mirror of
				https://github.com/python/cpython.git
				synced 2025-10-30 13:11:29 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1413 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1413 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Complex math module */
 | |
| 
 | |
| /* much code borrowed from mathmodule.c */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "_math.h"
 | |
| /* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
 | |
|    float.h.  We assume that FLT_RADIX is either 2 or 16. */
 | |
| #include <float.h>
 | |
| 
 | |
| #include "clinic/cmathmodule.c.h"
 | |
| /*[clinic input]
 | |
| module cmath
 | |
| [clinic start generated code]*/
 | |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=308d6839f4a46333]*/
 | |
| 
 | |
| /*[python input]
 | |
| class Py_complex_protected_converter(Py_complex_converter):
 | |
|     def modify(self):
 | |
|         return 'errno = 0; PyFPE_START_PROTECT("complex function", goto exit);'
 | |
| 
 | |
| 
 | |
| class Py_complex_protected_return_converter(CReturnConverter):
 | |
|     type = "Py_complex"
 | |
| 
 | |
|     def render(self, function, data):
 | |
|         self.declare(data)
 | |
|         data.return_conversion.append("""
 | |
| PyFPE_END_PROTECT(_return_value);
 | |
| if (errno == EDOM) {
 | |
|     PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|     goto exit;
 | |
| }
 | |
| else if (errno == ERANGE) {
 | |
|     PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|     goto exit;
 | |
| }
 | |
| else {
 | |
|     return_value = PyComplex_FromCComplex(_return_value);
 | |
| }
 | |
| """.strip())
 | |
| [python start generated code]*/
 | |
| /*[python end generated code: output=da39a3ee5e6b4b0d input=345daa075b1028e7]*/
 | |
| 
 | |
| #if (FLT_RADIX != 2 && FLT_RADIX != 16)
 | |
| #error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
 | |
| #endif
 | |
| 
 | |
| #ifndef M_LN2
 | |
| #define M_LN2 (0.6931471805599453094) /* natural log of 2 */
 | |
| #endif
 | |
| 
 | |
| #ifndef M_LN10
 | |
| #define M_LN10 (2.302585092994045684) /* natural log of 10 */
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|    CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
 | |
|    inverse trig and inverse hyperbolic trig functions.  Its log is used in the
 | |
|    evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unnecessary
 | |
|    overflow.
 | |
|  */
 | |
| 
 | |
| #define CM_LARGE_DOUBLE (DBL_MAX/4.)
 | |
| #define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
 | |
| #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
 | |
| #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
 | |
| 
 | |
| /*
 | |
|    CM_SCALE_UP is an odd integer chosen such that multiplication by
 | |
|    2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
 | |
|    CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2).  These scalings are used to compute
 | |
|    square roots accurately when the real and imaginary parts of the argument
 | |
|    are subnormal.
 | |
| */
 | |
| 
 | |
| #if FLT_RADIX==2
 | |
| #define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
 | |
| #elif FLT_RADIX==16
 | |
| #define CM_SCALE_UP (4*DBL_MANT_DIG+1)
 | |
| #endif
 | |
| #define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
 | |
| 
 | |
| /* Constants cmath.inf, cmath.infj, cmath.nan, cmath.nanj.
 | |
|    cmath.nan and cmath.nanj are defined only when either
 | |
|    PY_NO_SHORT_FLOAT_REPR is *not* defined (which should be
 | |
|    the most common situation on machines using an IEEE 754
 | |
|    representation), or Py_NAN is defined. */
 | |
| 
 | |
| static double
 | |
| m_inf(void)
 | |
| {
 | |
| #ifndef PY_NO_SHORT_FLOAT_REPR
 | |
|     return _Py_dg_infinity(0);
 | |
| #else
 | |
|     return Py_HUGE_VAL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static Py_complex
 | |
| c_infj(void)
 | |
| {
 | |
|     Py_complex r;
 | |
|     r.real = 0.0;
 | |
|     r.imag = m_inf();
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
 | |
| 
 | |
| static double
 | |
| m_nan(void)
 | |
| {
 | |
| #ifndef PY_NO_SHORT_FLOAT_REPR
 | |
|     return _Py_dg_stdnan(0);
 | |
| #else
 | |
|     return Py_NAN;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static Py_complex
 | |
| c_nanj(void)
 | |
| {
 | |
|     Py_complex r;
 | |
|     r.real = 0.0;
 | |
|     r.imag = m_nan();
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* forward declarations */
 | |
| static Py_complex cmath_asinh_impl(PyObject *, Py_complex);
 | |
| static Py_complex cmath_atanh_impl(PyObject *, Py_complex);
 | |
| static Py_complex cmath_cosh_impl(PyObject *, Py_complex);
 | |
| static Py_complex cmath_sinh_impl(PyObject *, Py_complex);
 | |
| static Py_complex cmath_sqrt_impl(PyObject *, Py_complex);
 | |
| static Py_complex cmath_tanh_impl(PyObject *, Py_complex);
 | |
| static PyObject * math_error(void);
 | |
| 
 | |
| /* Code to deal with special values (infinities, NaNs, etc.). */
 | |
| 
 | |
| /* special_type takes a double and returns an integer code indicating
 | |
|    the type of the double as follows:
 | |
| */
 | |
| 
 | |
| enum special_types {
 | |
|     ST_NINF,            /* 0, negative infinity */
 | |
|     ST_NEG,             /* 1, negative finite number (nonzero) */
 | |
|     ST_NZERO,           /* 2, -0. */
 | |
|     ST_PZERO,           /* 3, +0. */
 | |
|     ST_POS,             /* 4, positive finite number (nonzero) */
 | |
|     ST_PINF,            /* 5, positive infinity */
 | |
|     ST_NAN              /* 6, Not a Number */
 | |
| };
 | |
| 
 | |
| static enum special_types
 | |
| special_type(double d)
 | |
| {
 | |
|     if (Py_IS_FINITE(d)) {
 | |
|         if (d != 0) {
 | |
|             if (copysign(1., d) == 1.)
 | |
|                 return ST_POS;
 | |
|             else
 | |
|                 return ST_NEG;
 | |
|         }
 | |
|         else {
 | |
|             if (copysign(1., d) == 1.)
