mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			710 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			710 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Parser generator */
 | |
| 
 | |
| /* For a description, see the comments at end of this file */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "pgenheaders.h"
 | |
| #include "token.h"
 | |
| #include "node.h"
 | |
| #include "grammar.h"
 | |
| #include "metagrammar.h"
 | |
| #include "pgen.h"
 | |
| 
 | |
| extern int Py_DebugFlag;
 | |
| extern int Py_IgnoreEnvironmentFlag; /* needed by Py_GETENV */
 | |
| 
 | |
| 
 | |
| /* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */
 | |
| 
 | |
| typedef struct _nfaarc {
 | |
|     int         ar_label;
 | |
|     int         ar_arrow;
 | |
| } nfaarc;
 | |
| 
 | |
| typedef struct _nfastate {
 | |
|     int         st_narcs;
 | |
|     nfaarc      *st_arc;
 | |
| } nfastate;
 | |
| 
 | |
| typedef struct _nfa {
 | |
|     int                 nf_type;
 | |
|     char                *nf_name;
 | |
|     int                 nf_nstates;
 | |
|     nfastate            *nf_state;
 | |
|     int                 nf_start, nf_finish;
 | |
| } nfa;
 | |
| 
 | |
| /* Forward */
 | |
| static void compile_rhs(labellist *ll,
 | |
|                         nfa *nf, node *n, int *pa, int *pb);
 | |
| static void compile_alt(labellist *ll,
 | |
|                         nfa *nf, node *n, int *pa, int *pb);
 | |
| static void compile_item(labellist *ll,
 | |
|                          nfa *nf, node *n, int *pa, int *pb);
 | |
| static void compile_atom(labellist *ll,
 | |
|                          nfa *nf, node *n, int *pa, int *pb);
 | |
| 
 | |
| static int
 | |
| addnfastate(nfa *nf)
 | |
| {
 | |
|     nfastate *st;
 | |
| 
 | |
|     nf->nf_state = (nfastate *)PyObject_REALLOC(nf->nf_state,
 | |
|                                 sizeof(nfastate) * (nf->nf_nstates + 1));
 | |
|     if (nf->nf_state == NULL)
 | |
|         Py_FatalError("out of mem");
 | |
|     st = &nf->nf_state[nf->nf_nstates++];
 | |
|     st->st_narcs = 0;
 | |
|     st->st_arc = NULL;
 | |
|     return st - nf->nf_state;
 | |
| }
 | |
| 
 | |
| static void
 | |
| addnfaarc(nfa *nf, int from, int to, int lbl)
 | |
| {
 | |
|     nfastate *st;
 | |
|     nfaarc *ar;
 | |
| 
 | |
|     st = &nf->nf_state[from];
 | |
|     st->st_arc = (nfaarc *)PyObject_REALLOC(st->st_arc,
 | |
|                                   sizeof(nfaarc) * (st->st_narcs + 1));
 | |
|     if (st->st_arc == NULL)
 | |
|         Py_FatalError("out of mem");
 | |
|     ar = &st->st_arc[st->st_narcs++];
 | |
|     ar->ar_label = lbl;
 | |
|     ar->ar_arrow = to;
 | |
| }
 | |
| 
 | |
| static nfa *
 | |
| newnfa(char *name)
 | |
| {
 | |
|     nfa *nf;
 | |
|     static int type = NT_OFFSET; /* All types will be disjunct */
 | |
| 
 | |
|     nf = (nfa *)PyObject_MALLOC(sizeof(nfa));
 | |
|     if (nf == NULL)
 | |
|         Py_FatalError("no mem for new nfa");
 | |
|     nf->nf_type = type++;
 | |
|     nf->nf_name = name; /* XXX strdup(name) ??? */
 | |
|     nf->nf_nstates = 0;
 | |
|     nf->nf_state = NULL;
 | |
|     nf->nf_start = nf->nf_finish = -1;
 | |
|     return nf;
 | |
| }
 | |
| 
 | |
| typedef struct _nfagrammar {
 | |
