | |
|             -terms[0]
 | |
|         ))
 | |
| 
 | |
|         for i, (vals, expected) in enumerate(test_values):
 | |
|             try:
 | |
|                 actual = math.fsum(vals)
 | |
|             except OverflowError:
 | |
|                 self.fail("test %d failed: got OverflowError, expected %r "
 | |
|                           "for math.fsum(%.100r)" % (i, expected, vals))
 | |
|             except ValueError:
 | |
|                 self.fail("test %d failed: got ValueError, expected %r "
 | |
|                           "for math.fsum(%.100r)" % (i, expected, vals))
 | |
|             self.assertEqual(actual, expected)
 | |
| 
 | |
|         from random import random, gauss, shuffle
 | |
|         for j in range(1000):
 | |
|             vals = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10
 | |
|             s = 0
 | |
|             for i in range(200):
 | |
|                 v = gauss(0, random()) ** 7 - s
 | |
|                 s += v
 | |
|                 vals.append(v)
 | |
|             shuffle(vals)
 | |
| 
 | |
|             s = msum(vals)
 | |
|             self.assertEqual(msum(vals), math.fsum(vals))
 | |
| 
 | |
|         self.assertEqual(math.fsum([1.0, math.inf]), math.inf)
 | |
|         self.assertTrue(math.isnan(math.fsum([math.nan, 1.0])))
 | |
|         self.assertEqual(math.fsum([1e100, FloatLike(1.0), -1e100, 1e-100,
 | |
|                                     1e50, FloatLike(-1.0), -1e50]), 1e-100)
 | |
|         self.assertRaises(OverflowError, math.fsum, [1e+308, 1e+308])
 | |
|         self.assertRaises(ValueError, math.fsum, [math.inf, -math.inf])
 | |
|         self.assertRaises(TypeError, math.fsum, ['spam'])
 | |
|         self.assertRaises(TypeError, math.fsum, 1)
 | |
|         self.assertRaises(OverflowError, math.fsum, [10**1000])
 | |
| 
 | |
|         def bad_iter():
 | |
|             yield 1.0
 | |
|             raise ZeroDivisionError
 | |
| 
 | |
|         self.assertRaises(ZeroDivisionError, math.fsum, bad_iter())
 | |
| 
 | |
|     def testGcd(self):
 | |
|         gcd = math.gcd
 | |
|         self.assertEqual(gcd(0, 0), 0)
 | |
|         self.assertEqual(gcd(1, 0), 1)
 | |
|         self.assertEqual(gcd(-1, 0), 1)
 | |
|         self.assertEqual(gcd(0, 1), 1)
 | |
|         self.assertEqual(gcd(0, -1), 1)
 | |
|         self.assertEqual(gcd(7, 1), 1)
 | |
|         self.assertEqual(gcd(7, -1), 1)
 | |
|         self.assertEqual(gcd(-23, 15), 1)
 | |
|         self.assertEqual(gcd(120, 84), 12)
 | |
|         self.assertEqual(gcd(84, -120), 12)
 | |
|         self.assertEqual(gcd(1216342683557601535506311712,
 | |
|                              436522681849110124616458784), 32)
 | |
| 
 | |
|         x = 434610456570399902378880679233098819019853229470286994367836600566
 | |
|         y = 1064502245825115327754847244914921553977
 | |
|         for c in (652560,
 | |
|                   576559230871654959816130551884856912003141446781646602790216406874):
 | |
|             a = x * c
 | |
|             b = y * c
 | |
|             self.assertEqual(gcd(a, b), c)
 | |
|             self.assertEqual(gcd(b, a), c)
 | |
|             self.assertEqual(gcd(-a, b), c)
 | |
|             self.assertEqual(gcd(b, -a), c)
 | |
|             self.assertEqual(gcd(a, -b), c)
 | |
|             self.assertEqual(gcd(-b, a), c)
 | |
|             self.assertEqual(gcd(-a, -b), c)
 | |
|             self.assertEqual(gcd(-b, -a), c)
 | |
| 
 | |
|         self.assertEqual(gcd(), 0)
 | |
|         self.assertEqual(gcd(120), 120)
 | |
|         self.assertEqual(gcd(-120), 120)
 | |
|         self.assertEqual(gcd(120, 84, 102), 6)
 | |
|         self.assertEqual(gcd(120, 1, 84), 1)
 | |
| 
 | |
|         self.assertRaises(TypeError, gcd, 120.0)
 | |
|         self.assertRaises(TypeError, gcd, 120.0, 84)
 | |
|         self.assertRaises(TypeError, gcd, 120, 84.0)
 | |
|         self.assertRaises(TypeError, gcd, 120, 1, 84.0)
 | |
|         self.assertEqual(gcd(MyIndexable(120), MyIndexable(84)), 12)
 | |
| 
 | |
|     def testHypot(self):
 | |
|         from decimal import Decimal
 | |
|         from fractions import Fraction
 | |
| 
 | |
|         hypot = math.hypot
 | |
| 
 | |
|         # Test different numbers of arguments (from zero to five)
 | |
|         # against a straightforward pure python implementation
 | |
|         args = math.e, math.pi, math.sqrt(2.0), math.gamma(3.5), math.sin(2.1)
 | |
|         for i in range(len(args)+1):
 | |
|             self.assertAlmostEqual(
 | |
|                 hypot(*args[:i]),
 | |
|                 math.sqrt(sum(s**2 for s in args[:i]))
 | |
|             )
 | |
| 
 | |
|         # Test allowable types (those with __float__)
 | |
|         self.assertEqual(hypot(12.0, 5.0), 13.0)
 | |
|         self.assertEqual(hypot(12, 5), 13)
 | |
|         self.assertEqual(hypot(0.75, -1), 1.25)
 | |
|         self.assertEqual(hypot(-1, 0.75), 1.25)
 | |
|         self.assertEqual(hypot(0.75, FloatLike(-1.)), 1.25)
 | |
|         self.assertEqual(hypot(FloatLike(-1.), 0.75), 1.25)
 | |
|         self.assertEqual(hypot(Decimal(12), Decimal(5)), 13)
 | |
|         self.assertEqual(hypot(Fraction(12, 32), Fraction(5, 32)), Fraction(13, 32))
 | |
|         self.assertEqual(hypot(True, False, True, True, True), 2.0)
 | |
| 
 | |
|         # Test corner cases
 | |
|         self.assertEqual(hypot(0.0, 0.0), 0.0)     # Max input is zero
 | |
|         self.assertEqual(hypot(-10.5), 10.5)       # Negative input
 | |
|         self.assertEqual(hypot(), 0.0)             # Negative input
 | |
|         self.assertEqual(1.0,
 | |
|             math.copysign(1.0, hypot(-0.0))        # Convert negative zero to positive zero
 | |
|         )
 | |
|         self.assertEqual(                          # Handling of moving max to the end
 | |
|             hypot(1.5, 1.5, 0.5),
 | |
|             hypot(1.5, 0.5, 1.5),
 | |
|         )
 | |
| 
 | |
|         # Test handling of bad arguments
 | |
|         with self.assertRaises(TypeError):         # Reject keyword args
 | |
|             hypot(x=1)
 | |
|         with self.assertRaises(TypeError):         # Reject values without __float__
 | |
|             hypot(1.1, 'string', 2.2)
 | |
|         int_too_big_for_float = 10 ** (sys.float_info.max_10_exp + 5)
 | |
|         with self.assertRaises((ValueError, OverflowError)):
 | |
|             hypot(1, int_too_big_for_float)
 | |
| 
 | |
|         # Any infinity gives positive infinity.
 | |
|         self.assertEqual(hypot(INF), INF)
 | |
|         self.assertEqual(hypot(0, INF), INF)
 | |
|         self.assertEqual(hypot(10, INF), INF)
 | |
|         self.assertEqual(hypot(-10, INF), INF)
 | |
|         self.assertEqual(hypot(NAN, INF), INF)
 | |
|         self.assertEqual(hypot(INF, NAN), INF)
 | |
|         self.assertEqual(hypot(NINF, NAN), INF)
 | |
|         self.assertEqual(hypot(NAN, NINF), INF)
 | |
|         self.assertEqual(hypot(-INF, INF), INF)
 | |
|         self.assertEqual(hypot(-INF, -INF), INF)
 | |
|         self.assertEqual(hypot(10, -INF), INF)
 | |
| 
 | |
|         # If no infinity, any NaN gives a NaN.
 | |
|         self.assertTrue(math.isnan(hypot(NAN)))
 | |
|         self.assertTrue(math.isnan(hypot(0, NAN)))
 | |
|         self.assertTrue(math.isnan(hypot(NAN, 10)))
 | |
|         self.assertTrue(math.isnan(hypot(10, NAN)))
 | |
|         self.assertTrue(math.isnan(hypot(NAN, NAN)))
 | |
|         self.assertTrue(math.isnan(hypot(NAN)))
 | |
| 
 | |
|         # Verify scaling for extremely large values
 | |
|         fourthmax = FLOAT_MAX / 4.0
 | |
|         for n in range(32):
 | |
|             self.assertTrue(math.isclose(hypot(*([fourthmax]*n)),
 | |
|                                          fourthmax * math.sqrt(n)))
 | |
| 
 | |
|         # Verify scaling for extremely small values
 | |
|         for exp in range(32):
 | |
|             scale = FLOAT_MIN / 2.0 ** exp
 | |
|             self.assertEqual(math.hypot(4*scale, 3*scale), 5*scale)
 | |
| 
 | |
|         self.assertRaises(TypeError, math.hypot, *([1.0]*18), 'spam')
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     @unittest.skipIf(HAVE_DOUBLE_ROUNDING,
 | |
|                      "hypot() loses accuracy on machines with double rounding")
 | |
|     def testHypotAccuracy(self):
 | |
|         # Verify improved accuracy in cases that were known to be inaccurate.
 | |
|         #
 | |
|         # The new algorithm's accuracy depends on IEEE 754 arithmetic
 | |
|         # guarantees, on having the usual ROUND HALF EVEN rounding mode, on
 | |
|         # the system not having double rounding due to extended precision,
 | |
|         # and on the compiler maintaining the specified order of operations.
 | |
|         #
 | |
|         # This test is known to succeed on most of our builds.  If it fails
 | |
|         # some build, we either need to add another skipIf if the cause is
 | |
|         # identifiable; otherwise, we can remove this test entirely.
 | |
| 
 | |
|         hypot = math.hypot
 | |
|         Decimal = decimal.Decimal
 | |
|         high_precision = decimal.Context(prec=500)
 | |
| 
 | |
|         for hx, hy in [
 | |
|             # Cases with a 1 ulp error in Python 3.7 compiled with Clang
 | |
|             ('0x1.10e89518dca48p+29', '0x1.1970f7565b7efp+30'),
 | |
|             ('0x1.10106eb4b44a2p+29', '0x1.ef0596cdc97f8p+29'),
 | |
|             ('0x1.459c058e20bb7p+30', '0x1.993ca009b9178p+29'),
 | |
|             ('0x1.378371ae67c0cp+30', '0x1.fbe6619854b4cp+29'),
 | |
|             ('0x1.f4cd0574fb97ap+29', '0x1.50fe31669340ep+30'),
 | |
|             ('0x1.494b2cdd3d446p+29', '0x1.212a5367b4c7cp+29'),
 | |
|             ('0x1.f84e649f1e46dp+29', '0x1.1fa56bef8eec4p+30'),
 | |
|             ('0x1.2e817edd3d6fap+30', '0x1.eb0814f1e9602p+29'),
 | |
|             ('0x1.0d3a6e3d04245p+29', '0x1.32a62fea52352p+30'),
 | |
|             ('0x1.888e19611bfc5p+29', '0x1.52b8e70b24353p+29'),
 | |
| 
 | |
|             # Cases with 2 ulp error in Python 3.8
 | |
|             ('0x1.538816d48a13fp+29', '0x1.7967c5ca43e16p+29'),
 | |
|             ('0x1.57b47b7234530p+29', '0x1.74e2c7040e772p+29'),
 | |
|             ('0x1.821b685e9b168p+30', '0x1.677dc1c1e3dc6p+29'),
 | |
|             ('0x1.9e8247f67097bp+29', '0x1.24bd2dc4f4baep+29'),
 | |
|             ('0x1.b73b59e0cb5f9p+29', '0x1.da899ab784a97p+28'),
 | |
|             ('0x1.94a8d2842a7cfp+30', '0x1.326a51d4d8d8ap+30'),
 | |
|             ('0x1.e930b9cd99035p+29', '0x1.5a1030e18dff9p+30'),
 | |
|             ('0x1.1592bbb0e4690p+29', '0x1.a9c337b33fb9ap+29'),
 | |
|             ('0x1.1243a50751fd4p+29', '0x1.a5a10175622d9p+29'),
 | |
|             ('0x1.57a8596e74722p+30', '0x1.42d1af9d04da9p+30'),
 | |
| 
 | |
|             # Cases with 1 ulp error in version fff3c28052e6b0
 | |
|             ('0x1.ee7dbd9565899p+29', '0x1.7ab4d6fc6e4b4p+29'),
 | |
|             ('0x1.5c6bfbec5c4dcp+30', '0x1.02511184b4970p+30'),
 | |
|             ('0x1.59dcebba995cap+30', '0x1.50ca7e7c38854p+29'),
 | |
|             ('0x1.768cdd94cf5aap+29', '0x1.9cfdc5571d38ep+29'),
 | |
|             ('0x1.dcf137d60262ep+29', '0x1.1101621990b3ep+30'),
 | |
|             ('0x1.3a2d006e288b0p+30', '0x1.e9a240914326cp+29'),
 | |
|             ('0x1.62a32f7f53c61p+29', '0x1.47eb6cd72684fp+29'),
 | |
|             ('0x1.d3bcb60748ef2p+29', '0x1.3f13c4056312cp+30'),
 | |
|             ('0x1.282bdb82f17f3p+30', '0x1.640ba4c4eed3ap+30'),
 | |
|             ('0x1.89d8c423ea0c6p+29', '0x1.d35dcfe902bc3p+29'),
 | |
|         ]:
 | |
|             x = float.fromhex(hx)
 | |
|             y = float.fromhex(hy)
 | |
|             with self.subTest(hx=hx, hy=hy, x=x, y=y):
 | |
|                 with decimal.localcontext(high_precision):
 | |
|                     z = float((Decimal(x)**2 + Decimal(y)**2).sqrt())
 | |
|                 self.assertEqual(hypot(x, y), z)
 | |
| 
 | |
|     def testDist(self):
 | |
|         from decimal import Decimal as D
 | |
|         from fractions import Fraction as F
 | |
| 
 | |
|         dist = math.dist
 | |
|         sqrt = math.sqrt
 | |
| 
 | |
|         # Simple exact cases
 | |
|         self.assertEqual(dist((1.0, 2.0, 3.0), (4.0, 2.0, -1.0)), 5.0)
 | |
|         self.assertEqual(dist((1, 2, 3), (4, 2, -1)), 5.0)
 | |
| 
 | |
|         # Test different numbers of arguments (from zero to nine)
 | |
|         # against a straightforward pure python implementation
 | |
|         for i in range(9):
 | |
|             for j in range(5):
 | |
|                 p = tuple(random.uniform(-5, 5) for k in range(i))
 | |
|                 q = tuple(random.uniform(-5, 5) for k in range(i))
 | |
|                 self.assertAlmostEqual(
 | |
|                     dist(p, q),
 | |
|                     sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
 | |
|                 )
 | |
| 
 | |
|         # Test non-tuple inputs
 | |
|         self.assertEqual(dist([1.0, 2.0, 3.0], [4.0, 2.0, -1.0]), 5.0)
 | |
|         self.assertEqual(dist(iter([1.0, 2.0, 3.0]), iter([4.0, 2.0, -1.0])), 5.0)
 | |
| 
 | |
|         # Test allowable types (those with __float__)
 | |
|         self.assertEqual(dist((14.0, 1.0), (2.0, -4.0)), 13.0)
 | |
|         self.assertEqual(dist((14, 1), (2, -4)), 13)
 | |
|         self.assertEqual(dist((FloatLike(14.), 1), (2, -4)), 13)
 | |
|         self.assertEqual(dist((11, 1), (FloatLike(-1.), -4)), 13)
 | |
|         self.assertEqual(dist((14, FloatLike(-1.)), (2, -6)), 13)
 | |
|         self.assertEqual(dist((14, -1), (2, -6)), 13)
 | |
|         self.assertEqual(dist((D(14), D(1)), (D(2), D(-4))), D(13))
 | |
|         self.assertEqual(dist((F(14, 32), F(1, 32)), (F(2, 32), F(-4, 32))),
 | |
|                          F(13, 32))
 | |
|         self.assertEqual(dist((True, True, False, False, True, True),
 | |
|                               (True, False, True, False, False, False)),
 | |
|                          2.0)
 | |
| 
 | |
|         # Test corner cases
 | |
|         self.assertEqual(dist((13.25, 12.5, -3.25),
 | |
|                               (13.25, 12.5, -3.25)),
 | |
|                          0.0)                      # Distance with self is zero
 | |
|         self.assertEqual(dist((), ()), 0.0)        # Zero-dimensional case
 | |
|         self.assertEqual(1.0,                      # Convert negative zero to positive zero
 | |
|             math.copysign(1.0, dist((-0.0,), (0.0,)))
 | |
|         )
 | |
|         self.assertEqual(1.0,                      # Convert negative zero to positive zero
 | |
|             math.copysign(1.0, dist((0.0,), (-0.0,)))
 | |
|         )
 | |
|         self.assertEqual(                          # Handling of moving max to the end
 | |
|             dist((1.5, 1.5, 0.5), (0, 0, 0)),
 | |
|             dist((1.5, 0.5, 1.5), (0, 0, 0))
 | |
|         )
 | |
| 
 | |
|         # Verify tuple subclasses are allowed
 | |
|         class T(tuple):
 | |
|             pass
 | |
|         self.assertEqual(dist(T((1, 2, 3)), ((4, 2, -1))), 5.0)
 | |
| 
 | |
|         # Test handling of bad arguments
 | |
|         with self.assertRaises(TypeError):         # Reject keyword args
 | |
|             dist(p=(1, 2, 3), q=(4, 5, 6))
 | |
|         with self.assertRaises(TypeError):         # Too few args
 | |
|             dist((1, 2, 3))
 | |
|         with self.assertRaises(TypeError):         # Too many args
 | |
|             dist((1, 2, 3), (4, 5, 6), (7, 8, 9))
 | |
|         with self.assertRaises(TypeError):         # Scalars not allowed
 | |
|             dist(1, 2)
 | |
|         with self.assertRaises(TypeError):         # Reject values without __float__
 | |
|             dist((1.1, 'string', 2.2), (1, 2, 3))
 | |
|         with self.assertRaises(ValueError):        # Check dimension agree
 | |
|             dist((1, 2, 3, 4), (5, 6, 7))
 | |
|         with self.assertRaises(ValueError):        # Check dimension agree
 | |
|             dist((1, 2, 3), (4, 5, 6, 7))
 | |
|         with self.assertRaises(TypeError):
 | |
|             dist((1,)*17 + ("spam",), (1,)*18)
 | |
|         with self.assertRaises(TypeError):         # Rejects invalid types
 | |
|             dist("abc", "xyz")
 | |
|         int_too_big_for_float = 10 ** (sys.float_info.max_10_exp + 5)
 | |
|         with self.assertRaises((ValueError, OverflowError)):
 | |
|             dist((1, int_too_big_for_float), (2, 3))
 | |
|         with self.assertRaises((ValueError, OverflowError)):
 | |
|             dist((2, 3), (1, int_too_big_for_float))
 | |
|         with self.assertRaises(TypeError):
 | |
|             dist((1,), 2)
 | |
|         with self.assertRaises(TypeError):
 | |
|             dist([1], 2)
 | |
| 
 | |
|         class BadFloat:
 | |
|             __float__ = BadDescr()
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             dist([1], [BadFloat()])
 | |
| 
 | |
|         # Verify that the one dimensional case is equivalent to abs()
 | |
|         for i in range(20):
 | |
|             p, q = random.random(), random.random()
 | |
|             self.assertEqual(dist((p,), (q,)), abs(p - q))
 | |
| 
 | |
|         # Test special values
 | |
|         values = [NINF, -10.5, -0.0, 0.0, 10.5, INF, NAN]
 | |
|         for p in itertools.product(values, repeat=3):
 | |
|             for q in itertools.product(values, repeat=3):
 | |
|                 diffs = [px - qx for px, qx in zip(p, q)]
 | |
|                 if any(map(math.isinf, diffs)):
 | |
|                     # Any infinite difference gives positive infinity.