 | |
|                 return ST_PZERO;
 | |
|             else
 | |
|                 return ST_NZERO;
 | |
|         }
 | |
|     }
 | |
|     if (Py_IS_NAN(d))
 | |
|         return ST_NAN;
 | |
|     if (copysign(1., d) == 1.)
 | |
|         return ST_PINF;
 | |
|     else
 | |
|         return ST_NINF;
 | |
| }
 | |
| 
 | |
| #define SPECIAL_VALUE(z, table)                                         \
 | |
|     if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) {           \
 | |
|         errno = 0;                                              \
 | |
|         return table[special_type((z).real)]                            \
 | |
|                     [special_type((z).imag)];                           \
 | |
|     }
 | |
| 
 | |
| #define P Py_MATH_PI
 | |
| #define P14 0.25*Py_MATH_PI
 | |
| #define P12 0.5*Py_MATH_PI
 | |
| #define P34 0.75*Py_MATH_PI
 | |
| #define INF Py_HUGE_VAL
 | |
| #define N Py_NAN
 | |
| #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
 | |
| 
 | |
| /* First, the C functions that do the real work.  Each of the c_*
 | |
|    functions computes and returns the C99 Annex G recommended result
 | |
|    and also sets errno as follows: errno = 0 if no floating-point
 | |
|    exception is associated with the result; errno = EDOM if C99 Annex
 | |
|    G recommends raising divide-by-zero or invalid for this result; and
 | |
|    errno = ERANGE where the overflow floating-point signal should be
 | |
|    raised.
 | |
| */
 | |
| 
 | |
| static Py_complex acos_special_values[7][7];
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.acos -> Py_complex_protected
 | |
| 
 | |
|     z: Py_complex_protected
 | |
|     /
 | |
| 
 | |
| Return the arc cosine of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_acos_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=40bd42853fd460ae input=bd6cbd78ae851927]*/
 | |
| {
 | |
|     Py_complex s1, s2, r;
 | |
| 
 | |
|     SPECIAL_VALUE(z, acos_special_values);
 | |
| 
 | |
|     if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
 | |
|         /* avoid unnecessary overflow for large arguments */
 | |
|         r.real = atan2(fabs(z.imag), z.real);
 | |
|         /* split into cases to make sure that the branch cut has the
 | |
|            correct continuity on systems with unsigned zeros */
 | |
|         if (z.real < 0.) {
 | |
|             r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
 | |
|                                M_LN2*2., z.imag);
 | |
|         } else {
 | |
|             r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
 | |
|                               M_LN2*2., -z.imag);
 | |
|         }
 | |
|     } else {
 | |
|         s1.real = 1.-z.real;
 | |
|         s1.imag = -z.imag;
 | |
|         s1 = cmath_sqrt_impl(module, s1);
 | |
|         s2.real = 1.+z.real;
 | |
|         s2.imag = z.imag;
 | |
|         s2 = cmath_sqrt_impl(module, s2);
 | |
|         r.real = 2.*atan2(s1.real, s2.real);
 | |
|         r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
 | |
|     }
 | |
|     errno = 0;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static Py_complex acosh_special_values[7][7];
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.acosh = cmath.acos
 | |
| 
 | |
| Return the inverse hyperbolic cosine of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_acosh_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=3e2454d4fcf404ca input=3f61bee7d703e53c]*/
 | |
| {
 | |
|     Py_complex s1, s2, r;
 | |
| 
 | |
|     SPECIAL_VALUE(z, acosh_special_values);
 | |
| 
 | |
|     if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
 | |
|         /* avoid unnecessary overflow for large arguments */
 | |
|         r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
 | |
|         r.imag = atan2(z.imag, z.real);
 | |
|     } else {
 | |
|         s1.real = z.real - 1.;
 | |
|         s1.imag = z.imag;
 | |
|         s1 = cmath_sqrt_impl(module, s1);
 | |
|         s2.real = z.real + 1.;
 | |
|         s2.imag = z.imag;
 | |
|         s2 = cmath_sqrt_impl(module, s2);
 | |
|         r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
 | |
|         r.imag = 2.*atan2(s1.imag, s2.real);
 | |
|     }
 | |
|     errno = 0;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.asin = cmath.acos
 | |
| 
 | |
| Return the arc sine of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_asin_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=3b264cd1b16bf4e1 input=be0bf0cfdd5239c5]*/
 | |
| {
 | |
|     /* asin(z) = -i asinh(iz) */
 | |
|     Py_complex s, r;
 | |
|     s.real = -z.imag;
 | |
|     s.imag = z.real;
 | |
|     s = cmath_asinh_impl(module, s);
 | |
|     r.real = s.imag;
 | |
|     r.imag = -s.real;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static Py_complex asinh_special_values[7][7];
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.asinh = cmath.acos
 | |
| 
 | |
| Return the inverse hyperbolic sine of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_asinh_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=733d8107841a7599 input=5c09448fcfc89a79]*/
 | |
| {
 | |
|     Py_complex s1, s2, r;
 | |
| 
 | |
|     SPECIAL_VALUE(z, asinh_special_values);
 | |
| 
 | |
|     if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
 | |
|         if (z.imag >= 0.) {
 | |
|             r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
 | |
|                               M_LN2*2., z.real);
 | |
|         } else {
 | |
|             r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
 | |
|                                M_LN2*2., -z.real);
 | |
|         }
 | |
|         r.imag = atan2(z.imag, fabs(z.real));
 | |
|     } else {
 | |
|         s1.real = 1.+z.imag;
 | |
|         s1.imag = -z.real;
 | |
|         s1 = cmath_sqrt_impl(module, s1);
 | |
|         s2.real = 1.-z.imag;
 | |
|         s2.imag = z.real;
 | |
|         s2 = cmath_sqrt_impl(module, s2);
 | |
|         r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
 | |
|         r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
 | |
|     }
 | |
|     errno = 0;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.atan = cmath.acos
 | |
| 
 | |
| Return the arc tangent of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_atan_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=b6bfc497058acba4 input=3b21ff7d5eac632a]*/
 | |
| {
 | |
|     /* atan(z) = -i atanh(iz) */
 | |
|     Py_complex s, r;
 | |
|     s.real = -z.imag;
 | |
|     s.imag = z.real;
 | |
|     s = cmath_atanh_impl(module, s);
 | |
|     r.real = s.imag;
 | |
|     r.imag = -s.real;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
 | |
|    C99 for atan2(0., 0.). */
 | |
| static double
 | |
| c_atan2(Py_complex z)
 | |
| {
 | |
|     if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
 | |
|         return Py_NAN;
 | |
|     if (Py_IS_INFINITY(z.imag)) {
 | |
|         if (Py_IS_INFINITY(z.real)) {
 | |
|             if (copysign(1., z.real) == 1.)