|     int                 gr_nnfas;
 | |
|     nfa                 **gr_nfa;
 | |
|     labellist           gr_ll;
 | |
| } nfagrammar;
 | |
| 
 | |
| /* Forward */
 | |
| static void compile_rule(nfagrammar *gr, node *n);
 | |
| 
 | |
| static nfagrammar *
 | |
| newnfagrammar(void)
 | |
| {
 | |
|     nfagrammar *gr;
 | |
| 
 | |
|     gr = (nfagrammar *)PyObject_MALLOC(sizeof(nfagrammar));
 | |
|     if (gr == NULL)
 | |
|         Py_FatalError("no mem for new nfa grammar");
 | |
|     gr->gr_nnfas = 0;
 | |
|     gr->gr_nfa = NULL;
 | |
|     gr->gr_ll.ll_nlabels = 0;
 | |
|     gr->gr_ll.ll_label = NULL;
 | |
|     addlabel(&gr->gr_ll, ENDMARKER, "EMPTY");
 | |
|     return gr;
 | |
| }
 | |
| 
 | |
| static nfa *
 | |
| addnfa(nfagrammar *gr, char *name)
 | |
| {
 | |
|     nfa *nf;
 | |
| 
 | |
|     nf = newnfa(name);
 | |
|     gr->gr_nfa = (nfa **)PyObject_REALLOC(gr->gr_nfa,
 | |
|                                   sizeof(nfa*) * (gr->gr_nnfas + 1));
 | |
|     if (gr->gr_nfa == NULL)
 | |
|         Py_FatalError("out of mem");
 | |
|     gr->gr_nfa[gr->gr_nnfas++] = nf;
 | |
|     addlabel(&gr->gr_ll, NAME, nf->nf_name);
 | |
|     return nf;
 | |
| }
 | |
| 
 | |
| #ifdef Py_DEBUG
 | |
| 
 | |
| static char REQNFMT[] = "metacompile: less than %d children\n";
 | |
| 
 | |
| #define REQN(i, count) do { \
 | |
|     if (i < count) { \
 | |
|         fprintf(stderr, REQNFMT, count); \
 | |
|         Py_FatalError("REQN"); \
 | |
|     } \
 | |
| } while (0)
 | |
| 
 | |
| #else
 | |
| #define REQN(i, count)  /* empty */
 | |
| #endif
 | |
| 
 | |
| static nfagrammar *
 | |
| metacompile(node *n)
 | |
| {
 | |
|     nfagrammar *gr;
 | |
|     int i;
 | |
| 
 | |
|     if (Py_DebugFlag)
 | |
|         printf("Compiling (meta-) parse tree into NFA grammar\n");
 | |
|     gr = newnfagrammar();
 | |
|     REQ(n, MSTART);
 | |
|     i = n->n_nchildren - 1; /* Last child is ENDMARKER */
 | |
|     n = n->n_child;
 | |
|     for (; --i >= 0; n++) {
 | |
|         if (n->n_type != NEWLINE)
 | |
|             compile_rule(gr, n);
 | |
|     }
 | |
|     return gr;
 | |
| }
 | |
| 
 | |
| static void
 | |
| compile_rule(nfagrammar *gr, node *n)
 | |
| {
 | |
|     nfa *nf;
 | |
| 
 | |
|     REQ(n, RULE);
 | |
|     REQN(n->n_nchildren, 4);
 | |
|     n = n->n_child;
 | |
|     REQ(n, NAME);
 | |
|     nf = addnfa(gr, n->n_str);
 | |
|     n++;
 | |
|     REQ(n, COLON);
 | |
|     n++;
 | |
|     REQ(n, RHS);
 | |
|     compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish);
 | |
|     n++;
 | |
|     REQ(n, NEWLINE);
 | |
| }
 | |
| 
 | |
| static void
 | |
| compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
 | |
| {
 | |
|     int i;
 | |
|     int a, b;
 | |
| 
 | |
|     REQ(n, RHS);
 | |
|     i = n->n_nchildren;
 | |
|     REQN(i, 1);
 | |
|     n = n->n_child;
 | |
|     REQ(n, ALT);
 | |
|     compile_alt(ll, nf, n, pa, pb);
 | |
|     if (--i <= 0)
 | |
|         return;
 | |
|     n++;
 | |
|     a = *pa;
 | |
|     b = *pb;
 | |
|     *pa = addnfastate(nf);
 | |
|     *pb = addnfastate(nf);
 | |
|     addnfaarc(nf, *pa, a, EMPTY);
 | |
|     addnfaarc(nf, b, *pb, EMPTY);
 | |
|     for (; --i >= 0; n++) {
 | |
|         REQ(n, VBAR);
 | |
|         REQN(i, 1);