 | |
|                     self.assertEqual(dist(p, q), INF)
 | |
|                 elif any(map(math.isnan, diffs)):
 | |
|                     # If no infinity, any NaN gives a NaN.
 | |
|                     self.assertTrue(math.isnan(dist(p, q)))
 | |
| 
 | |
|         # Verify scaling for extremely large values
 | |
|         fourthmax = FLOAT_MAX / 4.0
 | |
|         for n in range(32):
 | |
|             p = (fourthmax,) * n
 | |
|             q = (0.0,) * n
 | |
|             self.assertTrue(math.isclose(dist(p, q), fourthmax * math.sqrt(n)))
 | |
|             self.assertTrue(math.isclose(dist(q, p), fourthmax * math.sqrt(n)))
 | |
| 
 | |
|         # Verify scaling for extremely small values
 | |
|         for exp in range(32):
 | |
|             scale = FLOAT_MIN / 2.0 ** exp
 | |
|             p = (4*scale, 3*scale)
 | |
|             q = (0.0, 0.0)
 | |
|             self.assertEqual(math.dist(p, q), 5*scale)
 | |
|             self.assertEqual(math.dist(q, p), 5*scale)
 | |
| 
 | |
|     def test_math_dist_leak(self):
 | |
|         # gh-98897: Check for error handling does not leak memory
 | |
|         with self.assertRaises(ValueError):
 | |
|             math.dist([1, 2], [3, 4, 5])
 | |
| 
 | |
|     def testIsqrt(self):
 | |
|         # Test a variety of inputs, large and small.
 | |
|         test_values = (
 | |
|             list(range(1000))
 | |
|             + list(range(10**6 - 1000, 10**6 + 1000))
 | |
|             + [2**e + i for e in range(60, 200) for i in range(-40, 40)]
 | |
|             + [3**9999, 10**5001]
 | |
|         )
 | |
| 
 | |
|         for value in test_values:
 | |
|             with self.subTest(value=value):
 | |
|                 s = math.isqrt(value)
 | |
|                 self.assertIs(type(s), int)
 | |
|                 self.assertLessEqual(s*s, value)
 | |
|                 self.assertLess(value, (s+1)*(s+1))
 | |
| 
 | |
|         # Negative values
 | |
|         with self.assertRaises(ValueError):
 | |
|             math.isqrt(-1)
 | |
| 
 | |
|         # Integer-like things
 | |
|         s = math.isqrt(True)
 | |
|         self.assertIs(type(s), int)
 | |
|         self.assertEqual(s, 1)
 | |
| 
 | |
|         s = math.isqrt(False)
 | |
|         self.assertIs(type(s), int)
 | |
|         self.assertEqual(s, 0)
 | |
| 
 | |
|         class IntegerLike(object):
 | |
|             def __init__(self, value):
 | |
|                 self.value = value
 | |
| 
 | |
|             def __index__(self):
 | |
|                 return self.value
 | |
| 
 | |
|         s = math.isqrt(IntegerLike(1729))
 | |
|         self.assertIs(type(s), int)
 | |
|         self.assertEqual(s, 41)
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             math.isqrt(IntegerLike(-3))
 | |
| 
 | |
|         # Non-integer-like things
 | |
|         bad_values = [
 | |
|             3.5, "a string", decimal.Decimal("3.5"), 3.5j,
 | |
|             100.0, -4.0,
 | |
|         ]
 | |
|         for value in bad_values:
 | |
|             with self.subTest(value=value):
 | |
|                 with self.assertRaises(TypeError):
 | |
|                     math.isqrt(value)
 | |
| 
 | |
|     @support.bigmemtest(2**32, memuse=0.85)
 | |
|     def test_isqrt_huge(self, size):
 | |
|         if size & 1:
 | |
|             size += 1
 | |
|         v = 1 << size
 | |
|         w = math.isqrt(v)
 | |
|         self.assertEqual(w.bit_length(), size // 2 + 1)
 | |
|         self.assertEqual(w.bit_count(), 1)
 | |
| 
 | |
|     def test_lcm(self):
 | |
|         lcm = math.lcm
 | |
|         self.assertEqual(lcm(0, 0), 0)
 | |
|         self.assertEqual(lcm(1, 0), 0)
 | |
|         self.assertEqual(lcm(-1, 0), 0)
 | |
|         self.assertEqual(lcm(0, 1), 0)
 | |
|         self.assertEqual(lcm(0, -1), 0)
 | |
|         self.assertEqual(lcm(7, 1), 7)
 | |
|         self.assertEqual(lcm(7, -1), 7)
 | |
|         self.assertEqual(lcm(-23, 15), 345)
 | |
|         self.assertEqual(lcm(120, 84), 840)
 | |
|         self.assertEqual(lcm(84, -120), 840)
 | |
|         self.assertEqual(lcm(1216342683557601535506311712,
 | |
|                              436522681849110124616458784),
 | |
|                              16592536571065866494401400422922201534178938447014944)
 | |
| 
 | |
|         x = 43461045657039990237
 | |
|         y = 10645022458251153277
 | |
|         for c in (652560,
 | |
|                   57655923087165495981):
 | |
|             a = x * c
 | |
|             b = y * c
 | |
|             d = x * y * c
 | |
|             self.assertEqual(lcm(a, b), d)
 | |
|             self.assertEqual(lcm(b, a), d)
 | |
|             self.assertEqual(lcm(-a, b), d)
 | |
|             self.assertEqual(lcm(b, -a), d)
 | |
|             self.assertEqual(lcm(a, -b), d)
 | |
|             self.assertEqual(lcm(-b, a), d)
 | |
|             self.assertEqual(lcm(-a, -b), d)
 | |
|             self.assertEqual(lcm(-b, -a), d)
 | |
| 
 | |
|         self.assertEqual(lcm(), 1)
 | |
|         self.assertEqual(lcm(120), 120)
 | |
|         self.assertEqual(lcm(-120), 120)
 | |
|         self.assertEqual(lcm(120, 84, 102), 14280)
 | |
|         self.assertEqual(lcm(120, 0, 84), 0)
 | |
| 
 | |
|         self.assertRaises(TypeError, lcm, 120.0)
 | |
|         self.assertRaises(TypeError, lcm, 120.0, 84)
 | |
|         self.assertRaises(TypeError, lcm, 120, 84.0)
 | |
|         self.assertRaises(TypeError, lcm, 120, 0, 84.0)
 | |
|         self.assertEqual(lcm(MyIndexable(120), MyIndexable(84)), 840)
 | |
| 
 | |
|     def testLdexp(self):
 | |
|         self.assertRaises(TypeError, math.ldexp)
 | |
|         self.assertRaises(TypeError, math.ldexp, 2.0, 1.1)
 | |
|         self.ftest('ldexp(0,1)', math.ldexp(0,1), 0)
 | |
|         self.ftest('ldexp(1,1)', math.ldexp(1,1), 2)
 | |
|         self.ftest('ldexp(1,-1)', math.ldexp(1,-1), 0.5)
 | |
|         self.ftest('ldexp(-1,1)', math.ldexp(-1,1), -2)
 | |
|         self.assertRaises(OverflowError, math.ldexp, 1., 1000000)
 | |
|         self.assertRaises(OverflowError, math.ldexp, -1., 1000000)
 | |
|         self.assertEqual(math.ldexp(1., -1000000), 0.)
 | |
|         self.assertEqual(math.ldexp(-1., -1000000), -0.)
 | |
|         self.assertEqual(math.ldexp(INF, 30), INF)
 | |
|         self.assertEqual(math.ldexp(NINF, -213), NINF)
 | |
|         self.assertTrue(math.isnan(math.ldexp(NAN, 0)))
 | |
| 
 | |
|         # large second argument
 | |
|         for n in [10**5, 10**10, 10**20, 10**40]:
 | |
|             self.assertEqual(math.ldexp(INF, -n), INF)
 | |
|             self.assertEqual(math.ldexp(NINF, -n), NINF)
 | |
|             self.assertEqual(math.ldexp(1., -n), 0.)
 | |
|             self.assertEqual(math.ldexp(-1., -n), -0.)
 | |
|             self.assertEqual(math.ldexp(0., -n), 0.)
 | |
|             self.assertEqual(math.ldexp(-0., -n), -0.)
 | |
|             self.assertTrue(math.isnan(math.ldexp(NAN, -n)))
 | |
| 
 | |
|             self.assertRaises(OverflowError, math.ldexp, 1., n)
 | |
|             self.assertRaises(OverflowError, math.ldexp, -1., n)
 | |
|             self.assertEqual(math.ldexp(0., n), 0.)
 | |
|             self.assertEqual(math.ldexp(-0., n), -0.)
 | |
|             self.assertEqual(math.ldexp(INF, n), INF)
 | |
|             self.assertEqual(math.ldexp(NINF, n), NINF)
 | |
|             self.assertTrue(math.isnan(math.ldexp(NAN, n)))
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def testLdexp_denormal(self):
 | |
|         # Denormal output incorrectly rounded (truncated)
 | |
|         # on some Windows.
 | |
|         self.assertEqual(math.ldexp(6993274598585239, -1126), 1e-323)
 | |
| 
 | |
|     def testLog(self):
 | |
|         self.assertRaises(TypeError, math.log)
 | |
|         self.assertRaises(TypeError, math.log, 1, 2, 3)
 | |
|         self.ftest('log(1/e)', math.log(1/math.e), -1)
 | |
|         self.ftest('log(1)', math.log(1), 0)
 | |
|         self.ftest('log(e)', math.log(math.e), 1)
 | |
|         self.ftest('log(32,2)', math.log(32,2), 5)
 | |
|         self.ftest('log(10**40, 10)', math.log(10**40, 10), 40)
 | |
|         self.ftest('log(10**40, 10**20)', math.log(10**40, 10**20), 2)
 | |
|         self.ftest('log(10**1000)', math.log(10**1000),
 | |
|                    2302.5850929940457)
 | |
|         self.assertRaises(ValueError, math.log, -1.5)
 | |
|         self.assertRaises(ValueError, math.log, -10**1000)
 | |
|         self.assertRaises(ValueError, math.log, 10, -10)
 | |
|         self.assertRaises(ValueError, math.log, NINF)
 | |
|         self.assertEqual(math.log(INF), INF)
 | |
|         self.assertTrue(math.isnan(math.log(NAN)))
 | |
| 
 | |
|     def testLog1p(self):
 | |
|         self.assertRaises(TypeError, math.log1p)
 | |
|         for n in [2, 2**90, 2**300]:
 | |
|             self.assertAlmostEqual(math.log1p(n), math.log1p(float(n)))
 | |
|         self.assertRaises(ValueError, math.log1p, -1)
 | |
|         self.assertEqual(math.log1p(INF), INF)
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def testLog2(self):
 | |
|         self.assertRaises(TypeError, math.log2)
 | |
| 
 | |
|         # Check some integer values
 | |
|         self.assertEqual(math.log2(1), 0.0)
 | |
|         self.assertEqual(math.log2(2), 1.0)
 | |
|         self.assertEqual(math.log2(4), 2.0)
 | |
| 
 | |
|         # Large integer values
 | |
|         self.assertEqual(math.log2(2**1023), 1023.0)
 | |
|         self.assertEqual(math.log2(2**1024), 1024.0)
 | |
|         self.assertEqual(math.log2(2**2000), 2000.0)
 | |
| 
 | |
|         self.assertRaises(ValueError, math.log2, -1.5)
 | |
|         self.assertRaises(ValueError, math.log2, NINF)
 | |
|         self.assertTrue(math.isnan(math.log2(NAN)))
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     # log2() is not accurate enough on Mac OS X Tiger (10.4)
 | |
|     @support.requires_mac_ver(10, 5)
 | |
|     def testLog2Exact(self):
 | |
|         # Check that we get exact equality for log2 of powers of 2.