 | |
|                 /* atan2(+-inf, +inf) == +-pi/4 */
 | |
|                 return copysign(0.25*Py_MATH_PI, z.imag);
 | |
|             else
 | |
|                 /* atan2(+-inf, -inf) == +-pi*3/4 */
 | |
|                 return copysign(0.75*Py_MATH_PI, z.imag);
 | |
|         }
 | |
|         /* atan2(+-inf, x) == +-pi/2 for finite x */
 | |
|         return copysign(0.5*Py_MATH_PI, z.imag);
 | |
|     }
 | |
|     if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
 | |
|         if (copysign(1., z.real) == 1.)
 | |
|             /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
 | |
|             return copysign(0., z.imag);
 | |
|         else
 | |
|             /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
 | |
|             return copysign(Py_MATH_PI, z.imag);
 | |
|     }
 | |
|     return atan2(z.imag, z.real);
 | |
| }
 | |
| 
 | |
| 
 | |
| static Py_complex atanh_special_values[7][7];
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.atanh = cmath.acos
 | |
| 
 | |
| Return the inverse hyperbolic tangent of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_atanh_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=e83355f93a989c9e input=2b3fdb82fb34487b]*/
 | |
| {
 | |
|     Py_complex r;
 | |
|     double ay, h;
 | |
| 
 | |
|     SPECIAL_VALUE(z, atanh_special_values);
 | |
| 
 | |
|     /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
 | |
|     if (z.real < 0.) {
 | |
|         return _Py_c_neg(cmath_atanh_impl(module, _Py_c_neg(z)));
 | |
|     }
 | |
| 
 | |
|     ay = fabs(z.imag);
 | |
|     if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
 | |
|         /*
 | |
|            if abs(z) is large then we use the approximation
 | |
|            atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
 | |
|            of z.imag)
 | |
|         */
 | |
|         h = hypot(z.real/2., z.imag/2.);  /* safe from overflow */
 | |
|         r.real = z.real/4./h/h;
 | |
|         /* the two negations in the next line cancel each other out
 | |
|            except when working with unsigned zeros: they're there to
 | |
|            ensure that the branch cut has the correct continuity on
 | |
|            systems that don't support signed zeros */
 | |
|         r.imag = -copysign(Py_MATH_PI/2., -z.imag);
 | |
|         errno = 0;
 | |
|     } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
 | |
|         /* C99 standard says:  atanh(1+/-0.) should be inf +/- 0i */
 | |
|         if (ay == 0.) {
 | |
|             r.real = INF;
 | |
|             r.imag = z.imag;
 | |
|             errno = EDOM;
 | |
|         } else {
 | |
|             r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
 | |
|             r.imag = copysign(atan2(2., -ay)/2, z.imag);
 | |
|             errno = 0;
 | |
|         }
 | |
|     } else {
 | |
|         r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
 | |
|         r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
 | |
|         errno = 0;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.cos = cmath.acos
 | |
| 
 | |
| Return the cosine of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_cos_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=fd64918d5b3186db input=6022e39b77127ac7]*/
 | |
| {
 | |
|     /* cos(z) = cosh(iz) */
 | |
|     Py_complex r;
 | |
|     r.real = -z.imag;
 | |
|     r.imag = z.real;
 | |
|     r = cmath_cosh_impl(module, r);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* cosh(infinity + i*y) needs to be dealt with specially */
 | |
| static Py_complex cosh_special_values[7][7];
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.cosh = cmath.acos
 | |
| 
 | |
| Return the hyperbolic cosine of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_cosh_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=2e969047da601bdb input=d6b66339e9cc332b]*/
 | |
| {
 | |
|     Py_complex r;
 | |
|     double x_minus_one;
 | |
| 
 | |
|     /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
 | |
|     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 | |
|         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
 | |
|             (z.imag != 0.)) {
 | |
|             if (z.real > 0) {
 | |
|                 r.real = copysign(INF, cos(z.imag));
 | |
|                 r.imag = copysign(INF, sin(z.imag));
 | |
|             }
 | |
|             else {
 | |
|                 r.real = copysign(INF, cos(z.imag));
 | |
|                 r.imag = -copysign(INF, sin(z.imag));
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             r = cosh_special_values[special_type(z.real)]
 | |
|                                    [special_type(z.imag)];
 | |
|         }
 | |
|         /* need to set errno = EDOM if y is +/- infinity and x is not
 | |
|            a NaN */
 | |
|         if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
 | |
|             errno = EDOM;
 | |
|         else
 | |
|             errno = 0;
 | |
|         return r;
 | |
|     }
 | |
| 
 | |
|     if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
 | |
|         /* deal correctly with cases where cosh(z.real) overflows but
 | |
|            cosh(z) does not. */
 | |
|         x_minus_one = z.real - copysign(1., z.real);
 | |
|         r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
 | |
|         r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
 | |
|     } else {
 | |
|         r.real = cos(z.imag) * cosh(z.real);
 | |
|         r.imag = sin(z.imag) * sinh(z.real);
 | |
|     }
 | |
|     /* detect overflow, and set errno accordingly */
 | |
|     if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
 | |
|         errno = ERANGE;
 | |
|     else
 | |
|         errno = 0;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
 | |
|    finite y */
 | |
| static Py_complex exp_special_values[7][7];
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.exp = cmath.acos
 | |
| 
 | |
| Return the exponential value e**z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_exp_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=edcec61fb9dfda6c input=8b9e6cf8a92174c3]*/
 | |
| {
 | |
|     Py_complex r;
 | |
|     double l;
 | |
| 
 | |
|     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 | |
|         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
 | |
|             && (z.imag != 0.)) {
 | |
|             if (z.real > 0) {
 | |
|                 r.real = copysign(INF, cos(z.imag));
 | |
|                 r.imag = copysign(INF, sin(z.imag));
 | |
|             }
 | |
|             else {
 | |
|                 r.real = copysign(0., cos(z.imag));
 | |
|                 r.imag = copysign(0., sin(z.imag));
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             r = exp_special_values[special_type(z.real)]
 | |
|                                   [special_type(z.imag)];
 | |
|         }
 | |
|         /* need to set errno = EDOM if y is +/- infinity and x is not
 | |
|            a NaN and not -infinity */
 | |
|         if (Py_IS_INFINITY(z.imag) &&
 | |
|             (Py_IS_FINITE(z.real) ||
 | |
|              (Py_IS_INFINITY(z.real) && z.real > 0)))
 | |
|             errno = EDOM;
 | |
|         else
 | |
|             errno = 0;
 | |
|         return r;
 | |
|     }
 | |
| 
 | |
|     if (z.real > CM_LOG_LARGE_DOUBLE) {
 | |
|         l = exp(z.real-1.);
 | |
|         r.real = l*cos(z.imag)*Py_MATH_E;
 | |
|         r.imag = l*sin(z.imag)*Py_MATH_E;
 | |
|     } else {
 | |
|         l = exp(z.real);
 | |
|         r.real = l*cos(z.imag);
 | |
|         r.imag = l*sin(z.imag);
 | |
|     }
 | |
|     /* detect overflow, and set errno accordingly */
 | |
|     if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
 | |
|         errno = ERANGE;
 | |
|     else
 | |
|         errno = 0;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static Py_complex log_special_values[7][7];
 | |
| 
 | |
| static Py_complex
 | |
| c_log(Py_complex z)
 | |
| {
 | |
|     /*
 | |
|        The usual formula for the real part is log(hypot(z.real, z.imag)).