 | |
|         --i;
 | |
|         n++;
 | |
|         REQ(n, ALT);
 | |
|         compile_alt(ll, nf, n, &a, &b);
 | |
|         addnfaarc(nf, *pa, a, EMPTY);
 | |
|         addnfaarc(nf, b, *pb, EMPTY);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
 | |
| {
 | |
|     int i;
 | |
|     int a, b;
 | |
| 
 | |
|     REQ(n, ALT);
 | |
|     i = n->n_nchildren;
 | |
|     REQN(i, 1);
 | |
|     n = n->n_child;
 | |
|     REQ(n, ITEM);
 | |
|     compile_item(ll, nf, n, pa, pb);
 | |
|     --i;
 | |
|     n++;
 | |
|     for (; --i >= 0; n++) {
 | |
|         REQ(n, ITEM);
 | |
|         compile_item(ll, nf, n, &a, &b);
 | |
|         addnfaarc(nf, *pb, a, EMPTY);
 | |
|         *pb = b;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
 | |
| {
 | |
|     int i;
 | |
|     int a, b;
 | |
| 
 | |
|     REQ(n, ITEM);
 | |
|     i = n->n_nchildren;
 | |
|     REQN(i, 1);
 | |
|     n = n->n_child;
 | |
|     if (n->n_type == LSQB) {
 | |
|         REQN(i, 3);
 | |
|         n++;
 | |
|         REQ(n, RHS);
 | |
|         *pa = addnfastate(nf);
 | |
|         *pb = addnfastate(nf);
 | |
|         addnfaarc(nf, *pa, *pb, EMPTY);
 | |
|         compile_rhs(ll, nf, n, &a, &b);
 | |
|         addnfaarc(nf, *pa, a, EMPTY);
 | |
|         addnfaarc(nf, b, *pb, EMPTY);
 | |
|         REQN(i, 1);
 | |
|         n++;
 | |
|         REQ(n, RSQB);
 | |
|     }
 | |
|     else {
 | |
|         compile_atom(ll, nf, n, pa, pb);
 | |
|         if (--i <= 0)
 | |
|             return;
 | |
|         n++;
 | |
|         addnfaarc(nf, *pb, *pa, EMPTY);
 | |
|         if (n->n_type == STAR)
 | |
|             *pb = *pa;
 | |
|         else
 | |
|             REQ(n, PLUS);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     REQ(n, ATOM);
 | |
|     i = n->n_nchildren;
 | |
|     (void)i; /* Don't warn about set but unused */
 | |
|     REQN(i, 1);
 | |
|     n = n->n_child;
 | |
|     if (n->n_type == LPAR) {
 | |
|         REQN(i, 3);
 | |
|         n++;
 | |
|         REQ(n, RHS);
 | |
|         compile_rhs(ll, nf, n, pa, pb);
 | |
|         n++;
 | |
|         REQ(n, RPAR);
 | |
|     }
 | |
|     else if (n->n_type == NAME || n->n_type == STRING) {
 | |
|         *pa = addnfastate(nf);
 | |
|         *pb = addnfastate(nf);
 | |
|         addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str));
 | |
|     }
 | |
|     else
 | |
|         REQ(n, NAME);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dumpstate(labellist *ll, nfa *nf, int istate)
 | |
| {
 | |
|     nfastate *st;
 | |
|     int i;
 | |
|     nfaarc *ar;
 | |
| 
 | |
|     printf("%c%2d%c",
 | |
|         istate == nf->nf_start ? '*' : ' ',
 | |
|         istate,
 | |
|         istate == nf->nf_finish ? '.' : ' ');
 | |
|     st = &nf->nf_state[istate];
 | |
|     ar = st->st_arc;
 | |
|     for (i = 0; i < st->st_narcs; i++) {
 | |
|         if (i > 0)
 | |
|             printf("\n    ");
 | |
|         printf("-> %2d  %s", ar->ar_arrow,
 | |
|             PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label]));
 | |
|         ar++;
 | |
|     }
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| static void
 | |
| dumpnfa(labellist *ll, nfa *nf)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     printf("NFA '%s' has %d states; start %d, finish %d\n",