 | |
|         actual = [math.log2(math.ldexp(1.0, n)) for n in range(-1074, 1024)]
 | |
|         expected = [float(n) for n in range(-1074, 1024)]
 | |
|         self.assertEqual(actual, expected)
 | |
| 
 | |
|     def testLog10(self):
 | |
|         self.assertRaises(TypeError, math.log10)
 | |
|         self.ftest('log10(0.1)', math.log10(0.1), -1)
 | |
|         self.ftest('log10(1)', math.log10(1), 0)
 | |
|         self.ftest('log10(10)', math.log10(10), 1)
 | |
|         self.ftest('log10(10**1000)', math.log10(10**1000), 1000.0)
 | |
|         self.assertRaises(ValueError, math.log10, -1.5)
 | |
|         self.assertRaises(ValueError, math.log10, -10**1000)
 | |
|         self.assertRaises(ValueError, math.log10, NINF)
 | |
|         self.assertEqual(math.log(INF), INF)
 | |
|         self.assertTrue(math.isnan(math.log10(NAN)))
 | |
| 
 | |
|     @support.bigmemtest(2**32, memuse=0.2)
 | |
|     def test_log_huge_integer(self, size):
 | |
|         v = 1 << size
 | |
|         self.assertAlmostEqual(math.log2(v), size)
 | |
|         self.assertAlmostEqual(math.log(v), size * 0.6931471805599453)
 | |
|         self.assertAlmostEqual(math.log10(v), size * 0.3010299956639812)
 | |
| 
 | |
|     def testSumProd(self):
 | |
|         sumprod = math.sumprod
 | |
|         Decimal = decimal.Decimal
 | |
|         Fraction = fractions.Fraction
 | |
| 
 | |
|         # Core functionality
 | |
|         self.assertEqual(sumprod(iter([10, 20, 30]), (1, 2, 3)), 140)
 | |
|         self.assertEqual(sumprod([1.5, 2.5], [3.5, 4.5]), 16.5)
 | |
|         self.assertEqual(sumprod([], []), 0)
 | |
|         self.assertEqual(sumprod([-1], [1.]), -1)
 | |
|         self.assertEqual(sumprod([1.], [-1]), -1)
 | |
| 
 | |
|         # Type preservation and coercion
 | |
|         for v in [
 | |
|             (10, 20, 30),
 | |
|             (1.5, -2.5),
 | |
|             (Fraction(3, 5), Fraction(4, 5)),
 | |
|             (Decimal(3.5), Decimal(4.5)),
 | |
|             (2.5, 10),             # float/int
 | |
|             (2.5, Fraction(3, 5)), # float/fraction
 | |
|             (25, Fraction(3, 5)),  # int/fraction
 | |
|             (25, Decimal(4.5)),    # int/decimal
 | |
|         ]:
 | |
|             for p, q in [(v, v), (v, v[::-1])]:
 | |
|                 with self.subTest(p=p, q=q):
 | |
|                     expected = sum(p_i * q_i for p_i, q_i in zip(p, q, strict=True))
 | |
|                     actual = sumprod(p, q)
 | |
|                     self.assertEqual(expected, actual)
 | |
|                     self.assertEqual(type(expected), type(actual))
 | |
| 
 | |
|         # Bad arguments
 | |
|         self.assertRaises(TypeError, sumprod)               # No args
 | |
|         self.assertRaises(TypeError, sumprod, [])           # One arg
 | |
|         self.assertRaises(TypeError, sumprod, [], [], [])   # Three args
 | |
|         self.assertRaises(TypeError, sumprod, None, [10])   # Non-iterable
 | |
|         self.assertRaises(TypeError, sumprod, [10], None)   # Non-iterable
 | |
|         self.assertRaises(TypeError, sumprod, ['x'], [1.0])
 | |
| 
 | |
|         # Uneven lengths
 | |
|         self.assertRaises(ValueError, sumprod, [10, 20], [30])
 | |
|         self.assertRaises(ValueError, sumprod, [10], [20, 30])
 | |
| 
 | |
|         # Overflows
 | |
|         self.assertEqual(sumprod([10**20], [1]), 10**20)
 | |
|         self.assertEqual(sumprod([1], [10**20]), 10**20)
 | |
|         self.assertEqual(sumprod([10**10], [10**10]), 10**20)
 | |
|         self.assertEqual(sumprod([10**7]*10**5, [10**7]*10**5), 10**19)
 | |
|         self.assertRaises(OverflowError, sumprod, [10**1000], [1.0])
 | |
|         self.assertRaises(OverflowError, sumprod, [1.0], [10**1000])
 | |
| 
 | |
|         # Error in iterator
 | |
|         def raise_after(n):
 | |
|             for i in range(n):
 | |
|                 yield i
 | |
|             raise RuntimeError
 | |
|         with self.assertRaises(RuntimeError):
 | |
|             sumprod(range(10), raise_after(5))
 | |
|         with self.assertRaises(RuntimeError):
 | |
|             sumprod(raise_after(5), range(10))
 | |
| 
 | |
|         from test.test_iter import BasicIterClass
 | |
| 
 | |
|         self.assertEqual(sumprod(BasicIterClass(1), [1]), 0)
 | |
|         self.assertEqual(sumprod([1], BasicIterClass(1)), 0)
 | |
| 
 | |
|         # Error in multiplication
 | |
|         class BadMultiply:
 | |
|             def __mul__(self, other):
 | |
|                 raise RuntimeError
 | |
|             def __rmul__(self, other):
 | |
|                 raise RuntimeError
 | |
|         with self.assertRaises(RuntimeError):
 | |
|             sumprod([10, BadMultiply(), 30], [1, 2, 3])
 | |
|         with self.assertRaises(RuntimeError):
 | |
|             sumprod([1, 2, 3], [10, BadMultiply(), 30])
 | |
| 
 | |
|         # Error in addition
 | |
|         with self.assertRaises(TypeError):
 | |
|             sumprod(['abc', 3], [5, 10])
 | |
|         with self.assertRaises(TypeError):
 | |
|             sumprod([5, 10], ['abc', 3])
 | |
| 
 | |
|         # Special values should give the same as the pure python recipe
 | |
|         self.assertEqual(sumprod([10.1, math.inf], [20.2, 30.3]), math.inf)
 | |
|         self.assertEqual(sumprod([10.1, math.inf], [math.inf, 30.3]), math.inf)
 | |
|         self.assertEqual(sumprod([10.1, math.inf], [math.inf, math.inf]), math.inf)
 | |
|         self.assertEqual(sumprod([10.1, -math.inf], [20.2, 30.3]), -math.inf)
 | |
|         self.assertTrue(math.isnan(sumprod([10.1, math.inf], [-math.inf, math.inf])))
 | |
|         self.assertTrue(math.isnan(sumprod([10.1, math.nan], [20.2, 30.3])))
 | |
|         self.assertTrue(math.isnan(sumprod([10.1, math.inf], [math.nan, 30.3])))
 | |
|         self.assertTrue(math.isnan(sumprod([10.1, math.inf], [20.3, math.nan])))
 | |
| 
 | |
|         # Error cases that arose during development
 | |
|         args = ((-5, -5, 10), (1.5, 4611686018427387904, 2305843009213693952))
 | |
|         self.assertEqual(sumprod(*args), 0.0)
 | |
| 
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     @unittest.skipIf(HAVE_DOUBLE_ROUNDING,
 | |
|                          "sumprod() accuracy not guaranteed on machines with double rounding")
 | |
|     @support.cpython_only    # Other implementations may choose a different algorithm
 | |
|     def test_sumprod_accuracy(self):
 | |
|         sumprod = math.sumprod
 | |
|         self.assertEqual(sumprod([0.1] * 10, [1]*10), 1.0)
 | |
|         self.assertEqual(sumprod([0.1] * 20, [True, False] * 10), 1.0)
 | |
|         self.assertEqual(sumprod([True, False] * 10, [0.1] * 20), 1.0)
 | |
|         self.assertEqual(sumprod([1.0, 10E100, 1.0, -10E100], [1.0]*4), 2.0)
 | |
| 
 | |
|     @support.requires_resource('cpu')
 | |
|     def test_sumprod_stress(self):
 | |
|         sumprod = math.sumprod
 | |
|         product = itertools.product
 | |
|         Decimal = decimal.Decimal
 | |
|         Fraction = fractions.Fraction
 | |
| 
 | |
|         class Int(int):
 | |
|             def __add__(self, other):
 | |
|                 return Int(int(self) + int(other))
 | |
|             def __mul__(self, other):
 | |
|                 return Int(int(self) * int(other))
 | |
|             __radd__ = __add__
 | |
|             __rmul__ = __mul__
 | |
|             def __repr__(self):
 | |
|                 return f'Int({int(self)})'
 | |
| 
 | |
|         class Flt(float):
 | |
|             def __add__(self, other):
 | |
|                 return Int(int(self) + int(other))
 | |
|             def __mul__(self, other):
 | |
|                 return Int(int(self) * int(other))
 | |
|             __radd__ = __add__
 | |
|             __rmul__ = __mul__
 | |
|             def __repr__(self):
 | |
|                 return f'Flt({int(self)})'
 | |
| 
 | |
|         def baseline_sumprod(p, q):
 | |
|             """This defines the target behavior including exceptions and special values.
 | |
|             However, it is subject to rounding errors, so float inputs should be exactly
 | |
|             representable with only a few bits.
 | |
|             """
 | |
|             total = 0
 | |
|             for p_i, q_i in zip(p, q, strict=True):
 | |
|                 total += p_i * q_i
 | |
|             return total
 | |
| 
 | |
|         def run(func, *args):
 | |
|             "Make comparing functions easier. Returns error status, type, and result."
 | |
|             try:
 | |
|                 result = func(*args)
 | |
|             except (AssertionError, NameError):
 | |
|                 raise
 | |
|             except Exception as e:
 | |
|                 return type(e), None, 'None'
 | |
|             return None, type(result), repr(result)
 | |
| 
 | |
|         pools = [
 | |
|             (-5, 10, -2**20, 2**31, 2**40, 2**61, 2**62, 2**80, 1.5, Int(7)),
 | |
|             (5.25, -3.5, 4.75, 11.25, 400.5, 0.046875, 0.25, -1.0, -0.078125),
 | |
|             (-19.0*2**500, 11*2**1000, -3*2**1500, 17*2*333,
 | |
|                5.25, -3.25, -3.0*2**(-333),  3, 2**513),
 | |
|             (3.75, 2.5, -1.5, float('inf'), -float('inf'), float('NaN'), 14,
 | |
|                 9, 3+4j, Flt(13), 0.0),
 | |
|             (13.25, -4.25, Decimal('10.5'), Decimal('-2.25'), Fraction(13, 8),
 | |
|                  Fraction(-11, 16), 4.75 + 0.125j, 97, -41, Int(3)),
 | |
|             (Decimal('6.125'), Decimal('12.375'), Decimal('-2.75'), Decimal(0),
 | |
|                  Decimal('Inf'), -Decimal('Inf'), Decimal('NaN'), 12, 13.5),
 | |
|             (-2.0 ** -1000, 11*2**1000, 3, 7, -37*2**32, -2*2**-537, -2*2**-538,
 | |
|                  2*2**-513),
 | |
|             (-7 * 2.0 ** -510, 5 * 2.0 ** -520, 17, -19.0, -6.25),
 | |
|             (11.25, -3.75, -0.625, 23.375, True, False, 7, Int(5)),
 | |
|         ]
 | |
| 
 | |
|         for pool in pools:
 | |
|             for size in range(4):
 | |
|                 for args1 in product(pool, repeat=size):
 | |
|                     for args2 in product(pool, repeat=size):
 | |
|                         args = (args1, args2)
 | |
|                         self.assertEqual(
 | |
|                             run(baseline_sumprod, *args),
 | |
|                             run(sumprod, *args),
 | |
|                             args,
 | |
|                         )
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     @unittest.skipIf(HAVE_DOUBLE_ROUNDING,
 | |
|                          "sumprod() accuracy not guaranteed on machines with double rounding")
 | |
|     @support.cpython_only    # Other implementations may choose a different algorithm
 | |
|     @support.requires_resource('cpu')
 | |
|     def test_sumprod_extended_precision_accuracy(self):
 | |
|         import operator
 | |
|         from fractions import Fraction
 | |
|         from itertools import starmap
 | |
|         from collections import namedtuple
 | |
|         from math import log2, exp2, fabs
 | |
|         from random import choices, uniform, shuffle
 | |
|         from statistics import median
 | |
| 
 | |
|         DotExample = namedtuple('DotExample', ('x', 'y', 'target_sumprod', 'condition'))
 | |
| 
 | |
|         def DotExact(x, y):
 | |
|             vec1 = map(Fraction, x)
 | |
|             vec2 = map(Fraction, y)
 | |
|             return sum(starmap(operator.mul, zip(vec1, vec2, strict=True)))
 | |
| 
 | |
|         def Condition(x, y):
 | |
|             return 2.0 * DotExact(map(abs, x), map(abs, y)) / abs(DotExact(x, y))
 | |
| 
 | |
|         def linspace(lo, hi, n):
 | |
|             width = (hi - lo) / (n - 1)
 | |
|             return [lo + width * i for i in range(n)]
 | |
| 
 | |
|         def GenDot(n, c):
 | |
|             """ Algorithm 6.1 (GenDot) works as follows. The condition number (5.7) of
 | |
|             the dot product xT y is proportional to the degree of cancellation. In
 | |
|             order to achieve a prescribed cancellation, we generate the first half of
 | |
|             the vectors x and y randomly within a large exponent range. This range is
 | |
|             chosen according to the anticipated condition number. The second half of x
 | |
|             and y is then constructed choosing xi randomly with decreasing exponent,
 | |
|             and calculating yi such that some cancellation occurs. Finally, we permute
 | |
|             the vectors x, y randomly and calculate the achieved condition number.
 | |
|             """
 | |
| 
 | |
|             assert n >= 6
 | |
|             n2 = n // 2
 | |
|             x = [0.0] * n
 | |
|             y = [0.0] * n
 | |
|             b = log2(c)
 | |
| 
 | |
|             # First half with exponents from 0 to |_b/2_| and random ints in between
 | |
|             e = choices(range(int(b/2)), k=n2)
 | |
|             e[0] = int(b / 2) + 1
 | |
|             e[-1] = 0.0
 | |
| 
 | |
|             x[:n2] = [uniform(-1.0, 1.0) * exp2(p) for p in e]
 | |
|             y[:n2] = [uniform(-1.0, 1.0) * exp2(p) for p in e]
 | |
| 
 | |
|             # Second half
 | |
|             e = list(map(round, linspace(b/2, 0.0 , n-n2)))
 | |
|             for i in range(n2, n):
 | |
|                 x[i] = uniform(-1.0, 1.0) * exp2(e[i - n2])
 | |
|                 y[i] = (uniform(-1.0, 1.0) * exp2(e[i - n2]) - DotExact(x, y)) / x[i]
 | |
| 
 | |
|             # Shuffle
 | |
|             pairs = list(zip(x, y))
 | |
|             shuffle(pairs)
 | |
|             x, y = zip(*pairs)
 | |
| 
 | |
|             return DotExample(x, y, DotExact(x, y), Condition(x, y))
 | |
| 
 | |
|         def RelativeError(res, ex):
 | |
|             x, y, target_sumprod, condition = ex
 | |
|             n = DotExact(list(x) + [-res], list(y) + [1])
 | |
|             return fabs(n / target_sumprod)
 | |
| 
 | |
|         def Trial(dotfunc, c, n):
 | |
|             ex = GenDot(10, c)
 | |
|             res = dotfunc(ex.x, ex.y)
 | |
|             return RelativeError(res, ex)
 | |
| 
 | |
|         times = 1000          # Number of trials
 | |
|         n = 20                # Length of vectors
 | |
|         c = 1e30              # Target condition number
 | |
| 
 | |
|         # If the following test fails, it means that the C math library
 | |
|         # implementation of fma() is not compliant with the C99 standard
 | |
|         # and is inaccurate.  To solve this problem, make a new build
 | |
|         # with the symbol UNRELIABLE_FMA defined.  That will enable a
 | |
|         # slower but accurate code path that avoids the fma() call.