 | |
|        There are four situations where this formula is potentially
 | |
|        problematic:
 | |
| 
 | |
|        (1) the absolute value of z is subnormal.  Then hypot is subnormal,
 | |
|        so has fewer than the usual number of bits of accuracy, hence may
 | |
|        have large relative error.  This then gives a large absolute error
 | |
|        in the log.  This can be solved by rescaling z by a suitable power
 | |
|        of 2.
 | |
| 
 | |
|        (2) the absolute value of z is greater than DBL_MAX (e.g. when both
 | |
|        z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
 | |
|        Again, rescaling solves this.
 | |
| 
 | |
|        (3) the absolute value of z is close to 1.  In this case it's
 | |
|        difficult to achieve good accuracy, at least in part because a
 | |
|        change of 1ulp in the real or imaginary part of z can result in a
 | |
|        change of billions of ulps in the correctly rounded answer.
 | |
| 
 | |
|        (4) z = 0.  The simplest thing to do here is to call the
 | |
|        floating-point log with an argument of 0, and let its behaviour
 | |
|        (returning -infinity, signaling a floating-point exception, setting
 | |
|        errno, or whatever) determine that of c_log.  So the usual formula
 | |
|        is fine here.
 | |
| 
 | |
|      */
 | |
| 
 | |
|     Py_complex r;
 | |
|     double ax, ay, am, an, h;
 | |
| 
 | |
|     SPECIAL_VALUE(z, log_special_values);
 | |
| 
 | |
|     ax = fabs(z.real);
 | |
|     ay = fabs(z.imag);
 | |
| 
 | |
|     if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
 | |
|         r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
 | |
|     } else if (ax < DBL_MIN && ay < DBL_MIN) {
 | |
|         if (ax > 0. || ay > 0.) {
 | |
|             /* catch cases where hypot(ax, ay) is subnormal */
 | |
|             r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
 | |
|                      ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
 | |
|         }
 | |
|         else {
 | |
|             /* log(+/-0. +/- 0i) */
 | |
|             r.real = -INF;
 | |
|             r.imag = atan2(z.imag, z.real);
 | |
|             errno = EDOM;
 | |
|             return r;
 | |
|         }
 | |
|     } else {
 | |
|         h = hypot(ax, ay);
 | |
|         if (0.71 <= h && h <= 1.73) {
 | |
|             am = ax > ay ? ax : ay;  /* max(ax, ay) */
 | |
|             an = ax > ay ? ay : ax;  /* min(ax, ay) */
 | |
|             r.real = m_log1p((am-1)*(am+1)+an*an)/2.;
 | |
|         } else {
 | |
|             r.real = log(h);
 | |
|         }
 | |
|     }
 | |
|     r.imag = atan2(z.imag, z.real);
 | |
|     errno = 0;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.log10 = cmath.acos
 | |
| 
 | |
| Return the base-10 logarithm of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_log10_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=2922779a7c38cbe1 input=cff5644f73c1519c]*/
 | |
| {
 | |
|     Py_complex r;
 | |
|     int errno_save;
 | |
| 
 | |
|     r = c_log(z);
 | |
|     errno_save = errno; /* just in case the divisions affect errno */
 | |
|     r.real = r.real / M_LN10;
 | |
|     r.imag = r.imag / M_LN10;
 | |
|     errno = errno_save;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.sin = cmath.acos
 | |
| 
 | |
| Return the sine of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_sin_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=980370d2ff0bb5aa input=2d3519842a8b4b85]*/
 | |
| {
 | |
|     /* sin(z) = -i sin(iz) */
 | |
|     Py_complex s, r;
 | |
|     s.real = -z.imag;
 | |
|     s.imag = z.real;
 | |
|     s = cmath_sinh_impl(module, s);
 | |
|     r.real = s.imag;
 | |
|     r.imag = -s.real;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* sinh(infinity + i*y) needs to be dealt with specially */
 | |
| static Py_complex sinh_special_values[7][7];
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.sinh = cmath.acos
 | |
| 
 | |
| Return the hyperbolic sine of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_sinh_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=38b0a6cce26f3536 input=d2d3fc8c1ddfd2dd]*/
 | |
| {
 | |
|     Py_complex r;
 | |
|     double x_minus_one;
 | |
| 
 | |
|     /* special treatment for sinh(+/-inf + iy) if y is finite and
 | |
|        nonzero */
 | |
|     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 | |
|         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
 | |
|             && (z.imag != 0.)) {
 | |
|             if (z.real > 0) {
 | |
|                 r.real = copysign(INF, cos(z.imag));
 | |
|                 r.imag = copysign(INF, sin(z.imag));
 | |
|             }
 | |
|             else {
 | |
|                 r.real = -copysign(INF, cos(z.imag));
 | |
|                 r.imag = copysign(INF, sin(z.imag));
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             r = sinh_special_values[special_type(z.real)]
 | |
|                                    [special_type(z.imag)];
 | |
|         }
 | |
|         /* need to set errno = EDOM if y is +/- infinity and x is not
 | |
|            a NaN */
 | |
|         if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
 | |
|             errno = EDOM;
 | |
|         else
 | |
|             errno = 0;
 | |
|         return r;
 | |
|     }
 | |
| 
 | |
|     if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
 | |
|         x_minus_one = z.real - copysign(1., z.real);
 | |
|         r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
 | |
|         r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
 | |
|     } else {
 | |
|         r.real = cos(z.imag) * sinh(z.real);
 | |
|         r.imag = sin(z.imag) * cosh(z.real);
 | |
|     }
 | |
|     /* detect overflow, and set errno accordingly */
 | |
|     if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
 | |
|         errno = ERANGE;
 | |
|     else
 | |
|         errno = 0;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static Py_complex sqrt_special_values[7][7];
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.sqrt = cmath.acos
 | |
| 
 | |
| Return the square root of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_sqrt_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=b6507b3029c339fc input=7088b166fc9a58c7]*/
 | |
| {
 | |
|     /*
 | |
|        Method: use symmetries to reduce to the case when x = z.real and y
 | |
|        = z.imag are nonnegative.  Then the real part of the result is
 | |
|        given by
 | |
| 
 | |
|          s = sqrt((x + hypot(x, y))/2)
 | |
| 
 | |
|        and the imaginary part is
 | |
| 
 | |
|          d = (y/2)/s
 | |
| 
 | |
|        If either x or y is very large then there's a risk of overflow in
 | |
|        computation of the expression x + hypot(x, y).  We can avoid this
 | |
|        by rewriting the formula for s as:
 | |
| 
 | |
|          s = 2*sqrt(x/8 + hypot(x/8, y/8))
 | |
| 
 | |
|        This costs us two extra multiplications/divisions, but avoids the
 | |
|        overhead of checking for x and y large.