 | |
|         nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish);
 | |
|     for (i = 0; i < nf->nf_nstates; i++)
 | |
|         dumpstate(ll, nf, i);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */
 | |
| 
 | |
| static void
 | |
| addclosure(bitset ss, nfa *nf, int istate)
 | |
| {
 | |
|     if (addbit(ss, istate)) {
 | |
|         nfastate *st = &nf->nf_state[istate];
 | |
|         nfaarc *ar = st->st_arc;
 | |
|         int i;
 | |
| 
 | |
|         for (i = st->st_narcs; --i >= 0; ) {
 | |
|             if (ar->ar_label == EMPTY)
 | |
|                 addclosure(ss, nf, ar->ar_arrow);
 | |
|             ar++;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct _ss_arc {
 | |
|     bitset      sa_bitset;
 | |
|     int         sa_arrow;
 | |
|     int         sa_label;
 | |
| } ss_arc;
 | |
| 
 | |
| typedef struct _ss_state {
 | |
|     bitset      ss_ss;
 | |
|     int         ss_narcs;
 | |
|     struct _ss_arc      *ss_arc;
 | |
|     int         ss_deleted;
 | |
|     int         ss_finish;
 | |
|     int         ss_rename;
 | |
| } ss_state;
 | |
| 
 | |
| typedef struct _ss_dfa {
 | |
|     int         sd_nstates;
 | |
|     ss_state *sd_state;
 | |
| } ss_dfa;
 | |
| 
 | |
| /* Forward */
 | |
| static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
 | |
|                        labellist *ll, char *msg);
 | |
| static void simplify(int xx_nstates, ss_state *xx_state);
 | |
| static void convert(dfa *d, int xx_nstates, ss_state *xx_state);
 | |
| 
 | |
| static void
 | |
| makedfa(nfagrammar *gr, nfa *nf, dfa *d)
 | |
| {
 | |
|     int nbits = nf->nf_nstates;
 | |
|     bitset ss;
 | |
|     int xx_nstates;
 | |
|     ss_state *xx_state, *yy;
 | |
|     ss_arc *zz;
 | |
|     int istate, jstate, iarc, jarc, ibit;
 | |
|     nfastate *st;
 | |
|     nfaarc *ar;
 | |
| 
 | |
|     ss = newbitset(nbits);
 | |
|     addclosure(ss, nf, nf->nf_start);
 | |
|     xx_state = (ss_state *)PyObject_MALLOC(sizeof(ss_state));
 | |
|     if (xx_state == NULL)
 | |
|         Py_FatalError("no mem for xx_state in makedfa");
 | |
|     xx_nstates = 1;
 | |
|     yy = &xx_state[0];
 | |
|     yy->ss_ss = ss;
 | |
|     yy->ss_narcs = 0;
 | |
|     yy->ss_arc = NULL;
 | |
|     yy->ss_deleted = 0;
 | |
|     yy->ss_finish = testbit(ss, nf->nf_finish);
 | |
|     if (yy->ss_finish)
 | |
|         printf("Error: nonterminal '%s' may produce empty.\n",
 | |
|             nf->nf_name);
 | |
| 
 | |
|     /* This algorithm is from a book written before
 | |
|        the invention of structured programming... */
 | |
| 
 | |
|     /* For each unmarked state... */
 | |
|     for (istate = 0; istate < xx_nstates; ++istate) {
 | |
|         size_t size;
 | |
|         yy = &xx_state[istate];
 | |
|         ss = yy->ss_ss;
 | |
|         /* For all its states... */
 | |
|         for (ibit = 0; ibit < nf->nf_nstates; ++ibit) {
 | |
|             if (!testbit(ss, ibit))
 | |
|                 continue;
 | |
|             st = &nf->nf_state[ibit];
 | |
|             /* For all non-empty arcs from this state... */
 | |
|             for (iarc = 0; iarc < st->st_narcs; iarc++) {
 | |
|                 ar = &st->st_arc[iarc];
 | |