 | |
|         relative_err = median(Trial(math.sumprod, c, n) for i in range(times))
 | |
|         self.assertLess(relative_err, 1e-16)
 | |
| 
 | |
|     def testModf(self):
 | |
|         self.assertRaises(TypeError, math.modf)
 | |
| 
 | |
|         def testmodf(name, result, expected):
 | |
|             (v1, v2), (e1, e2) = result, expected
 | |
|             if abs(v1-e1) > eps or abs(v2-e2):
 | |
|                 self.fail('%s returned %r, expected %r'%\
 | |
|                           (name, result, expected))
 | |
| 
 | |
|         testmodf('modf(1.5)', math.modf(1.5), (0.5, 1.0))
 | |
|         testmodf('modf(-1.5)', math.modf(-1.5), (-0.5, -1.0))
 | |
| 
 | |
|         self.assertEqual(math.modf(INF), (0.0, INF))
 | |
|         self.assertEqual(math.modf(NINF), (-0.0, NINF))
 | |
| 
 | |
|         modf_nan = math.modf(NAN)
 | |
|         self.assertTrue(math.isnan(modf_nan[0]))
 | |
|         self.assertTrue(math.isnan(modf_nan[1]))
 | |
| 
 | |
|     def testPow(self):
 | |
|         self.assertRaises(TypeError, math.pow)
 | |
|         self.ftest('pow(0,1)', math.pow(0,1), 0)
 | |
|         self.ftest('pow(1,0)', math.pow(1,0), 1)
 | |
|         self.ftest('pow(2,1)', math.pow(2,1), 2)
 | |
|         self.ftest('pow(2,-1)', math.pow(2,-1), 0.5)
 | |
|         self.assertEqual(math.pow(INF, 1), INF)
 | |
|         self.assertEqual(math.pow(NINF, 1), NINF)
 | |
|         self.assertEqual((math.pow(1, INF)), 1.)
 | |
|         self.assertEqual((math.pow(1, NINF)), 1.)
 | |
|         self.assertTrue(math.isnan(math.pow(NAN, 1)))
 | |
|         self.assertTrue(math.isnan(math.pow(2, NAN)))
 | |
|         self.assertTrue(math.isnan(math.pow(0, NAN)))
 | |
|         self.assertEqual(math.pow(1, NAN), 1)
 | |
|         self.assertRaises(OverflowError, math.pow, 1e+100, 1e+100)
 | |
| 
 | |
|         # pow(0., x)
 | |
|         self.assertEqual(math.pow(0., INF), 0.)
 | |
|         self.assertEqual(math.pow(0., 3.), 0.)
 | |
|         self.assertEqual(math.pow(0., 2.3), 0.)
 | |
|         self.assertEqual(math.pow(0., 2.), 0.)
 | |
|         self.assertEqual(math.pow(0., 0.), 1.)
 | |
|         self.assertEqual(math.pow(0., -0.), 1.)
 | |
|         self.assertRaises(ValueError, math.pow, 0., -2.)
 | |
|         self.assertRaises(ValueError, math.pow, 0., -2.3)
 | |
|         self.assertRaises(ValueError, math.pow, 0., -3.)
 | |
|         self.assertEqual(math.pow(0., NINF), INF)
 | |
|         self.assertTrue(math.isnan(math.pow(0., NAN)))
 | |
| 
 | |
|         # pow(INF, x)
 | |
|         self.assertEqual(math.pow(INF, INF), INF)
 | |
|         self.assertEqual(math.pow(INF, 3.), INF)
 | |
|         self.assertEqual(math.pow(INF, 2.3), INF)
 | |
|         self.assertEqual(math.pow(INF, 2.), INF)
 | |
|         self.assertEqual(math.pow(INF, 0.), 1.)
 | |
|         self.assertEqual(math.pow(INF, -0.), 1.)
 | |
|         self.assertEqual(math.pow(INF, -2.), 0.)
 | |
|         self.assertEqual(math.pow(INF, -2.3), 0.)
 | |
|         self.assertEqual(math.pow(INF, -3.), 0.)
 | |
|         self.assertEqual(math.pow(INF, NINF), 0.)
 | |
|         self.assertTrue(math.isnan(math.pow(INF, NAN)))
 | |
| 
 | |
|         # pow(-0., x)
 | |
|         self.assertEqual(math.pow(-0., INF), 0.)
 | |
|         self.assertEqual(math.pow(-0., 3.), -0.)
 | |
|         self.assertEqual(math.pow(-0., 2.3), 0.)
 | |
|         self.assertEqual(math.pow(-0., 2.), 0.)
 | |
|         self.assertEqual(math.pow(-0., 0.), 1.)
 | |
|         self.assertEqual(math.pow(-0., -0.), 1.)
 | |
|         self.assertRaises(ValueError, math.pow, -0., -2.)
 | |
|         self.assertRaises(ValueError, math.pow, -0., -2.3)
 | |
|         self.assertRaises(ValueError, math.pow, -0., -3.)
 | |
|         self.assertEqual(math.pow(-0., NINF), INF)
 | |
|         self.assertTrue(math.isnan(math.pow(-0., NAN)))
 | |
| 
 | |
|         # pow(NINF, x)
 | |
|         self.assertEqual(math.pow(NINF, INF), INF)
 | |
|         self.assertEqual(math.pow(NINF, 3.), NINF)
 | |
|         self.assertEqual(math.pow(NINF, 2.3), INF)
 | |
|         self.assertEqual(math.pow(NINF, 2.), INF)
 | |
|         self.assertEqual(math.pow(NINF, 0.), 1.)
 | |
|         self.assertEqual(math.pow(NINF, -0.), 1.)
 | |
|         self.assertEqual(math.pow(NINF, -2.), 0.)
 | |
|         self.assertEqual(math.pow(NINF, -2.3), 0.)
 | |
|         self.assertEqual(math.pow(NINF, -3.), -0.)
 | |
|         self.assertEqual(math.pow(NINF, NINF), 0.)
 | |
|         self.assertTrue(math.isnan(math.pow(NINF, NAN)))
 | |
| 
 | |
|         # pow(-1, x)
 | |
|         self.assertEqual(math.pow(-1., INF), 1.)
 | |
|         self.assertEqual(math.pow(-1., 3.), -1.)
 | |
|         self.assertRaises(ValueError, math.pow, -1., 2.3)
 | |
|         self.assertEqual(math.pow(-1., 2.), 1.)
 | |
|         self.assertEqual(math.pow(-1., 0.), 1.)
 | |
|         self.assertEqual(math.pow(-1., -0.), 1.)
 | |
|         self.assertEqual(math.pow(-1., -2.), 1.)
 | |
|         self.assertRaises(ValueError, math.pow, -1., -2.3)
 | |
|         self.assertEqual(math.pow(-1., -3.), -1.)
 | |
|         self.assertEqual(math.pow(-1., NINF), 1.)
 | |
|         self.assertTrue(math.isnan(math.pow(-1., NAN)))
 | |
| 
 | |
|         # pow(1, x)
 | |
|         self.assertEqual(math.pow(1., INF), 1.)
 | |
|         self.assertEqual(math.pow(1., 3.), 1.)
 | |
|         self.assertEqual(math.pow(1., 2.3), 1.)
 | |
|         self.assertEqual(math.pow(1., 2.), 1.)
 | |
|         self.assertEqual(math.pow(1., 0.), 1.)
 | |
|         self.assertEqual(math.pow(1., -0.), 1.)
 | |
|         self.assertEqual(math.pow(1., -2.), 1.)
 | |
|         self.assertEqual(math.pow(1., -2.3), 1.)
 | |
|         self.assertEqual(math.pow(1., -3.), 1.)
 | |
|         self.assertEqual(math.pow(1., NINF), 1.)
 | |
|         self.assertEqual(math.pow(1., NAN), 1.)
 | |
| 
 | |
|         # pow(x, 0) should be 1 for any x
 | |
|         self.assertEqual(math.pow(2.3, 0.), 1.)
 | |
|         self.assertEqual(math.pow(-2.3, 0.), 1.)
 | |
|         self.assertEqual(math.pow(NAN, 0.), 1.)
 | |
|         self.assertEqual(math.pow(2.3, -0.), 1.)
 | |
|         self.assertEqual(math.pow(-2.3, -0.), 1.)
 | |
|         self.assertEqual(math.pow(NAN, -0.), 1.)
 | |
| 
 | |
|         # pow(x, y) is invalid if x is negative and y is not integral
 | |
|         self.assertRaises(ValueError, math.pow, -1., 2.3)
 | |
|         self.assertRaises(ValueError, math.pow, -15., -3.1)
 | |
| 
 | |
|         # pow(x, NINF)
 | |
|         self.assertEqual(math.pow(1.9, NINF), 0.)
 | |
|         self.assertEqual(math.pow(1.1, NINF), 0.)
 | |
|         self.assertEqual(math.pow(0.9, NINF), INF)
 | |
|         self.assertEqual(math.pow(0.1, NINF), INF)
 | |
|         self.assertEqual(math.pow(-0.1, NINF), INF)
 | |
|         self.assertEqual(math.pow(-0.9, NINF), INF)
 | |
|         self.assertEqual(math.pow(-1.1, NINF), 0.)
 | |
|         self.assertEqual(math.pow(-1.9, NINF), 0.)
 | |
| 
 | |
|         # pow(x, INF)
 | |
|         self.assertEqual(math.pow(1.9, INF), INF)
 | |
|         self.assertEqual(math.pow(1.1, INF), INF)
 | |
|         self.assertEqual(math.pow(0.9, INF), 0.)
 | |
|         self.assertEqual(math.pow(0.1, INF), 0.)
 | |
|         self.assertEqual(math.pow(-0.1, INF), 0.)
 | |
|         self.assertEqual(math.pow(-0.9, INF), 0.)
 | |
|         self.assertEqual(math.pow(-1.1, INF), INF)
 | |
|         self.assertEqual(math.pow(-1.9, INF), INF)
 | |
| 
 | |
|         # pow(x, y) should work for x negative, y an integer
 | |
|         self.ftest('(-2.)**3.', math.pow(-2.0, 3.0), -8.0)
 | |
|         self.ftest('(-2.)**2.', math.pow(-2.0, 2.0), 4.0)
 | |
|         self.ftest('(-2.)**1.', math.pow(-2.0, 1.0), -2.0)
 | |
|         self.ftest('(-2.)**0.', math.pow(-2.0, 0.0), 1.0)
 | |
|         self.ftest('(-2.)**-0.', math.pow(-2.0, -0.0), 1.0)
 | |
|         self.ftest('(-2.)**-1.', math.pow(-2.0, -1.0), -0.5)
 | |
|         self.ftest('(-2.)**-2.', math.pow(-2.0, -2.0), 0.25)
 | |
|         self.ftest('(-2.)**-3.', math.pow(-2.0, -3.0), -0.125)
 | |
|         self.assertRaises(ValueError, math.pow, -2.0, -0.5)
 | |
|         self.assertRaises(ValueError, math.pow, -2.0, 0.5)
 | |
| 
 | |
|         # the following tests have been commented out since they don't
 | |
|         # really belong here:  the implementation of ** for floats is
 | |
|         # independent of the implementation of math.pow
 | |
|         #self.assertEqual(1**NAN, 1)
 | |
|         #self.assertEqual(1**INF, 1)
 | |
|         #self.assertEqual(1**NINF, 1)
 | |
|         #self.assertEqual(1**0, 1)
 | |
|         #self.assertEqual(1.**NAN, 1)
 | |
|         #self.assertEqual(1.**INF, 1)
 | |
|         #self.assertEqual(1.**NINF, 1)
 | |
|         #self.assertEqual(1.**0, 1)
 | |
| 
 | |
|     def testRadians(self):
 | |
|         self.assertRaises(TypeError, math.radians)
 | |
|         self.ftest('radians(180)', math.radians(180), math.pi)
 | |
|         self.ftest('radians(90)', math.radians(90), math.pi/2)
 | |
|         self.ftest('radians(-45)', math.radians(-45), -math.pi/4)
 | |
|         self.ftest('radians(0)', math.radians(0), 0)
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def testRemainder(self):
 | |
|         from fractions import Fraction
 | |
| 
 | |
|         def validate_spec(x, y, r):
 | |
|             """
 | |
|             Check that r matches remainder(x, y) according to the IEEE 754
 | |
|             specification. Assumes that x, y and r are finite and y is nonzero.
 | |
|             """
 | |
|             fx, fy, fr = Fraction(x), Fraction(y), Fraction(r)
 | |
|             # r should not exceed y/2 in absolute value
 | |
|             self.assertLessEqual(abs(fr), abs(fy/2))
 | |
|             # x - r should be an exact integer multiple of y
 | |
|             n = (fx - fr) / fy
 | |
|             self.assertEqual(n, int(n))
 | |
|             if abs(fr) == abs(fy/2):
 | |
|                 # If |r| == |y/2|, n should be even.
 | |
|                 self.assertEqual(n/2, int(n/2))
 | |
| 
 | |
|         # triples (x, y, remainder(x, y)) in hexadecimal form.
 | |
|         testcases = [
 | |
|             # Remainders modulo 1, showing the ties-to-even behaviour.
 | |
|             '-4.0 1 -0.0',
 | |
|             '-3.8 1  0.8',
 | |
|             '-3.0 1 -0.0',
 | |
|             '-2.8 1 -0.8',
 | |
|             '-2.0 1 -0.0',
 | |
|             '-1.8 1  0.8',
 | |
|             '-1.0 1 -0.0',
 | |
|             '-0.8 1 -0.8',
 | |
|             '-0.0 1 -0.0',
 | |
|             ' 0.0 1  0.0',
 | |
|             ' 0.8 1  0.8',
 | |
|             ' 1.0 1  0.0',
 | |
|             ' 1.8 1 -0.8',
 | |
|             ' 2.0 1  0.0',
 | |
|             ' 2.8 1  0.8',
 | |
|             ' 3.0 1  0.0',
 | |
|             ' 3.8 1 -0.8',
 | |
|             ' 4.0 1  0.0',
 | |
| 
 | |
|             # Reductions modulo 2*pi
 | |
|             '0x0.0p+0 0x1.921fb54442d18p+2 0x0.0p+0',
 | |
|             '0x1.921fb54442d18p+0 0x1.921fb54442d18p+2  0x1.921fb54442d18p+0',
 | |
|             '0x1.921fb54442d17p+1 0x1.921fb54442d18p+2  0x1.921fb54442d17p+1',
 | |
|             '0x1.921fb54442d18p+1 0x1.921fb54442d18p+2  0x1.921fb54442d18p+1',
 | |
|             '0x1.921fb54442d19p+1 0x1.921fb54442d18p+2 -0x1.921fb54442d17p+1',
 | |
|             '0x1.921fb54442d17p+2 0x1.921fb54442d18p+2 -0x0.0000000000001p+2',
 | |
|             '0x1.921fb54442d18p+2 0x1.921fb54442d18p+2  0x0p0',
 | |
|             '0x1.921fb54442d19p+2 0x1.921fb54442d18p+2  0x0.0000000000001p+2',
 | |
|             '0x1.2d97c7f3321d1p+3 0x1.921fb54442d18p+2  0x1.921fb54442d14p+1',
 | |
|             '0x1.2d97c7f3321d2p+3 0x1.921fb54442d18p+2 -0x1.921fb54442d18p+1',
 | |
|             '0x1.2d97c7f3321d3p+3 0x1.921fb54442d18p+2 -0x1.921fb54442d14p+1',
 | |
|             '0x1.921fb54442d17p+3 0x1.921fb54442d18p+2 -0x0.0000000000001p+3',
 | |
|             '0x1.921fb54442d18p+3 0x1.921fb54442d18p+2  0x0p0',
 | |
|             '0x1.921fb54442d19p+3 0x1.921fb54442d18p+2  0x0.0000000000001p+3',
 | |
|             '0x1.f6a7a2955385dp+3 0x1.921fb54442d18p+2  0x1.921fb54442d14p+1',
 | |
|             '0x1.f6a7a2955385ep+3 0x1.921fb54442d18p+2  0x1.921fb54442d18p+1',
 | |
|             '0x1.f6a7a2955385fp+3 0x1.921fb54442d18p+2 -0x1.921fb54442d14p+1',
 | |
|             '0x1.1475cc9eedf00p+5 0x1.921fb54442d18p+2  0x1.921fb54442d10p+1',
 | |
|             '0x1.1475cc9eedf01p+5 0x1.921fb54442d18p+2 -0x1.921fb54442d10p+1',
 | |
| 
 | |
|             # Symmetry with respect to signs.
 | |
|             ' 1  0.c  0.4',
 | |
|             '-1  0.c -0.4',
 | |
|             ' 1 -0.c  0.4',
 | |
|             '-1 -0.c -0.4',
 | |
|             ' 1.4  0.c -0.4',
 | |
|             '-1.4  0.c  0.4',
 | |
|             ' 1.4 -0.c -0.4',
 | |
|             '-1.4 -0.c  0.4',
 | |
| 
 | |
|             # Huge modulus, to check that the underlying algorithm doesn't
 | |
|             # rely on 2.0 * modulus being representable.