 | |
| 
 | |
|        If both x and y are subnormal then hypot(x, y) may also be
 | |
|        subnormal, so will lack full precision.  We solve this by rescaling
 | |
|        x and y by a sufficiently large power of 2 to ensure that x and y
 | |
|        are normal.
 | |
|     */
 | |
| 
 | |
| 
 | |
|     Py_complex r;
 | |
|     double s,d;
 | |
|     double ax, ay;
 | |
| 
 | |
|     SPECIAL_VALUE(z, sqrt_special_values);
 | |
| 
 | |
|     if (z.real == 0. && z.imag == 0.) {
 | |
|         r.real = 0.;
 | |
|         r.imag = z.imag;
 | |
|         return r;
 | |
|     }
 | |
| 
 | |
|     ax = fabs(z.real);
 | |
|     ay = fabs(z.imag);
 | |
| 
 | |
|     if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
 | |
|         /* here we catch cases where hypot(ax, ay) is subnormal */
 | |
|         ax = ldexp(ax, CM_SCALE_UP);
 | |
|         s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
 | |
|                   CM_SCALE_DOWN);
 | |
|     } else {
 | |
|         ax /= 8.;
 | |
|         s = 2.*sqrt(ax + hypot(ax, ay/8.));
 | |
|     }
 | |
|     d = ay/(2.*s);
 | |
| 
 | |
|     if (z.real >= 0.) {
 | |
|         r.real = s;
 | |
|         r.imag = copysign(d, z.imag);
 | |
|     } else {
 | |
|         r.real = d;
 | |
|         r.imag = copysign(s, z.imag);
 | |
|     }
 | |
|     errno = 0;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.tan = cmath.acos
 | |
| 
 | |
| Return the tangent of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_tan_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=7c5f13158a72eb13 input=fc167e528767888e]*/
 | |
| {
 | |
|     /* tan(z) = -i tanh(iz) */
 | |
|     Py_complex s, r;
 | |
|     s.real = -z.imag;
 | |
|     s.imag = z.real;
 | |
|     s = cmath_tanh_impl(module, s);
 | |
|     r.real = s.imag;
 | |
|     r.imag = -s.real;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* tanh(infinity + i*y) needs to be dealt with specially */
 | |
| static Py_complex tanh_special_values[7][7];
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.tanh = cmath.acos
 | |
| 
 | |
| Return the hyperbolic tangent of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static Py_complex
 | |
| cmath_tanh_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=36d547ef7aca116c input=22f67f9dc6d29685]*/
 | |
| {
 | |
|     /* Formula:
 | |
| 
 | |
|        tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
 | |
|        (1+tan(y)^2 tanh(x)^2)
 | |
| 
 | |
|        To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
 | |
|        as 1/cosh(x)^2.  When abs(x) is large, we approximate 1-tanh(x)^2
 | |
|        by 4 exp(-2*x) instead, to avoid possible overflow in the
 | |
|        computation of cosh(x).
 | |
| 
 | |
|     */
 | |
| 
 | |
|     Py_complex r;
 | |
|     double tx, ty, cx, txty, denom;
 | |
| 
 | |
|     /* special treatment for tanh(+/-inf + iy) if y is finite and
 | |
|        nonzero */
 | |
|     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 | |
|         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
 | |
|             && (z.imag != 0.)) {
 | |
|             if (z.real > 0) {
 | |
|                 r.real = 1.0;
 | |
|                 r.imag = copysign(0.,
 | |
|                                   2.*sin(z.imag)*cos(z.imag));
 | |
|             }
 | |
|             else {
 | |
|                 r.real = -1.0;
 | |
|                 r.imag = copysign(0.,
 | |
|                                   2.*sin(z.imag)*cos(z.imag));
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             r = tanh_special_values[special_type(z.real)]
 | |
|                                    [special_type(z.imag)];
 | |
|         }
 | |
|         /* need to set errno = EDOM if z.imag is +/-infinity and
 | |
|            z.real is finite */
 | |
|         if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
 | |
|             errno = EDOM;
 | |
|         else
 | |
|             errno = 0;
 | |
|         return r;
 | |
|     }
 | |
| 
 | |
|     /* danger of overflow in 2.*z.imag !*/
 | |
|     if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
 | |
|         r.real = copysign(1., z.real);
 | |
|         r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
 | |
|     } else {
 | |
|         tx = tanh(z.real);
 | |
|         ty = tan(z.imag);
 | |
|         cx = 1./cosh(z.real);
 | |
|         txty = tx*ty;
 | |
|         denom = 1. + txty*txty;
 | |
|         r.real = tx*(1.+ty*ty)/denom;
 | |
|         r.imag = ((ty/denom)*cx)*cx;
 | |
|     }
 | |
|     errno = 0;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.log
 | |
| 
 | |
|     x: Py_complex
 | |
|     y_obj: object = NULL
 | |
|     /
 | |
| 
 | |
| The logarithm of z to the given base.