|                 if (ar->ar_label == EMPTY)
 | |
|                     continue;
 | |
|                 /* Look up in list of arcs from this state */
 | |
|                 for (jarc = 0; jarc < yy->ss_narcs; ++jarc) {
 | |
|                     zz = &yy->ss_arc[jarc];
 | |
|                     if (ar->ar_label == zz->sa_label)
 | |
|                         goto found;
 | |
|                 }
 | |
|                 /* Add new arc for this state */
 | |
|                 size = sizeof(ss_arc) * (yy->ss_narcs + 1);
 | |
|                 yy->ss_arc = (ss_arc *)PyObject_REALLOC(
 | |
|                                             yy->ss_arc, size);
 | |
|                 if (yy->ss_arc == NULL)
 | |
|                     Py_FatalError("out of mem");
 | |
|                 zz = &yy->ss_arc[yy->ss_narcs++];
 | |
|                 zz->sa_label = ar->ar_label;
 | |
|                 zz->sa_bitset = newbitset(nbits);
 | |
|                 zz->sa_arrow = -1;
 | |
|              found:             ;
 | |
|                 /* Add destination */
 | |
|                 addclosure(zz->sa_bitset, nf, ar->ar_arrow);
 | |
|             }
 | |
|         }
 | |
|         /* Now look up all the arrow states */
 | |
|         for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) {
 | |
|             zz = &xx_state[istate].ss_arc[jarc];
 | |
|             for (jstate = 0; jstate < xx_nstates; jstate++) {
 | |
|                 if (samebitset(zz->sa_bitset,
 | |
|                     xx_state[jstate].ss_ss, nbits)) {
 | |
|                     zz->sa_arrow = jstate;
 | |
|                     goto done;
 | |
|                 }
 | |
|             }
 | |
|             size = sizeof(ss_state) * (xx_nstates + 1);
 | |
|             xx_state = (ss_state *)PyObject_REALLOC(xx_state,
 | |
|                                                         size);
 | |
|             if (xx_state == NULL)
 | |
|                 Py_FatalError("out of mem");
 | |
|             zz->sa_arrow = xx_nstates;
 | |
|             yy = &xx_state[xx_nstates++];
 | |
|             yy->ss_ss = zz->sa_bitset;
 | |
|             yy->ss_narcs = 0;
 | |
|             yy->ss_arc = NULL;
 | |
|             yy->ss_deleted = 0;
 | |
|             yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish);
 | |
|          done:          ;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (Py_DebugFlag)
 | |
|         printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
 | |
|                                         "before minimizing");
 | |
| 
 | |
|     simplify(xx_nstates, xx_state);
 | |
| 
 | |
|     if (Py_DebugFlag)
 | |
|         printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
 | |
|                                         "after minimizing");
 | |
| 
 | |
|     convert(d, xx_nstates, xx_state);
 | |
| 
 | |
|     /* XXX cleanup */
 | |
|     PyObject_FREE(xx_state);
 | |
| }
 | |
| 
 | |
| static void
 | |
| printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
 | |
|            labellist *ll, char *msg)
 | |
| {
 | |
|     int i, ibit, iarc;
 | |
|     ss_state *yy;
 | |
|     ss_arc *zz;
 | |
| 
 | |
|     printf("Subset DFA %s\n", msg);
 | |
|     for (i = 0; i < xx_nstates; i++) {
 | |
|         yy = &xx_state[i];