 | |
|             '0x1.dp+1023 0x1.4p+1023  0x0.9p+1023',
 | |
|             '0x1.ep+1023 0x1.4p+1023 -0x0.ap+1023',
 | |
|             '0x1.fp+1023 0x1.4p+1023 -0x0.9p+1023',
 | |
|         ]
 | |
| 
 | |
|         for case in testcases:
 | |
|             with self.subTest(case=case):
 | |
|                 x_hex, y_hex, expected_hex = case.split()
 | |
|                 x = float.fromhex(x_hex)
 | |
|                 y = float.fromhex(y_hex)
 | |
|                 expected = float.fromhex(expected_hex)
 | |
|                 validate_spec(x, y, expected)
 | |
|                 actual = math.remainder(x, y)
 | |
|                 # Cheap way of checking that the floats are
 | |
|                 # as identical as we need them to be.
 | |
|                 self.assertEqual(actual.hex(), expected.hex())
 | |
| 
 | |
|         # Test tiny subnormal modulus: there's potential for
 | |
|         # getting the implementation wrong here (for example,
 | |
|         # by assuming that modulus/2 is exactly representable).
 | |
|         tiny = float.fromhex('1p-1074')  # min +ve subnormal
 | |
|         for n in range(-25, 25):
 | |
|             if n == 0:
 | |
|                 continue
 | |
|             y = n * tiny
 | |
|             for m in range(100):
 | |
|                 x = m * tiny
 | |
|                 actual = math.remainder(x, y)
 | |
|                 validate_spec(x, y, actual)
 | |
|                 actual = math.remainder(-x, y)
 | |
|                 validate_spec(-x, y, actual)
 | |
| 
 | |
|         # Special values.
 | |
|         # NaNs should propagate as usual.
 | |
|         for value in [NAN, 0.0, -0.0, 2.0, -2.3, NINF, INF]:
 | |
|             self.assertIsNaN(math.remainder(NAN, value))
 | |
|             self.assertIsNaN(math.remainder(value, NAN))
 | |
| 
 | |
|         # remainder(x, inf) is x, for non-nan non-infinite x.
 | |
|         for value in [-2.3, -0.0, 0.0, 2.3]:
 | |
|             self.assertEqual(math.remainder(value, INF), value)
 | |
|             self.assertEqual(math.remainder(value, NINF), value)
 | |
| 
 | |
|         # remainder(x, 0) and remainder(infinity, x) for non-NaN x are invalid
 | |
|         # operations according to IEEE 754-2008 7.2(f), and should raise.
 | |
|         for value in [NINF, -2.3, -0.0, 0.0, 2.3, INF]:
 | |
|             with self.assertRaises(ValueError):
 | |
|                 math.remainder(INF, value)
 | |
|             with self.assertRaises(ValueError):
 | |
|                 math.remainder(NINF, value)
 | |
|             with self.assertRaises(ValueError):
 | |
|                 math.remainder(value, 0.0)
 | |
|             with self.assertRaises(ValueError):
 | |
|                 math.remainder(value, -0.0)
 | |
| 
 | |
|     def testSin(self):
 | |
|         self.assertRaises(TypeError, math.sin)
 | |
|         self.ftest('sin(0)', math.sin(0), 0)
 | |
|         self.ftest('sin(pi/2)', math.sin(math.pi/2), 1)
 | |
|         self.ftest('sin(-pi/2)', math.sin(-math.pi/2), -1)
 | |
|         try:
 | |
|             self.assertTrue(math.isnan(math.sin(INF)))
 | |
|             self.assertTrue(math.isnan(math.sin(NINF)))
 | |
|         except ValueError:
 | |
|             self.assertRaises(ValueError, math.sin, INF)
 | |
|             self.assertRaises(ValueError, math.sin, NINF)
 | |
|         self.assertTrue(math.isnan(math.sin(NAN)))
 | |
| 
 | |
|     def testSinh(self):
 | |
|         self.assertRaises(TypeError, math.sinh)
 | |
|         self.ftest('sinh(0)', math.sinh(0), 0)
 | |
|         self.ftest('sinh(1)**2-cosh(1)**2', math.sinh(1)**2-math.cosh(1)**2, -1)
 | |
|         self.ftest('sinh(1)+sinh(-1)', math.sinh(1)+math.sinh(-1), 0)
 | |
|         self.assertEqual(math.sinh(INF), INF)
 | |
|         self.assertEqual(math.sinh(NINF), NINF)
 | |
|         self.assertTrue(math.isnan(math.sinh(NAN)))
 | |
| 
 | |
|     def testSqrt(self):
 | |
|         self.assertRaises(TypeError, math.sqrt)
 | |
|         self.ftest('sqrt(0)', math.sqrt(0), 0)
 | |
|         self.ftest('sqrt(0)', math.sqrt(0.0), 0.0)
 | |
|         self.ftest('sqrt(2.5)', math.sqrt(2.5), 1.5811388300841898)
 | |
|         self.ftest('sqrt(0.25)', math.sqrt(0.25), 0.5)
 | |
|         self.ftest('sqrt(25.25)', math.sqrt(25.25), 5.024937810560445)
 | |
|         self.ftest('sqrt(1)', math.sqrt(1), 1)
 | |
|         self.ftest('sqrt(4)', math.sqrt(4), 2)
 | |
|         self.assertEqual(math.sqrt(INF), INF)
 | |
|         self.assertRaises(ValueError, math.sqrt, -1)
 | |
|         self.assertRaises(ValueError, math.sqrt, NINF)
 | |
|         self.assertTrue(math.isnan(math.sqrt(NAN)))
 | |
| 
 | |
|     def testTan(self):
 | |
|         self.assertRaises(TypeError, math.tan)
 | |
|         self.ftest('tan(0)', math.tan(0), 0)
 | |
|         self.ftest('tan(pi/4)', math.tan(math.pi/4), 1)
 | |
|         self.ftest('tan(-pi/4)', math.tan(-math.pi/4), -1)
 | |
|         try:
 | |
|             self.assertTrue(math.isnan(math.tan(INF)))
 | |
|             self.assertTrue(math.isnan(math.tan(NINF)))
 | |
|         except ValueError:
 | |
|             self.assertRaises(ValueError, math.tan, INF)
 | |
|             self.assertRaises(ValueError, math.tan, NINF)
 | |
|         self.assertTrue(math.isnan(math.tan(NAN)))
 | |
| 
 | |
|     def testTanh(self):
 | |
|         self.assertRaises(TypeError, math.tanh)
 | |
|         self.ftest('tanh(0)', math.tanh(0), 0)
 | |
|         self.ftest('tanh(1)+tanh(-1)', math.tanh(1)+math.tanh(-1), 0,
 | |
|                    abs_tol=math.ulp(1))
 | |
|         self.ftest('tanh(inf)', math.tanh(INF), 1)
 | |
|         self.ftest('tanh(-inf)', math.tanh(NINF), -1)
 | |
|         self.assertTrue(math.isnan(math.tanh(NAN)))
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def testTanhSign(self):
 | |
|         # check that tanh(-0.) == -0. on IEEE 754 systems
 | |
|         self.assertEqual(math.tanh(-0.), -0.)
 | |
|         self.assertEqual(math.copysign(1., math.tanh(-0.)),
 | |
|                          math.copysign(1., -0.))
 | |
| 
 | |
|     def test_trunc(self):
 | |
|         self.assertEqual(math.trunc(1), 1)
 | |
|         self.assertEqual(math.trunc(-1), -1)
 | |
|         self.assertEqual(type(math.trunc(1)), int)
 | |
|         self.assertEqual(type(math.trunc(1.5)), int)
 | |
|         self.assertEqual(math.trunc(1.5), 1)
 | |
|         self.assertEqual(math.trunc(-1.5), -1)
 | |
|         self.assertEqual(math.trunc(1.999999), 1)
 | |
|         self.assertEqual(math.trunc(-1.999999), -1)
 | |
|         self.assertEqual(math.trunc(-0.999999), -0)
 | |
|         self.assertEqual(math.trunc(-100.999), -100)
 | |
| 
 | |
|         class TestTrunc:
 | |
|             def __trunc__(self):
 | |
|                 return 23
 | |
|         class FloatTrunc(float):
 | |
|             def __trunc__(self):
 | |
|                 return 23
 | |
|         class TestNoTrunc:
 | |
|             pass
 | |
|         class TestBadTrunc:
 | |
|             __trunc__ = BadDescr()
 | |
| 
 | |
|         self.assertEqual(math.trunc(TestTrunc()), 23)
 | |
|         self.assertEqual(math.trunc(FloatTrunc()), 23)
 | |
| 
 | |
|         self.assertRaises(TypeError, math.trunc)
 | |
|         self.assertRaises(TypeError, math.trunc, 1, 2)
 | |
|         self.assertRaises(TypeError, math.trunc, FloatLike(23.5))
 | |
|         self.assertRaises(TypeError, math.trunc, TestNoTrunc())
 | |
|         self.assertRaises(ValueError, math.trunc, TestBadTrunc())
 | |
| 
 | |
|     def testIsfinite(self):
 | |
|         self.assertTrue(math.isfinite(0.0))
 | |
|         self.assertTrue(math.isfinite(-0.0))
 | |
|         self.assertTrue(math.isfinite(1.0))
 | |
|         self.assertTrue(math.isfinite(-1.0))
 | |
|         self.assertFalse(math.isfinite(float("nan")))
 | |
|         self.assertFalse(math.isfinite(float("inf")))
 | |
|         self.assertFalse(math.isfinite(float("-inf")))
 | |
| 
 | |
|     def testIsnan(self):
 | |
|         self.assertTrue(math.isnan(float("nan")))
 | |
|         self.assertTrue(math.isnan(float("-nan")))
 | |
|         self.assertTrue(math.isnan(float("inf") * 0.))
 | |
|         self.assertFalse(math.isnan(float("inf")))
 | |
|         self.assertFalse(math.isnan(0.))
 | |
|         self.assertFalse(math.isnan(1.))
 | |
| 
 | |
|     def testIsinf(self):
 | |
|         self.assertTrue(math.isinf(float("inf")))
 | |
|         self.assertTrue(math.isinf(float("-inf")))
 | |
|         self.assertTrue(math.isinf(1E400))
 | |
|         self.assertTrue(math.isinf(-1E400))
 | |
|         self.assertFalse(math.isinf(float("nan")))
 | |
|         self.assertFalse(math.isinf(0.))
 | |
|         self.assertFalse(math.isinf(1.))
 | |
| 
 | |
|     def test_nan_constant(self):
 | |
|         # `math.nan` must be a quiet NaN with positive sign bit
 | |
|         self.assertTrue(math.isnan(math.nan))
 | |
|         self.assertEqual(math.copysign(1., math.nan), 1.)
 | |
| 
 | |
|     def test_inf_constant(self):
 | |
|         self.assertTrue(math.isinf(math.inf))
 | |
|         self.assertGreater(math.inf, 0.0)
 | |
|         self.assertEqual(math.inf, float("inf"))
 | |
|         self.assertEqual(-math.inf, float("-inf"))
 | |
| 
 | |
|     # RED_FLAG 16-Oct-2000 Tim
 | |
|     # While 2.0 is more consistent about exceptions than previous releases, it
 | |
|     # still fails this part of the test on some platforms.  For now, we only
 | |
|     # *run* test_exceptions() in verbose mode, so that this isn't normally
 | |
|     # tested.
 | |
|     @unittest.skipUnless(verbose, 'requires verbose mode')
 | |
|     def test_exceptions(self):
 | |
|         try:
 | |
|             x = math.exp(-1000000000)
 | |
|         except:
 | |
|             # mathmodule.c is failing to weed out underflows from libm, or
 | |
|             # we've got an fp format with huge dynamic range
 | |
|             self.fail("underflowing exp() should not have raised "
 | |
|                         "an exception")
 | |
|         if x != 0:
 | |
|             self.fail("underflowing exp() should have returned 0")
 | |
| 
 | |
|         # If this fails, probably using a strict IEEE-754 conforming libm, and x
 | |
|         # is +Inf afterwards.  But Python wants overflows detected by default.
 | |
|         try:
 | |
|             x = math.exp(1000000000)
 | |
|         except OverflowError:
 | |
|             pass
 | |
|         else:
 | |
|             self.fail("overflowing exp() didn't trigger OverflowError")
 | |
| 
 | |
|         # If this fails, it could be a puzzle.  One odd possibility is that
 | |
|         # mathmodule.c's macros are getting confused while comparing
 | |
|         # Inf (HUGE_VAL) to a NaN, and artificially setting errno to ERANGE
 | |
|         # as a result (and so raising OverflowError instead).
 | |
|         try:
 | |
|             x = math.sqrt(-1.0)
 | |
|         except ValueError:
 | |
|             pass
 | |
|         else:
 | |
|             self.fail("sqrt(-1) didn't raise ValueError")
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def test_testfile(self):
 | |
|         # Some tests need to be skipped on ancient OS X versions.
 | |
|         # See issue #27953.
 | |
|         SKIP_ON_TIGER = {'tan0064'}
 | |
| 
 | |
|         osx_version = None
 | |
|         if sys.platform == 'darwin':
 | |
|             version_txt = platform.mac_ver()[0]
 | |
|             try:
 | |
|                 osx_version = tuple(map(int, version_txt.split('.')))
 | |
|             except ValueError:
 | |
|                 pass
 | |
| 
 | |
|         fail_fmt = "{}: {}({!r}): {}"
 | |
| 
 | |
|         failures = []
 | |
|         for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
 | |
|             # Skip if either the input or result is complex
 | |
|             if ai != 0.0 or ei != 0.0:
 | |
|                 continue
 | |
|             if fn in ['rect', 'polar']:
 | |
|                 # no real versions of rect, polar
 | |
|                 continue
 | |
|             # Skip certain tests on OS X 10.4.
 | |
|             if osx_version is not None and osx_version < (10, 5):
 | |
|                 if id in SKIP_ON_TIGER:
 | |
|                     continue
 | |
| 
 | |
|             func = getattr(math, fn)
 | |
| 
 | |
|             if 'invalid' in flags or 'divide-by-zero' in flags:
 | |
|                 er = 'ValueError'
 | |
|             elif 'overflow' in flags:
 | |
|                 er = 'OverflowError'
 | |
| 
 | |
|             try:
 | |
|                 result = func(ar)
 | |
|             except ValueError:
 | |
|                 result = 'ValueError'
 | |
|             except OverflowError:
 | |
|                 result = 'OverflowError'
 | |
| 
 | |
|             # C99+ says for math.h's sqrt: If the argument is +∞ or ±0, it is
 | |
|             # returned, unmodified.  On another hand, for csqrt: If z is ±0+0i,
 | |
|             # the result is +0+0i.  Lets correct zero sign of er to follow
 | |
|             # first convention.
 | |
|             if id in ['sqrt0002', 'sqrt0003', 'sqrt1001', 'sqrt1023']:
 | |
|                 er = math.copysign(er, ar)
 | |
| 
 | |
|             # Default tolerances
 | |
|             ulp_tol, abs_tol = 5, 0.0
 | |
| 
 | |
|             failure = result_check(er, result, ulp_tol, abs_tol)
 | |
|             if failure is None:
 | |
|                 continue
 | |
| 
 | |
|             msg = fail_fmt.format(id, fn, ar, failure)
 | |
|             failures.append(msg)
 | |
| 
 | |
|         if failures:
 | |
|             self.fail('Failures in test_testfile:\n  ' +
 | |
|                       '\n  '.join(failures))
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def test_mtestfile(self):
 | |
|         fail_fmt = "{}: {}({!r}): {}"
 | |
| 
 | |
|         failures = []
 | |
|         for id, fn, arg, expected, flags in parse_mtestfile(math_testcases):
 | |
|             func = getattr(math, fn)
 | |
| 
 | |
|             if 'invalid' in flags or 'divide-by-zero' in flags:
 | |
|                 expected = 'ValueError'
 | |
|             elif 'overflow' in flags:
 | |
|                 expected = 'OverflowError'
 | |
| 
 | |
|             try:
 | |
|                 got = func(arg)
 | |
|             except ValueError:
 | |
|                 got = 'ValueError'
 | |
|             except OverflowError:
 | |
|                 got = 'OverflowError'
 | |
| 
 | |
|             # Default tolerances
 | |
|             ulp_tol, abs_tol = 5, 0.0
 | |
| 
 | |
|             # Exceptions to the defaults
 | |
|             if fn == 'gamma':
 | |
|                 # Experimental results on one platform gave
 | |
|                 # an accuracy of <= 10 ulps across the entire float
 | |
|                 # domain. We weaken that to require 20 ulp accuracy.