 | |
| 
 | |
| If the base not specified, returns the natural logarithm (base e) of z.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| cmath_log_impl(PyObject *module, Py_complex x, PyObject *y_obj)
 | |
| /*[clinic end generated code: output=4effdb7d258e0d94 input=ee0e823a7c6e68ea]*/
 | |
| {
 | |
|     Py_complex y;
 | |
| 
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("complex function", return 0)
 | |
|     x = c_log(x);
 | |
|     if (y_obj != NULL) {
 | |
|         y = PyComplex_AsCComplex(y_obj);
 | |
|         if (PyErr_Occurred()) {
 | |
|             return NULL;
 | |
|         }
 | |
|         y = c_log(y);
 | |
|         x = _Py_c_quot(x, y);
 | |
|     }
 | |
|     PyFPE_END_PROTECT(x)
 | |
|     if (errno != 0)
 | |
|         return math_error();
 | |
|     return PyComplex_FromCComplex(x);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* And now the glue to make them available from Python: */
 | |
| 
 | |
| static PyObject *
 | |
| math_error(void)
 | |
| {
 | |
|     if (errno == EDOM)
 | |
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
|     else if (errno == ERANGE)
 | |
|         PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
|     else    /* Unexpected math error */
 | |
|         PyErr_SetFromErrno(PyExc_ValueError);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.phase
 | |
| 
 | |
|     z: Py_complex
 | |
|     /
 | |
| 
 | |
| Return argument, also known as the phase angle, of a complex.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| cmath_phase_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=50725086a7bfd253 input=5cf75228ba94b69d]*/
 | |
| {
 | |
|     double phi;
 | |
| 
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("arg function", return 0)
 | |
|     phi = c_atan2(z);
 | |
|     PyFPE_END_PROTECT(phi)
 | |
|     if (errno != 0)
 | |
|         return math_error();
 | |
|     else
 | |
|         return PyFloat_FromDouble(phi);
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.polar
 | |
| 
 | |
|     z: Py_complex
 | |
|     /
 | |
| 
 | |
| Convert a complex from rectangular coordinates to polar coordinates.
 | |
| 
 | |
| r is the distance from 0 and phi the phase angle.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| cmath_polar_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=d0a8147c41dbb654 input=26c353574fd1a861]*/
 | |
| {
 | |
|     double r, phi;
 | |
| 
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("polar function", return 0)
 | |
|     phi = c_atan2(z); /* should not cause any exception */
 | |
|     r = _Py_c_abs(z); /* sets errno to ERANGE on overflow */
 | |
|     PyFPE_END_PROTECT(r)
 | |
|     if (errno != 0)
 | |
|         return math_error();
 | |
|     else
 | |
|         return Py_BuildValue("dd", r, phi);
 | |
| }
 | |
| 
 | |
| /*
 | |
|   rect() isn't covered by the C99 standard, but it's not too hard to
 | |
|   figure out 'spirit of C99' rules for special value handing:
 | |
| 
 | |
|     rect(x, t) should behave like exp(log(x) + it) for positive-signed x
 | |
|     rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
 | |
|     rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
 | |
|       gives nan +- i0 with the sign of the imaginary part unspecified.
 | |
| 
 | |
| */
 | |
| 
 | |
| static Py_complex rect_special_values[7][7];
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.rect
 | |
| 
 | |
|     r: double
 | |
|     phi: double
 | |
|     /
 | |
| 
 | |
| Convert from polar coordinates to rectangular coordinates.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| cmath_rect_impl(PyObject *module, double r, double phi)
 | |
| /*[clinic end generated code: output=385a0690925df2d5 input=24c5646d147efd69]*/
 | |
| {
 | |
|     Py_complex z;
 | |
|     errno = 0;
 | |
|     PyFPE_START_PROTECT("rect function", return 0)
 | |
| 
 | |
|     /* deal with special values */
 | |
|     if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
 | |
|         /* if r is +/-infinity and phi is finite but nonzero then
 | |
|            result is (+-INF +-INF i), but we need to compute cos(phi)
 | |
|            and sin(phi) to figure out the signs. */
 | |
|         if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
 | |
|                                   && (phi != 0.))) {
 | |
|             if (r > 0) {
 | |
|                 z.real = copysign(INF, cos(phi));
 | |
|                 z.imag = copysign(INF, sin(phi));
 | |
|             }
 | |
|             else {
 | |
|                 z.real = -copysign(INF, cos(phi));
 | |
|                 z.imag = -copysign(INF, sin(phi));
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             z = rect_special_values[special_type(r)]
 | |
|                                    [special_type(phi)];
 | |
|         }
 | |
|         /* need to set errno = EDOM if r is a nonzero number and phi
 | |
|            is infinite */
 | |
|         if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
 | |
|             errno = EDOM;
 | |
|         else
 | |
|             errno = 0;
 | |
|     }
 | |
|     else if (phi == 0.0) {
 | |
|         /* Workaround for buggy results with phi=-0.0 on OS X 10.8.  See
 | |
|            bugs.python.org/issue18513. */
 | |
|         z.real = r;
 | |
|         z.imag = r * phi;
 | |
|         errno = 0;
 | |
|     }
 | |
|     else {
 | |
|         z.real = r * cos(phi);
 | |
|         z.imag = r * sin(phi);
 | |
|         errno = 0;
 | |
|     }
 | |
| 
 | |
|     PyFPE_END_PROTECT(z)
 | |
|     if (errno != 0)
 | |
|         return math_error();
 | |
|     else
 | |
|         return PyComplex_FromCComplex(z);
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.isfinite = cmath.polar
 | |
| 
 | |
| Return True if both the real and imaginary parts of z are finite, else False.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| cmath_isfinite_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=ac76611e2c774a36 input=848e7ee701895815]*/
 | |
| {
 | |
|     return PyBool_FromLong(Py_IS_FINITE(z.real) && Py_IS_FINITE(z.imag));
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.isnan = cmath.polar
 | |
| 
 | |
| Checks if the real or imaginary part of z not a number (NaN).
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| cmath_isnan_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=e7abf6e0b28beab7 input=71799f5d284c9baf]*/
 | |
| {
 | |
|     return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.isinf = cmath.polar
 | |
| 
 | |
| Checks if the real or imaginary part of z is infinite.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static PyObject *
 | |
| cmath_isinf_impl(PyObject *module, Py_complex z)
 | |
| /*[clinic end generated code: output=502a75a79c773469 input=363df155c7181329]*/
 | |
| {
 | |
|     return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
 | |
|                            Py_IS_INFINITY(z.imag));
 | |
| }
 | |
| 
 | |
| /*[clinic input]
 | |
| cmath.isclose -> bool
 | |
| 
 | |
|     a: Py_complex
 | |
|     b: Py_complex
 | |
|     *
 | |
|     rel_tol: double = 1e-09
 | |
|         maximum difference for being considered "close", relative to the
 | |
|         magnitude of the input values
 | |
|     abs_tol: double = 0.0
 | |
|         maximum difference for being considered "close", regardless of the
 | |
|         magnitude of the input values
 | |
| 
 | |
| Determine whether two complex numbers are close in value.
 | |
| 
 | |
| Return True if a is close in value to b, and False otherwise.
 | |
| 
 | |
| For the values to be considered close, the difference between them must be
 | |
| smaller than at least one of the tolerances.
 | |
| 
 | |
| -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is
 | |
| not close to anything, even itself. inf and -inf are only close to themselves.
 | |
| [clinic start generated code]*/
 | |
| 
 | |
| static int
 | |
| cmath_isclose_impl(PyObject *module, Py_complex a, Py_complex b,
 | |
|                    double rel_tol, double abs_tol)
 | |
| /*[clinic end generated code: output=8a2486cc6e0014d1 input=df9636d7de1d4ac3]*/
 | |
| {
 | |
|     double diff;
 | |
| 
 | |
|     /* sanity check on the inputs */
 | |
|     if (rel_tol < 0.0 || abs_tol < 0.0 ) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "tolerances must be non-negative");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if ( (a.real == b.real) && (a.imag == b.imag) ) {
 | |
|         /* short circuit exact equality -- needed to catch two infinities of
 | |
|            the same sign. And perhaps speeds things up a bit sometimes.
 | |
|         */
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* This catches the case of two infinities of opposite sign, or
 | |
|        one infinity and one finite number. Two infinities of opposite
 | |
|        sign would otherwise have an infinite relative tolerance.
 | |
|        Two infinities of the same sign are caught by the equality check
 | |
|        above.
 | |
|     */
 | |
| 
 | |
|     if (Py_IS_INFINITY(a.real) || Py_IS_INFINITY(a.imag) ||
 | |
|         Py_IS_INFINITY(b.real) || Py_IS_INFINITY(b.imag)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* now do the regular computation
 | |
|        this is essentially the "weak" test from the Boost library
 | |
|     */
 | |
| 
 | |
|     diff = _Py_c_abs(_Py_c_diff(a, b));
 | |
| 
 | |
|     return (((diff <= rel_tol * _Py_c_abs(b)) ||
 | |
|              (diff <= rel_tol * _Py_c_abs(a))) ||
 | |
|             (diff <= abs_tol));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(module_doc,
 | |
| "This module is always available. It provides access to mathematical\n"
 | |
| "functions for complex numbers.");
 | |
| 
 | |
| static PyMethodDef cmath_methods[] = {
 | |
|     CMATH_ACOS_METHODDEF
 | |
|     CMATH_ACOSH_METHODDEF
 | |
|     CMATH_ASIN_METHODDEF
 | |
|     CMATH_ASINH_METHODDEF
 | |
|     CMATH_ATAN_METHODDEF
 | |
|     CMATH_ATANH_METHODDEF
 | |
|     CMATH_COS_METHODDEF
 | |
|     CMATH_COSH_METHODDEF
 | |
|     CMATH_EXP_METHODDEF
 | |
|     CMATH_ISCLOSE_METHODDEF
 | |
|     CMATH_ISFINITE_METHODDEF
 | |
|     CMATH_ISINF_METHODDEF
 | |
|     CMATH_ISNAN_METHODDEF
 | |
|     CMATH_LOG_METHODDEF
 | |
|     CMATH_LOG10_METHODDEF
 | |
|     CMATH_PHASE_METHODDEF
 | |
|     CMATH_POLAR_METHODDEF
 | |
|     CMATH_RECT_METHODDEF
 | |
|     CMATH_SIN_METHODDEF
 | |
|     CMATH_SINH_METHODDEF
 | |
|     CMATH_SQRT_METHODDEF
 | |
|     CMATH_TAN_METHODDEF
 | |
|     CMATH_TANH_METHODDEF
 | |
|     {NULL, NULL}  /* sentinel */
 | |
| };
 | |
| 
 | |
| 
 | |
| static struct PyModuleDef cmathmodule = {
 | |
|     PyModuleDef_HEAD_INIT,
 | |
|     "cmath",
 | |
|     module_doc,
 | |
|     -1,
 | |
|     cmath_methods,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     NULL
 | |
| };
 | |
| 
 | |
| PyMODINIT_FUNC
 | |
| PyInit_cmath(void)
 | |
| {
 | |
|     PyObject *m;
 | |
| 
 | |
|     m = PyModule_Create(&cmathmodule);
 | |
|     if (m == NULL)
 | |
|         return NULL;
 | |
| 
 | |
|     PyModule_AddObject(m, "pi",
 | |
|                        PyFloat_FromDouble(Py_MATH_PI));
 | |
|     PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
 | |
|     PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU)); /* 2pi */
 | |
|     PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf()));
 | |
|     PyModule_AddObject(m, "infj", PyComplex_FromCComplex(c_infj()));
 | |
| #if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
 | |
|     PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan()));
 | |
|     PyModule_AddObject(m, "nanj", PyComplex_FromCComplex(c_nanj()));
 | |
| #endif
 | |
| 
 | |
|     /* initialize special value tables */
 | |
| 
 | |
| #define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
 | |
| #define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
 | |
| 
 | |
|     INIT_SPECIAL_VALUES(acos_special_values, {
 | |
|       C(P34,INF) C(P,INF)  C(P,INF)  C(P,-INF)  C(P,-INF)  C(P34,-INF) C(N,INF)
 | |
|       C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
 | |
|       C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
 | |
|       C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
 | |
|       C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
 | |
|       C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
 | |
|       C(N,INF)   C(N,N)    C(N,N)    C(N,N)     C(N,N)     C(N,-INF)   C(N,N)
 | |
|     })
 | |
| 
 | |
|     INIT_SPECIAL_VALUES(acosh_special_values, {