 | |
|                 ulp_tol = 20
 | |
| 
 | |
|             elif fn == 'lgamma':
 | |
|                 # we use a weaker accuracy test for lgamma;
 | |
|                 # lgamma only achieves an absolute error of
 | |
|                 # a few multiples of the machine accuracy, in
 | |
|                 # general.
 | |
|                 abs_tol = 1e-15
 | |
| 
 | |
|             elif fn == 'erfc' and arg >= 0.0:
 | |
|                 # erfc has less-than-ideal accuracy for large
 | |
|                 # arguments (x ~ 25 or so), mainly due to the
 | |
|                 # error involved in computing exp(-x*x).
 | |
|                 #
 | |
|                 # Observed between CPython and mpmath at 25 dp:
 | |
|                 #       x <  0 : err <= 2 ulp
 | |
|                 #  0 <= x <  1 : err <= 10 ulp
 | |
|                 #  1 <= x < 10 : err <= 100 ulp
 | |
|                 # 10 <= x < 20 : err <= 300 ulp
 | |
|                 # 20 <= x      : < 600 ulp
 | |
|                 #
 | |
|                 if arg < 1.0:
 | |
|                     ulp_tol = 10
 | |
|                 elif arg < 10.0:
 | |
|                     ulp_tol = 100
 | |
|                 else:
 | |
|                     ulp_tol = 1000
 | |
| 
 | |
|             failure = result_check(expected, got, ulp_tol, abs_tol)
 | |
|             if failure is None:
 | |
|                 continue
 | |
| 
 | |
|             msg = fail_fmt.format(id, fn, arg, failure)
 | |
|             failures.append(msg)
 | |
| 
 | |
|         if failures:
 | |
|             self.fail('Failures in test_mtestfile:\n  ' +
 | |
|                       '\n  '.join(failures))
 | |
| 
 | |
|     def test_prod(self):
 | |
|         from fractions import Fraction as F
 | |
| 
 | |
|         prod = math.prod
 | |
|         self.assertEqual(prod([]), 1)
 | |
|         self.assertEqual(prod([], start=5), 5)
 | |
|         self.assertEqual(prod(list(range(2,8))), 5040)
 | |
|         self.assertEqual(prod(iter(list(range(2,8)))), 5040)
 | |
|         self.assertEqual(prod(range(1, 10), start=10), 3628800)
 | |
| 
 | |
|         self.assertEqual(prod([1, 2, 3, 4, 5]), 120)
 | |
|         self.assertEqual(prod([1.0, 2.0, 3.0, 4.0, 5.0]), 120.0)
 | |
|         self.assertEqual(prod([1, 2, 3, 4.0, 5.0]), 120.0)
 | |
|         self.assertEqual(prod([1.0, 2.0, 3.0, 4, 5]), 120.0)
 | |
|         self.assertEqual(prod([1., F(3, 2)]), 1.5)
 | |
| 
 | |
|         # Error in multiplication
 | |
|         class BadMultiply:
 | |
|             def __rmul__(self, other):
 | |
|                 raise RuntimeError
 | |
|         with self.assertRaises(RuntimeError):
 | |
|             prod([10., BadMultiply()])
 | |
| 
 | |
|         # Test overflow in fast-path for integers
 | |
|         self.assertEqual(prod([1, 1, 2**32, 1, 1]), 2**32)
 | |
|         # Test overflow in fast-path for floats
 | |
|         self.assertEqual(prod([1.0, 1.0, 2**32, 1, 1]), float(2**32))
 | |
| 
 | |
|         self.assertRaises(TypeError, prod)
 | |
|         self.assertRaises(TypeError, prod, 42)
 | |
|         self.assertRaises(TypeError, prod, ['a', 'b', 'c'])
 | |
|         self.assertRaises(TypeError, prod, ['a', 'b', 'c'], start='')
 | |
|         self.assertRaises(TypeError, prod, [b'a', b'c'], start=b'')
 | |
|         values = [bytearray(b'a'), bytearray(b'b')]
 | |
|         self.assertRaises(TypeError, prod, values, start=bytearray(b''))
 | |
|         self.assertRaises(TypeError, prod, [[1], [2], [3]])
 | |
|         self.assertRaises(TypeError, prod, [{2:3}])
 | |
|         self.assertRaises(TypeError, prod, [{2:3}]*2, start={2:3})
 | |
|         self.assertRaises(TypeError, prod, [[1], [2], [3]], start=[])
 | |
| 
 | |
|         # Some odd cases
 | |
|         self.assertEqual(prod([2, 3], start='ab'), 'abababababab')
 | |
|         self.assertEqual(prod([2, 3], start=[1, 2]), [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2])
 | |
|         self.assertEqual(prod([], start={2: 3}), {2:3})
 | |
| 
 | |
|         with self.assertRaises(TypeError):
 | |
|             prod([10, 20], 1)     # start is a keyword-only argument
 | |
| 
 | |
|         self.assertEqual(prod([0, 1, 2, 3]), 0)
 | |
|         self.assertEqual(prod([1, 0, 2, 3]), 0)
 | |
|         self.assertEqual(prod([1, 2, 3, 0]), 0)
 | |
| 
 | |
|         def _naive_prod(iterable, start=1):
 | |
|             for elem in iterable:
 | |
|                 start *= elem
 | |
|             return start
 | |
| 
 | |
|         # Big integers
 | |
| 
 | |
|         iterable = range(1, 10000)
 | |
|         self.assertEqual(prod(iterable), _naive_prod(iterable))
 | |
|         iterable = range(-10000, -1)
 | |
|         self.assertEqual(prod(iterable), _naive_prod(iterable))
 | |
|         iterable = range(-1000, 1000)
 | |
|         self.assertEqual(prod(iterable), 0)
 | |
| 
 | |
|         # Big floats
 | |
| 
 | |
|         iterable = [float(x) for x in range(1, 1000)]
 | |
|         self.assertEqual(prod(iterable), _naive_prod(iterable))
 | |
|         iterable = [float(x) for x in range(-1000, -1)]
 | |
|         self.assertEqual(prod(iterable), _naive_prod(iterable))
 | |
|         iterable = [float(x) for x in range(-1000, 1000)]
 | |
|         self.assertIsNaN(prod(iterable))
 | |
| 
 | |
|         # Float tests
 | |
| 
 | |
|         self.assertIsNaN(prod([1, 2, 3, float("nan"), 2, 3]))
 | |
|         self.assertIsNaN(prod([1, 0, float("nan"), 2, 3]))
 | |
|         self.assertIsNaN(prod([1, float("nan"), 0, 3]))
 | |
|         self.assertIsNaN(prod([1, float("inf"), float("nan"),3]))
 | |
|         self.assertIsNaN(prod([1, float("-inf"), float("nan"),3]))
 | |
|         self.assertIsNaN(prod([1, float("nan"), float("inf"),3]))
 | |
|         self.assertIsNaN(prod([1, float("nan"), float("-inf"),3]))
 | |
| 
 | |
|         self.assertEqual(prod([1, 2, 3, float('inf'),-3,4]), float('-inf'))
 | |
|         self.assertEqual(prod([1, 2, 3, float('-inf'),-3,4]), float('inf'))
 | |
| 
 | |
|         self.assertIsNaN(prod([1,2,0,float('inf'), -3, 4]))
 | |
|         self.assertIsNaN(prod([1,2,0,float('-inf'), -3, 4]))
 | |
|         self.assertIsNaN(prod([1, 2, 3, float('inf'), -3, 0, 3]))
 | |
|         self.assertIsNaN(prod([1, 2, 3, float('-inf'), -3, 0, 2]))
 | |
| 
 | |
|         # Type preservation
 | |
| 
 | |
|         self.assertEqual(type(prod([1, 2, 3, 4, 5, 6])), int)
 | |
|         self.assertEqual(type(prod([1, 2.0, 3, 4, 5, 6])), float)
 | |
|         self.assertEqual(type(prod(range(1, 10000))), int)
 | |
|         self.assertEqual(type(prod(range(1, 10000), start=1.0)), float)
 | |
|         self.assertEqual(type(prod([1, decimal.Decimal(2.0), 3, 4, 5, 6])),
 | |
|                          decimal.Decimal)
 | |
| 
 | |
|     def testPerm(self):
 | |
|         perm = math.perm
 | |
|         factorial = math.factorial
 | |
|         # Test if factorial definition is satisfied
 | |
|         for n in range(500):
 | |
|             for k in (range(n + 1) if n < 100 else range(30) if n < 200 else range(10)):
 | |
|                 self.assertEqual(perm(n, k),
 | |
|                                  factorial(n) // factorial(n - k))
 | |
| 
 | |
|         # Test for Pascal's identity
 | |
|         for n in range(1, 100):
 | |
|             for k in range(1, n):
 | |
|                 self.assertEqual(perm(n, k), perm(n - 1, k - 1) * k + perm(n - 1, k))
 | |
| 
 | |
|         # Test corner cases
 | |
|         for n in range(1, 100):
 | |
|             self.assertEqual(perm(n, 0), 1)
 | |
|             self.assertEqual(perm(n, 1), n)
 | |
|             self.assertEqual(perm(n, n), factorial(n))
 | |
| 
 | |
|         # Test one argument form
 | |
|         for n in range(20):
 | |
|             self.assertEqual(perm(n), factorial(n))
 | |
|             self.assertEqual(perm(n, None), factorial(n))
 | |
| 
 | |
|         # Raises TypeError if any argument is non-integer or argument count is
 | |
|         # not 1 or 2
 | |
|         self.assertRaises(TypeError, perm, 10, 1.0)
 | |
|         self.assertRaises(TypeError, perm, 10, decimal.Decimal(1.0))
 | |
|         self.assertRaises(TypeError, perm, 10, "1")
 | |
|         self.assertRaises(TypeError, perm, 10.0, 1)
 | |
|         self.assertRaises(TypeError, perm, decimal.Decimal(10.0), 1)
 | |
|         self.assertRaises(TypeError, perm, "10", 1)
 | |
| 
 | |
|         self.assertRaises(TypeError, perm)
 | |
|         self.assertRaises(TypeError, perm, 10, 1, 3)
 | |
|         self.assertRaises(TypeError, perm)
 | |
| 
 | |
|         # Raises Value error if not k or n are negative numbers
 | |
|         self.assertRaises(ValueError, perm, -1, 1)
 | |
|         self.assertRaises(ValueError, perm, -2**1000, 1)
 | |
|         self.assertRaises(ValueError, perm, 1, -1)
 | |
|         self.assertRaises(ValueError, perm, 1, -2**1000)
 | |
| 
 | |
|         # Returns zero if k is greater than n
 | |
|         self.assertEqual(perm(1, 2), 0)
 | |
|         self.assertEqual(perm(1, 2**1000), 0)
 | |
| 
 | |
|         n = 2**1000
 | |
|         self.assertEqual(perm(n, 0), 1)
 | |
|         self.assertEqual(perm(n, 1), n)
 | |
|         self.assertEqual(perm(n, 2), n * (n-1))
 | |
|         if support.check_impl_detail(cpython=True):
 | |
|             self.assertRaises(OverflowError, perm, n, n)
 | |
| 
 | |
|         for n, k in (True, True), (True, False), (False, False):
 | |
|             self.assertEqual(perm(n, k), 1)
 | |
|             self.assertIs(type(perm(n, k)), int)
 | |
|         self.assertEqual(perm(IntSubclass(5), IntSubclass(2)), 20)
 | |
|         self.assertEqual(perm(MyIndexable(5), MyIndexable(2)), 20)
 | |
|         for k in range(3):
 | |
|             self.assertIs(type(perm(IntSubclass(5), IntSubclass(k))), int)
 | |
|             self.assertIs(type(perm(MyIndexable(5), MyIndexable(k))), int)
 | |
| 
 | |
|     def testComb(self):
 | |
|         comb = math.comb
 | |
|         factorial = math.factorial
 | |
|         # Test if factorial definition is satisfied
 | |
|         for n in range(500):
 | |
|             for k in (range(n + 1) if n < 100 else range(30) if n < 200 else range(10)):
 | |
|                 self.assertEqual(comb(n, k), factorial(n)
 | |
|                     // (factorial(k) * factorial(n - k)))
 | |
| 
 | |
|         # Test for Pascal's identity
 | |
|         for n in range(1, 100):
 | |
|             for k in range(1, n):
 | |
|                 self.assertEqual(comb(n, k), comb(n - 1, k - 1) + comb(n - 1, k))
 | |
| 
 | |
|         # Test corner cases
 | |
|         for n in range(100):
 | |
|             self.assertEqual(comb(n, 0), 1)
 | |
|             self.assertEqual(comb(n, n), 1)
 | |
| 
 | |
|         for n in range(1, 100):
 | |
|             self.assertEqual(comb(n, 1), n)
 | |
|             self.assertEqual(comb(n, n - 1), n)
 | |
| 
 | |
|         # Test Symmetry
 | |
|         for n in range(100):
 | |
|             for k in range(n // 2):
 | |
|                 self.assertEqual(comb(n, k), comb(n, n - k))
 | |
| 
 | |
|         # Raises TypeError if any argument is non-integer or argument count is
 | |
|         # not 2
 | |
|         self.assertRaises(TypeError, comb, 10, 1.0)
 | |
|         self.assertRaises(TypeError, comb, 10, decimal.Decimal(1.0))
 | |
|         self.assertRaises(TypeError, comb, 10, "1")
 | |
|         self.assertRaises(TypeError, comb, 10.0, 1)
 | |
|         self.assertRaises(TypeError, comb, decimal.Decimal(10.0), 1)
 | |
|         self.assertRaises(TypeError, comb, "10", 1)
 | |
| 
 | |
|         self.assertRaises(TypeError, comb, 10)
 | |
|         self.assertRaises(TypeError, comb, 10, 1, 3)
 | |
|         self.assertRaises(TypeError, comb)
 | |
| 
 | |
|         # Raises Value error if not k or n are negative numbers
 | |
|         self.assertRaises(ValueError, comb, -1, 1)
 | |
|         self.assertRaises(ValueError, comb, -2**1000, 1)
 | |
|         self.assertRaises(ValueError, comb, 1, -1)
 | |
|         self.assertRaises(ValueError, comb, 1, -2**1000)
 | |
| 
 | |
|         # Returns zero if k is greater than n
 | |
|         self.assertEqual(comb(1, 2), 0)
 | |
|         self.assertEqual(comb(1, 2**1000), 0)
 | |
| 
 | |
|         n = 2**1000
 | |
|         self.assertEqual(comb(n, 0), 1)
 | |
|         self.assertEqual(comb(n, 1), n)
 | |
|         self.assertEqual(comb(n, 2), n * (n-1) // 2)
 | |
|         self.assertEqual(comb(n, n), 1)
 | |
|         self.assertEqual(comb(n, n-1), n)
 | |
|         self.assertEqual(comb(n, n-2), n * (n-1) // 2)
 | |
|         if support.check_impl_detail(cpython=True):
 | |
|             self.assertRaises(OverflowError, comb, n, n//2)
 | |
| 
 | |
|         for n, k in (True, True), (True, False), (False, False):
 | |
|             self.assertEqual(comb(n, k), 1)
 | |
|             self.assertIs(type(comb(n, k)), int)
 | |
|         self.assertEqual(comb(IntSubclass(5), IntSubclass(2)), 10)
 | |
|         self.assertEqual(comb(MyIndexable(5), MyIndexable(2)), 10)
 | |
|         for k in range(3):
 | |
|             self.assertIs(type(comb(IntSubclass(5), IntSubclass(k))), int)
 | |
|             self.assertIs(type(comb(MyIndexable(5), MyIndexable(k))), int)
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def test_nextafter(self):
 | |
|         # around 2^52 and 2^63
 | |
|         self.assertEqual(math.nextafter(4503599627370496.0, -INF),
 | |
|                          4503599627370495.5)
 | |
|         self.assertEqual(math.nextafter(4503599627370496.0, INF),
 | |
|                          4503599627370497.0)
 | |
|         self.assertEqual(math.nextafter(9223372036854775808.0, 0.0),
 | |
|                          9223372036854774784.0)
 | |
|         self.assertEqual(math.nextafter(-9223372036854775808.0, 0.0),
 | |
|                          -9223372036854774784.0)
 | |
| 
 | |
|         # around 1.0
 | |
|         self.assertEqual(math.nextafter(1.0, -INF),
 | |
|                          float.fromhex('0x1.fffffffffffffp-1'))
 | |
|         self.assertEqual(math.nextafter(1.0, INF),
 | |
|                          float.fromhex('0x1.0000000000001p+0'))
 | |
|         self.assertEqual(math.nextafter(1.0, -INF, steps=1),
 | |
|                          float.fromhex('0x1.fffffffffffffp-1'))
 | |
|         self.assertEqual(math.nextafter(1.0, INF, steps=1),
 | |
|                          float.fromhex('0x1.0000000000001p+0'))
 | |
|         self.assertEqual(math.nextafter(1.0, -INF, steps=3),
 | |
|                          float.fromhex('0x1.ffffffffffffdp-1'))
 | |
|         self.assertEqual(math.nextafter(1.0, INF, steps=3),
 | |
|                          float.fromhex('0x1.0000000000003p+0'))
 | |
| 
 | |
|         # x == y: y is returned
 | |
|         for steps in range(1, 5):
 | |
|             self.assertEqual(math.nextafter(2.0, 2.0, steps=steps), 2.0)
 | |
|             self.assertEqualSign(math.nextafter(-0.0, +0.0, steps=steps), +0.0)
 | |
|             self.assertEqualSign(math.nextafter(+0.0, -0.0, steps=steps), -0.0)
 | |
| 
 | |
|         # around 0.0
 | |
|         smallest_subnormal = sys.float_info.min * sys.float_info.epsilon
 | |
|         self.assertEqual(math.nextafter(+0.0, INF), smallest_subnormal)
 | |
|         self.assertEqual(math.nextafter(-0.0, INF), smallest_subnormal)
 | |
|         self.assertEqual(math.nextafter(+0.0, -INF), -smallest_subnormal)
 | |
|         self.assertEqual(math.nextafter(-0.0, -INF), -smallest_subnormal)
 | |
|         self.assertEqualSign(math.nextafter(smallest_subnormal, +0.0), +0.0)
 | |
|         self.assertEqualSign(math.nextafter(-smallest_subnormal, +0.0), -0.0)
 | |
|         self.assertEqualSign(math.nextafter(smallest_subnormal, -0.0), +0.0)
 | |
|         self.assertEqualSign(math.nextafter(-smallest_subnormal, -0.0), -0.0)
 | |
| 
 | |
|         # around infinity
 | |
|         largest_normal = sys.float_info.max
 | |
|         self.assertEqual(math.nextafter(INF, 0.0), largest_normal)
 | |
|         self.assertEqual(math.nextafter(-INF, 0.0), -largest_normal)
 | |
|         self.assertEqual(math.nextafter(largest_normal, INF), INF)
 | |
|         self.assertEqual(math.nextafter(-largest_normal, -INF), -INF)
 | |
| 
 | |
|         # NaN
 | |
|         self.assertIsNaN(math.nextafter(NAN, 1.0))
 | |
|         self.assertIsNaN(math.nextafter(1.0, NAN))
 | |
|         self.assertIsNaN(math.nextafter(NAN, NAN))
 | |
| 
 | |
|         self.assertEqual(1.0, math.nextafter(1.0, INF, steps=0))
 | |
|         with self.assertRaises(ValueError):
 | |
|             math.nextafter(1.0, INF, steps=-1)
 | |
| 
 | |
| 
 | |
|     @requires_IEEE_754
 | |
|     def test_ulp(self):
 | |
|         self.assertEqual(math.ulp(1.0), sys.float_info.epsilon)
 | |
|         # use int ** int rather than float ** int to not rely on pow() accuracy
 | |
|         self.assertEqual(math.ulp(2 ** 52), 1.0)
 | |
|         self.assertEqual(math.ulp(2 ** 53), 2.0)
 | |
|         self.assertEqual(math.ulp(2 ** 64), 4096.0)
 | |
| 
 | |
|         # min and max
 | |
|         self.assertEqual(math.ulp(0.0),
 | |
|                          sys.float_info.min * sys.float_info.epsilon)
 | |
|         self.assertEqual(math.ulp(FLOAT_MAX),
 | |
|                          FLOAT_MAX - math.nextafter(FLOAT_MAX, -INF))
 | |
| 
 | |
|         # special cases
 | |
|         self.assertEqual(math.ulp(INF), INF)
 | |
|         self.assertIsNaN(math.ulp(math.nan))
 | |
| 
 | |
|         # negative number: ulp(-x) == ulp(x)
 | |
|         for x in (0.0, 1.0, 2 ** 52, 2 ** 64, INF):
 | |
|             with self.subTest(x=x):
 | |
|                 self.assertEqual(math.ulp(-x), math.ulp(x))
 | |
| 
 | |
|     def test_issue39871(self):
 | |
|         # A SystemError should not be raised if the first arg to atan2(),
 | |
|         # copysign(), or remainder() cannot be converted to a float.
 | |
|         class F:
 | |
|             def __float__(self):
 | |
|                 self.converted = True
 | |
|                 1/0
 | |
|         for func in math.atan2, math.copysign, math.remainder:
 | |
|             y = F()
 | |
|             with self.assertRaises(TypeError):
 | |
|                 func("not a number", y)
 | |
| 
 | |
|             # There should not have been any attempt to convert the second
 | |
|             # argument to a float.
 | |
|             self.assertFalse(getattr(y, "converted", False))
 | |
| 
 | |
|     def test_input_exceptions(self):
 | |
|         self.assertRaises(TypeError, math.exp, "spam")
 | |
|         self.assertRaises(TypeError, math.erf, "spam")
 | |
|         self.assertRaises(TypeError, math.atan2, "spam", 1.0)
 | |
|         self.assertRaises(TypeError, math.atan2, 1.0, "spam")
 | |
|         self.assertRaises(TypeError, math.atan2, 1.0)
 | |
|         self.assertRaises(TypeError, math.atan2, 1.0, 2.0, 3.0)
 | |
| 
 | |
|     def test_exception_messages(self):
 | |
|         x = -1.1
 | |
|         with self.assertRaisesRegex(ValueError,
 | |
|                                     f"expected a nonnegative input, got {x}"):
 | |
|             math.sqrt(x)
 | |
|         with self.assertRaisesRegex(ValueError,
 | |
|                                     f"expected a positive input, got {x}"):
 | |
|             math.log(x)
 | |
|         with self.assertRaisesRegex(ValueError,
 | |
|                                     f"expected a positive input, got {x}"):
 | |
|             math.log(123, x)
 | |
|         with self.assertRaisesRegex(ValueError,
 | |
|                                     f"expected a positive input, got {x}"):
 | |
|             math.log(x, 123)
 | |
|         with self.assertRaisesRegex(ValueError,
 | |
|                                     f"expected a positive input, got {x}"):
 | |
|             math.log2(x)
 | |
|         with self.assertRaisesRegex(ValueError,
 | |
|                                     f"expected a positive input, got {x}"):
 | |
|             math.log10(x)
 | |
|         x = decimal.Decimal('-1.1')
 | |
|         with self.assertRaisesRegex(ValueError,
 | |
|                                     f"expected a positive input, got {x}"):
 | |
|             math.log(x)
 | |
|         x = fractions.Fraction(1, 10**400)
 | |
|         with self.assertRaisesRegex(ValueError,
 | |
|                                     f"expected a positive input, got {float(x)}"):
 | |
|             math.log(x)
 | |
|         x = -123
 | |
|         with self.assertRaisesRegex(ValueError,
 | |
|                                     "expected a positive input$"):
 | |
|             math.log(x)
 | |
|         with self.assertRaisesRegex(ValueError,
 | |
|                                     f"expected a noninteger or positive integer, got {x}"):
 | |
|             math.gamma(x)
 | |
|         x = 1.0
 | |
|         with self.assertRaisesRegex(ValueError,
 | |
|                                     f"expected a number between -1 and 1, got {x}"):
 | |
|             math.atanh(x)
 | |
| 
 | |
|     # Custom assertions.
 | |
| 
 | |
|     def assertIsNaN(self, value):
 | |
|         if not math.isnan(value):
 | |
|             self.fail("Expected a NaN, got {!r}.".format(value))
 | |
| 
 | |
|     def assertEqualSign(self, x, y):
 | |
|         """Similar to assertEqual(), but compare also the sign with copysign().
 | |
| 
 | |
|         Function useful to compare signed zeros.
 | |
|         """
 | |
|         self.assertEqual(x, y)
 | |
|         self.assertEqual(math.copysign(1.0, x), math.copysign(1.0, y))
 | |
| 
 | |
| 
 | |
| class IsCloseTests(unittest.TestCase):
 | |
|     isclose = math.isclose  # subclasses should override this
 | |
| 
 | |
|     def assertIsClose(self, a, b, *args, **kwargs):
 | |
|         self.assertTrue(self.isclose(a, b, *args, **kwargs),
 | |
|                         msg="%s and %s should be close!" % (a, b))
 | |
| 
 | |
|     def assertIsNotClose(self, a, b, *args, **kwargs):
 | |
|         self.assertFalse(self.isclose(a, b, *args, **kwargs),
 | |
|                          msg="%s and %s should not be close!" % (a, b))
 | |
| 
 | |
|     def assertAllClose(self, examples, *args, **kwargs):
 | |
|         for a, b in examples:
 | |
|             self.assertIsClose(a, b, *args, **kwargs)
 | |
| 
 | |
|     def assertAllNotClose(self, examples, *args, **kwargs):
 | |
|         for a, b in examples:
 | |
|             self.assertIsNotClose(a, b, *args, **kwargs)
 | |
| 
 | |
|     def test_negative_tolerances(self):
 | |
|         # ValueError should be raised if either tolerance is less than zero
 | |
|         with self.assertRaises(ValueError):
 | |
|             self.assertIsClose(1, 1, rel_tol=-1e-100)
 | |
|         with self.assertRaises(ValueError):
 | |
|             self.assertIsClose(1, 1, rel_tol=1e-100, abs_tol=-1e10)
 | |
| 
 | |
|     def test_identical(self):
 | |
|         # identical values must test as close
 | |
|         identical_examples = [(2.0, 2.0),
 | |
|                               (0.1e200, 0.1e200),
 | |
|                               (1.123e-300, 1.123e-300),
 | |
|                               (12345, 12345.0),
 | |
|                               (0.0, -0.0),
 | |
|                               (345678, 345678)]
 | |
|         self.assertAllClose(identical_examples, rel_tol=0.0, abs_tol=0.0)
 | |
| 
 | |
|     def test_eight_decimal_places(self):
 | |
|         # examples that are close to 1e-8, but not 1e-9
 | |
|         eight_decimal_places_examples = [(1e8, 1e8 + 1),
 | |
|                                          (-1e-8, -1.000000009e-8),
 | |
|                                          (1.12345678, 1.12345679)]
 | |
|         self.assertAllClose(eight_decimal_places_examples, rel_tol=1e-8)
 | |
|         self.assertAllNotClose(eight_decimal_places_examples, rel_tol=1e-9)
 | |
| 
 | |
|     def test_near_zero(self):
 | |
|         # values close to zero
 | |
|         near_zero_examples = [(1e-9, 0.0),
 | |
|                               (-1e-9, 0.0),
 | |
|                               (-1e-150, 0.0)]
 | |
|         # these should not be close to any rel_tol
 | |
|         self.assertAllNotClose(near_zero_examples, rel_tol=0.9)
 | |
|         # these should be close to abs_tol=1e-8
 | |
|         self.assertAllClose(near_zero_examples, abs_tol=1e-8)
 | |
| 
 | |
|     def test_identical_infinite(self):
 | |
|         # these are close regardless of tolerance -- i.e. they are equal
 | |
|         self.assertIsClose(INF, INF)
 | |
|         self.assertIsClose(INF, INF, abs_tol=0.0)
 | |
|         self.assertIsClose(NINF, NINF)
 | |
|         self.assertIsClose(NINF, NINF, abs_tol=0.0)
 | |
| 
 | |
|     def test_inf_ninf_nan(self):
 | |
|         # these should never be close (following IEEE 754 rules for equality)
 | |
|         not_close_examples = [(NAN, NAN),
 | |
|                               (NAN, 1e-100),
 | |
|                               (1e-100, NAN),
 | |
|                               (INF, NAN),
 | |
|                               (NAN, INF),
 | |
|                               (INF, NINF),
 | |
|                               (INF, 1.0),
 | |
|                               (1.0, INF),
 | |
|                               (INF, 1e308),
 | |
|                               (1e308, INF)]
 | |
|         # use largest reasonable tolerance
 | |
|         self.assertAllNotClose(not_close_examples, abs_tol=0.999999999999999)
 | |
| 
 | |
|     def test_zero_tolerance(self):
 | |
|         # test with zero tolerance
 | |
|         zero_tolerance_close_examples = [(1.0, 1.0),
 | |
|                                          (-3.4, -3.4),
 | |
|                                          (-1e-300, -1e-300)]
 | |
|         self.assertAllClose(zero_tolerance_close_examples, rel_tol=0.0)
 | |
| 
 | |
|         zero_tolerance_not_close_examples = [(1.0, 1.000000000000001),
 | |
|                                              (0.99999999999999, 1.0),
 | |
|                                              (1.0e200, .999999999999999e200)]
 | |
|         self.assertAllNotClose(zero_tolerance_not_close_examples, rel_tol=0.0)
 | |
| 
 | |
|     def test_asymmetry(self):
 | |
|         # test the asymmetry example from PEP 485
 | |
|         self.assertAllClose([(9, 10), (10, 9)], rel_tol=0.1)
 | |
| 
 | |
|     def test_integers(self):
 | |
|         # test with integer values
 | |
|         integer_examples = [(100000001, 100000000),
 | |
|                             (123456789, 123456788)]
 | |
| 
 | |
|         self.assertAllClose(integer_examples, rel_tol=1e-8)
 | |
|         self.assertAllNotClose(integer_examples, rel_tol=1e-9)
 | |
| 
 | |
|     def test_decimals(self):
 | |
|         # test with Decimal values
 | |
|         from decimal import Decimal
 | |
| 
 | |
|         decimal_examples = [(Decimal('1.00000001'), Decimal('1.0')),
 | |
|                             (Decimal('1.00000001e-20'), Decimal('1.0e-20')),
 | |
|                             (Decimal('1.00000001e-100'), Decimal('1.0e-100')),
 | |
|                             (Decimal('1.00000001e20'), Decimal('1.0e20'))]
 | |
|         self.assertAllClose(decimal_examples, rel_tol=1e-8)
 | |
|         self.assertAllNotClose(decimal_examples, rel_tol=1e-9)
 | |
| 
 | |
|     def test_fractions(self):
 | |
|         # test with Fraction values
 | |
|         from fractions import Fraction
 | |
| 
 | |
|         fraction_examples = [
 | |
|             (Fraction(1, 100000000) + 1, Fraction(1)),
 | |
|             (Fraction(100000001), Fraction(100000000)),
 | |
|             (Fraction(10**8 + 1, 10**28), Fraction(1, 10**20))]
 | |
|         self.assertAllClose(fraction_examples, rel_tol=1e-8)
 | |
|         self.assertAllNotClose(fraction_examples, rel_tol=1e-9)
 | |
| 
 | |
| 
 | |
| class FMATests(unittest.TestCase):
 | |
|     """ Tests for math.fma. """
 | |
| 
 | |
|     def test_fma_nan_results(self):
 | |
|         # Selected representative values.
 | |
|         values = [
 | |
|             -math.inf, -1e300, -2.3, -1e-300, -0.0,
 | |
|             0.0, 1e-300, 2.3, 1e300, math.inf, math.nan
 | |
|         ]
 | |
| 
 | |
|         # If any input is a NaN, the result should be a NaN, too.
 | |
|         for a, b in itertools.product(values, repeat=2):
 | |
|             with self.subTest(a=a, b=b):
 | |
|                 self.assertIsNaN(math.fma(math.nan, a, b))
 | |
|                 self.assertIsNaN(math.fma(a, math.nan, b))
 | |
|                 self.assertIsNaN(math.fma(a, b, math.nan))
 | |
| 
 | |
|     def test_fma_infinities(self):
 | |
|         # Cases involving infinite inputs or results.