 | |
|       C(INF,-P34) C(INF,-P)  C(INF,-P)  C(INF,P)  C(INF,P)  C(INF,P34) C(INF,N)
 | |
|       C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
 | |
|       C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
 | |
|       C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
 | |
|       C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
 | |
|       C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
 | |
|       C(INF,N)    C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,N)   C(N,N)
 | |
|     })
 | |
| 
 | |
|     INIT_SPECIAL_VALUES(asinh_special_values, {
 | |
|       C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
 | |
|       C(-INF,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-INF,P12) C(N,N)
 | |
|       C(-INF,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-INF,P12) C(N,N)
 | |
|       C(INF,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(INF,P12)  C(N,N)
 | |
|       C(INF,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(INF,P12)  C(N,N)
 | |
|       C(INF,-P14)  C(INF,-0.)  C(INF,-0.)  C(INF,0.)  C(INF,0.)  C(INF,P14)  C(INF,N)
 | |
|       C(INF,N)     C(N,N)      C(N,-0.)    C(N,0.)    C(N,N)     C(INF,N)    C(N,N)
 | |
|     })
 | |
| 
 | |
|     INIT_SPECIAL_VALUES(atanh_special_values, {
 | |
|       C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
 | |
|       C(-0.,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-0.,P12) C(N,N)
 | |
|       C(-0.,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-0.,P12) C(-0.,N)
 | |
|       C(0.,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(0.,P12)  C(0.,N)
 | |
|       C(0.,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(0.,P12)  C(N,N)
 | |
|       C(0.,-P12)  C(0.,-P12)  C(0.,-P12)  C(0.,P12)  C(0.,P12)  C(0.,P12)  C(0.,N)
 | |
|       C(0.,-P12)  C(N,N)      C(N,N)      C(N,N)     C(N,N)     C(0.,P12)  C(N,N)
 | |
|     })
 | |
| 
 | |
|     INIT_SPECIAL_VALUES(cosh_special_values, {
 | |
|       C(INF,N) C(U,U) C(INF,0.)  C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
 | |
|       C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
 | |
|       C(N,0.)  C(U,U) C(1.,0.)   C(1.,-0.)  C(U,U) C(N,0.)  C(N,0.)
 | |
|       C(N,0.)  C(U,U) C(1.,-0.)  C(1.,0.)   C(U,U) C(N,0.)  C(N,0.)
 | |
|       C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
 | |
|       C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
 | |
|       C(N,N)   C(N,N) C(N,0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
 | |
|     })
 | |
| 
 | |
|     INIT_SPECIAL_VALUES(exp_special_values, {
 | |
|       C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(0.,0.) C(0.,0.)
 | |
|       C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
 | |
|       C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
 | |
|       C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
 | |
|       C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
 | |
|       C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
 | |
|       C(N,N)   C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)   C(N,N)
 | |
|     })
 | |
| 
 | |
|     INIT_SPECIAL_VALUES(log_special_values, {
 | |
|       C(INF,-P34) C(INF,-P)  C(INF,-P)   C(INF,P)   C(INF,P)  C(INF,P34)  C(INF,N)
 | |
|       C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
 | |
|       C(INF,-P12) C(U,U)     C(-INF,-P)  C(-INF,P)  C(U,U)    C(INF,P12)  C(N,N)
 | |
|       C(INF,-P12) C(U,U)     C(-INF,-0.) C(-INF,0.) C(U,U)    C(INF,P12)  C(N,N)
 | |
|       C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
 | |
|       C(INF,-P14) C(INF,-0.) C(INF,-0.)  C(INF,0.)  C(INF,0.) C(INF,P14)  C(INF,N)
 | |
|       C(INF,N)    C(N,N)     C(N,N)      C(N,N)     C(N,N)    C(INF,N)    C(N,N)
 | |
|     })
 | |
| 
 | |
|     INIT_SPECIAL_VALUES(sinh_special_values, {
 | |
|       C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
 | |
|       C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
 | |
|       C(0.,N)  C(U,U) C(-0.,-0.)  C(-0.,0.)  C(U,U) C(0.,N)  C(0.,N)
 | |
|       C(0.,N)  C(U,U) C(0.,-0.)   C(0.,0.)   C(U,U) C(0.,N)  C(0.,N)
 | |
|       C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
 | |
|       C(INF,N) C(U,U) C(INF,-0.)  C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
 | |
|       C(N,N)   C(N,N) C(N,-0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
 | |
|     })
 | |
| 
 | |
|     INIT_SPECIAL_VALUES(sqrt_special_values, {
 | |
|       C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
 | |
|       C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
 | |
|       C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
 | |
|       C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
 | |
|       C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
 | |
|       C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
 | |
|       C(INF,-INF) C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,INF) C(N,N)
 | |
|     })
 | |
| 
 | |
|     INIT_SPECIAL_VALUES(tanh_special_values, {
 | |
|       C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
 | |
|       C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
 | |
|       C(N,N)    C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N)    C(N,N)
 | |
|       C(N,N)    C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(N,N)    C(N,N)
 | |
|       C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
 | |
|       C(1.,0.)  C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(1.,0.)  C(1.,0.)
 | |
|       C(N,N)    C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)    C(N,N)
 | |
|     })
 | |
| 
 | |
|     INIT_SPECIAL_VALUES(rect_special_values, {
 | |
|       C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
 | |
|       C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
 | |
|       C(0.,0.) C(U,U) C(-0.,0.)  C(-0.,-0.)  C(U,U) C(0.,0.) C(0.,0.)
 | |
|       C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)    C(U,U) C(0.,0.) C(0.,0.)
 | |
|       C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
 | |
|       C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)   C(U,U) C(INF,N) C(INF,N)
 | |
|       C(N,N)   C(N,N) C(N,0.)    C(N,0.)     C(N,N) C(N,N)   C(N,N)
 | |
|     })
 | |
|     return m;
 | |
| }
 | 