 | |
|         positives = [1e-300, 2.3, 1e300, math.inf]
 | |
|         finites = [-1e300, -2.3, -1e-300, -0.0, 0.0, 1e-300, 2.3, 1e300]
 | |
|         non_nans = [-math.inf, -2.3, -0.0, 0.0, 2.3, math.inf]
 | |
| 
 | |
|         # ValueError due to inf * 0 computation.
 | |
|         for c in non_nans:
 | |
|             for infinity in [math.inf, -math.inf]:
 | |
|                 for zero in [0.0, -0.0]:
 | |
|                     with self.subTest(c=c, infinity=infinity, zero=zero):
 | |
|                         with self.assertRaises(ValueError):
 | |
|                             math.fma(infinity, zero, c)
 | |
|                         with self.assertRaises(ValueError):
 | |
|                             math.fma(zero, infinity, c)
 | |
| 
 | |
|         # ValueError when a*b and c both infinite of opposite signs.
 | |
|         for b in positives:
 | |
|             with self.subTest(b=b):
 | |
|                 with self.assertRaises(ValueError):
 | |
|                     math.fma(math.inf, b, -math.inf)
 | |
|                 with self.assertRaises(ValueError):
 | |
|                     math.fma(math.inf, -b, math.inf)
 | |
|                 with self.assertRaises(ValueError):
 | |
|                     math.fma(-math.inf, -b, -math.inf)
 | |
|                 with self.assertRaises(ValueError):
 | |
|                     math.fma(-math.inf, b, math.inf)
 | |
|                 with self.assertRaises(ValueError):
 | |
|                     math.fma(b, math.inf, -math.inf)
 | |
|                 with self.assertRaises(ValueError):
 | |
|                     math.fma(-b, math.inf, math.inf)
 | |
|                 with self.assertRaises(ValueError):
 | |
|                     math.fma(-b, -math.inf, -math.inf)
 | |
|                 with self.assertRaises(ValueError):
 | |
|                     math.fma(b, -math.inf, math.inf)
 | |
| 
 | |
|         # Infinite result when a*b and c both infinite of the same sign.
 | |
|         for b in positives:
 | |
|             with self.subTest(b=b):
 | |
|                 self.assertEqual(math.fma(math.inf, b, math.inf), math.inf)
 | |
|                 self.assertEqual(math.fma(math.inf, -b, -math.inf), -math.inf)
 | |
|                 self.assertEqual(math.fma(-math.inf, -b, math.inf), math.inf)
 | |
|                 self.assertEqual(math.fma(-math.inf, b, -math.inf), -math.inf)
 | |
|                 self.assertEqual(math.fma(b, math.inf, math.inf), math.inf)
 | |
|                 self.assertEqual(math.fma(-b, math.inf, -math.inf), -math.inf)
 | |
|                 self.assertEqual(math.fma(-b, -math.inf, math.inf), math.inf)
 | |
|                 self.assertEqual(math.fma(b, -math.inf, -math.inf), -math.inf)
 | |
| 
 | |
|         # Infinite result when a*b finite, c infinite.
 | |
|         for a, b in itertools.product(finites, finites):
 | |
|             with self.subTest(b=b):
 | |
|                 self.assertEqual(math.fma(a, b, math.inf), math.inf)
 | |
|                 self.assertEqual(math.fma(a, b, -math.inf), -math.inf)
 | |
| 
 | |
|         # Infinite result when a*b infinite, c finite.
 | |
|         for b, c in itertools.product(positives, finites):
 | |
|             with self.subTest(b=b, c=c):
 | |
|                 self.assertEqual(math.fma(math.inf, b, c), math.inf)
 | |
|                 self.assertEqual(math.fma(-math.inf, b, c), -math.inf)
 | |
|                 self.assertEqual(math.fma(-math.inf, -b, c), math.inf)
 | |
|                 self.assertEqual(math.fma(math.inf, -b, c), -math.inf)
 | |
| 
 | |
|                 self.assertEqual(math.fma(b, math.inf, c), math.inf)
 | |
|                 self.assertEqual(math.fma(b, -math.inf, c), -math.inf)
 | |
|                 self.assertEqual(math.fma(-b, -math.inf, c), math.inf)
 | |
|                 self.assertEqual(math.fma(-b, math.inf, c), -math.inf)
 | |
| 
 | |
|     # gh-73468: On some platforms, libc fma() doesn't implement IEE 754-2008
 | |
|     # properly: it doesn't use the right sign when the result is zero.
 | |
|     @unittest.skipIf(
 | |
|         sys.platform.startswith(("freebsd", "wasi", "netbsd", "emscripten"))
 | |
|         or (sys.platform == "android" and platform.machine() == "x86_64")
 | |
|         or support.linked_to_musl(),  # gh-131032
 | |
|         f"this platform doesn't implement IEE 754-2008 properly")
 | |
|     # gh-131032: musl is fixed but the fix is not yet released; when the fixed
 | |
|     # version is known change this to:
 | |
|     #   or support.linked_to_musl() < (1, <m>, <p>)
 | |
|     def test_fma_zero_result(self):
 | |
|         nonnegative_finites = [0.0, 1e-300, 2.3, 1e300]
 | |
| 
 | |
|         # Zero results from exact zero inputs.
 | |
|         for b in nonnegative_finites:
 | |
|             with self.subTest(b=b):
 | |
|                 self.assertIsPositiveZero(math.fma(0.0, b, 0.0))
 | |
|                 self.assertIsPositiveZero(math.fma(0.0, b, -0.0))
 | |
|                 self.assertIsNegativeZero(math.fma(0.0, -b, -0.0))
 | |
|                 self.assertIsPositiveZero(math.fma(0.0, -b, 0.0))
 | |
|                 self.assertIsPositiveZero(math.fma(-0.0, -b, 0.0))
 | |
|                 self.assertIsPositiveZero(math.fma(-0.0, -b, -0.0))
 | |
|                 self.assertIsNegativeZero(math.fma(-0.0, b, -0.0))
 | |
|                 self.assertIsPositiveZero(math.fma(-0.0, b, 0.0))
 | |
| 
 | |
|                 self.assertIsPositiveZero(math.fma(b, 0.0, 0.0))
 | |
|                 self.assertIsPositiveZero(math.fma(b, 0.0, -0.0))
 | |
|                 self.assertIsNegativeZero(math.fma(-b, 0.0, -0.0))
 | |
|                 self.assertIsPositiveZero(math.fma(-b, 0.0, 0.0))
 | |
|                 self.assertIsPositiveZero(math.fma(-b, -0.0, 0.0))
 | |
|                 self.assertIsPositiveZero(math.fma(-b, -0.0, -0.0))
 | |
|                 self.assertIsNegativeZero(math.fma(b, -0.0, -0.0))
 | |
|                 self.assertIsPositiveZero(math.fma(b, -0.0, 0.0))
 | |
| 
 | |
|         # Exact zero result from nonzero inputs.
 | |
|         self.assertIsPositiveZero(math.fma(2.0, 2.0, -4.0))
 | |
|         self.assertIsPositiveZero(math.fma(2.0, -2.0, 4.0))
 | |
|         self.assertIsPositiveZero(math.fma(-2.0, -2.0, -4.0))
 | |
|         self.assertIsPositiveZero(math.fma(-2.0, 2.0, 4.0))
 | |
| 
 | |
|         # Underflow to zero.
 | |
|         tiny = 1e-300
 | |
|         self.assertIsPositiveZero(math.fma(tiny, tiny, 0.0))
 | |
|         self.assertIsNegativeZero(math.fma(tiny, -tiny, 0.0))
 | |
|         self.assertIsPositiveZero(math.fma(-tiny, -tiny, 0.0))
 | |
|         self.assertIsNegativeZero(math.fma(-tiny, tiny, 0.0))
 | |
|         self.assertIsPositiveZero(math.fma(tiny, tiny, -0.0))
 | |
|         self.assertIsNegativeZero(math.fma(tiny, -tiny, -0.0))
 | |
|         self.assertIsPositiveZero(math.fma(-tiny, -tiny, -0.0))
 | |
|         self.assertIsNegativeZero(math.fma(-tiny, tiny, -0.0))
 | |
| 
 | |
|         # Corner case where rounding the multiplication would
 | |
|         # give the wrong result.
 | |
|         x = float.fromhex('0x1p-500')
 | |
|         y = float.fromhex('0x1p-550')
 | |
|         z = float.fromhex('0x1p-1000')
 | |
|         self.assertIsNegativeZero(math.fma(x-y, x+y, -z))
 | |
|         self.assertIsPositiveZero(math.fma(y-x, x+y, z))
 | |
|         self.assertIsNegativeZero(math.fma(y-x, -(x+y), -z))
 | |
|         self.assertIsPositiveZero(math.fma(x-y, -(x+y), z))
 | |
| 
 | |
|     def test_fma_overflow(self):
 | |
|         a = b = float.fromhex('0x1p512')
 | |
|         c = float.fromhex('0x1p1023')
 | |
|         # Overflow from multiplication.
 | |
|         with self.assertRaises(OverflowError):
 | |
|             math.fma(a, b, 0.0)
 | |
|         self.assertEqual(math.fma(a, b/2.0, 0.0), c)
 | |
|         # Overflow from the addition.
 | |
|         with self.assertRaises(OverflowError):
 | |
|             math.fma(a, b/2.0, c)
 | |
|         # No overflow, even though a*b overflows a float.
 | |
|         self.assertEqual(math.fma(a, b, -c), c)
 | |
| 
 | |
|         # Extreme case: a * b is exactly at the overflow boundary, so the
 | |
|         # tiniest offset makes a difference between overflow and a finite
 | |
|         # result.
 | |
|         a = float.fromhex('0x1.ffffffc000000p+511')
 | |
|         b = float.fromhex('0x1.0000002000000p+512')
 | |
|         c = float.fromhex('0x0.0000000000001p-1022')
 | |
|         with self.assertRaises(OverflowError):
 | |
|             math.fma(a, b, 0.0)
 | |
|         with self.assertRaises(OverflowError):
 | |
|             math.fma(a, b, c)
 | |
|         self.assertEqual(math.fma(a, b, -c),
 | |
|                          float.fromhex('0x1.fffffffffffffp+1023'))
 | |
| 
 | |
|         # Another extreme case: here a*b is about as large as possible subject
 | |
|         # to math.fma(a, b, c) being finite.
 | |
|         a = float.fromhex('0x1.ae565943785f9p+512')
 | |
|         b = float.fromhex('0x1.3094665de9db8p+512')
 | |
|         c = float.fromhex('0x1.fffffffffffffp+1023')
 | |
|         self.assertEqual(math.fma(a, b, -c), c)
 | |
| 
 | |
|     def test_fma_single_round(self):
 | |
|         a = float.fromhex('0x1p-50')
 | |
|         self.assertEqual(math.fma(a - 1.0, a + 1.0, 1.0), a*a)
 | |
| 
 | |
|     def test_random(self):
 | |
|         # A collection of randomly generated inputs for which the naive FMA
 | |
|         # (with two rounds) gives a different result from a singly-rounded FMA.
 | |
| 
 | |
|         # tuples (a, b, c, expected)
 | |
|         test_values = [
 | |
|             ('0x1.694adde428b44p-1', '0x1.371b0d64caed7p-1',
 | |
|              '0x1.f347e7b8deab8p-4', '0x1.19f10da56c8adp-1'),
 | |
|             ('0x1.605401ccc6ad6p-2', '0x1.ce3a40bf56640p-2',
 | |
|              '0x1.96e3bf7bf2e20p-2', '0x1.1af6d8aa83101p-1'),
 | |
|             ('0x1.e5abd653a67d4p-2', '0x1.a2e400209b3e6p-1',
 | |
|              '0x1.a90051422ce13p-1', '0x1.37d68cc8c0fbbp+0'),
 | |
|             ('0x1.f94e8efd54700p-2', '0x1.123065c812cebp-1',
 | |
|              '0x1.458f86fb6ccd0p-1', '0x1.ccdcee26a3ff3p-1'),
 | |
|             ('0x1.bd926f1eedc96p-1', '0x1.eee9ca68c5740p-1',
 | |
|              '0x1.960c703eb3298p-2', '0x1.3cdcfb4fdb007p+0'),
 | |
|             ('0x1.27348350fbccdp-1', '0x1.3b073914a53f1p-1',
 | |
|              '0x1.e300da5c2b4cbp-1', '0x1.4c51e9a3c4e29p+0'),
 | |
|             ('0x1.2774f00b3497bp-1', '0x1.7038ec336bff0p-2',
 | |
|              '0x1.2f6f2ccc3576bp-1', '0x1.99ad9f9c2688bp-1'),
 | |
|             ('0x1.51d5a99300e5cp-1', '0x1.5cd74abd445a1p-1',
 | |
|              '0x1.8880ab0bbe530p-1', '0x1.3756f96b91129p+0'),
 | |
|             ('0x1.73cb965b821b8p-2', '0x1.218fd3d8d5371p-1',
 | |
|              '0x1.d1ea966a1f758p-2', '0x1.5217b8fd90119p-1'),
 | |
|             ('0x1.4aa98e890b046p-1', '0x1.954d85dff1041p-1',
 | |
|              '0x1.122b59317ebdfp-1', '0x1.0bf644b340cc5p+0'),
 | |
|             ('0x1.e28f29e44750fp-1', '0x1.4bcc4fdcd18fep-1',
 | |
|              '0x1.fd47f81298259p-1', '0x1.9b000afbc9995p+0'),
 | |
|             ('0x1.d2e850717fe78p-3', '0x1.1dd7531c303afp-1',
 | |
|              '0x1.e0869746a2fc2p-2', '0x1.316df6eb26439p-1'),
 | |
|             ('0x1.cf89c75ee6fbap-2', '0x1.b23decdc66825p-1',
 | |
|              '0x1.3d1fe76ac6168p-1', '0x1.00d8ea4c12abbp+0'),
 | |
|             ('0x1.3265ae6f05572p-2', '0x1.16d7ec285f7a2p-1',
 | |
|              '0x1.0b8405b3827fbp-1', '0x1.5ef33c118a001p-1'),
 | |
|             ('0x1.c4d1bf55ec1a5p-1', '0x1.bc59618459e12p-2',
 | |
|              '0x1.ce5b73dc1773dp-1', '0x1.496cf6164f99bp+0'),
 | |
|             ('0x1.d350026ac3946p-1', '0x1.9a234e149a68cp-2',
 | |
|              '0x1.f5467b1911fd6p-2', '0x1.b5cee3225caa5p-1'),
 | |
|         ]
 | |
|         for a_hex, b_hex, c_hex, expected_hex in test_values:
 | |
|             with self.subTest(a_hex=a_hex, b_hex=b_hex, c_hex=c_hex,
 | |
|                               expected_hex=expected_hex):
 | |
|                 a = float.fromhex(a_hex)
 | |
|                 b = float.fromhex(b_hex)
 | |
|                 c = float.fromhex(c_hex)
 | |
|                 expected = float.fromhex(expected_hex)
 | |
|                 self.assertEqual(math.fma(a, b, c), expected)
 | |
|                 self.assertEqual(math.fma(b, a, c), expected)
 | |
| 
 | |
|     # Custom assertions.
 | |
|     def assertIsNaN(self, value):
 | |
|         self.assertTrue(
 | |
|             math.isnan(value),
 | |
|             msg="Expected a NaN, got {!r}".format(value)
 | |
|         )
 | |
| 
 | |
|     def assertIsPositiveZero(self, value):
 | |
|         self.assertTrue(
 | |
|             value == 0 and math.copysign(1, value) > 0,
 | |
|             msg="Expected a positive zero, got {!r}".format(value)
 | |
|         )
 | |
| 
 | |
|     def assertIsNegativeZero(self, value):
 | |
|         self.assertTrue(
 | |
|             value == 0 and math.copysign(1, value) < 0,
 | |
|             msg="Expected a negative zero, got {!r}".format(value)
 | |
|         )
 | |
| 
 | |
| 
 | |
| def load_tests(loader, tests, pattern):
 | |
|     from doctest import DocFileSuite
 | |
|     tests.addTest(DocFileSuite(os.path.join("mathdata", "ieee754.txt")))
 | |
|     return tests
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     unittest.main()
 |