 | |
|         if (yy->ss_deleted)
 | |
|             continue;
 | |
|         printf(" Subset %d", i);
 | |
|         if (yy->ss_finish)
 | |
|             printf(" (finish)");
 | |
|         printf(" { ");
 | |
|         for (ibit = 0; ibit < nbits; ibit++) {
 | |
|             if (testbit(yy->ss_ss, ibit))
 | |
|                 printf("%d ", ibit);
 | |
|         }
 | |
|         printf("}\n");
 | |
|         for (iarc = 0; iarc < yy->ss_narcs; iarc++) {
 | |
|             zz = &yy->ss_arc[iarc];
 | |
|             printf("  Arc to state %d, label %s\n",
 | |
|                 zz->sa_arrow,
 | |
|                 PyGrammar_LabelRepr(
 | |
|                     &ll->ll_label[zz->sa_label]));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* PART THREE -- SIMPLIFY DFA */
 | |
| 
 | |
| /* Simplify the DFA by repeatedly eliminating states that are
 | |
|    equivalent to another oner.  This is NOT Algorithm 3.3 from
 | |
|    [Aho&Ullman 77].  It does not always finds the minimal DFA,
 | |
|    but it does usually make a much smaller one...  (For an example
 | |
|    of sub-optimal behavior, try S: x a b+ | y a b+.)
 | |
| */
 | |
| 
 | |
| static int
 | |
| samestate(ss_state *s1, ss_state *s2)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish)
 | |
|         return 0;
 | |
|     for (i = 0; i < s1->ss_narcs; i++) {
 | |
|         if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow ||
 | |
|             s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label)
 | |
|             return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| renamestates(int xx_nstates, ss_state *xx_state, int from, int to)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     if (Py_DebugFlag)
 | |
|         printf("Rename state %d to %d.\n", from, to);
 | |
|     for (i = 0; i < xx_nstates; i++) {
 | |
|         if (xx_state[i].ss_deleted)
 | |
|             continue;
 | |
|         for (j = 0; j < xx_state[i].ss_narcs; j++) {
 | |
|             if (xx_state[i].ss_arc[j].sa_arrow == from)
 | |
|                 xx_state[i].ss_arc[j].sa_arrow = to;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| simplify(int xx_nstates, ss_state *xx_state)
 | |
| {
 | |
|     int changes;
 | |
|     int i, j;
 | |
| 
 | |
|     do {
 | |
|         changes = 0;
 | |
|         for (i = 1; i < xx_nstates; i++) {
 | |
|             if (xx_state[i].ss_deleted)
 | |
|                 continue;
 | |
|             for (j = 0; j < i; j++) {
 | |
|                 if (xx_state[j].ss_deleted)
 | |
|                     continue;
 | |
|                 if (samestate(&xx_state[i], &xx_state[j])) {
 | |
|                     xx_state[i].ss_deleted++;
 | |
|                     renamestates(xx_nstates, xx_state,
 | |
|                                  i, j);
 | |
|                     changes++;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } while (changes);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* PART FOUR -- GENERATE PARSING TABLES */
 | |
| 
 | |
| /* Convert the DFA into a grammar that can be used by our parser */
 | |
| 
 | |
| static void
 | |
| convert(dfa *d, int xx_nstates, ss_state *xx_state)
 | |
| {
 | |
|     int i, j;
 | |
|     ss_state *yy;
 | |
|     ss_arc *zz;
 | |
| 
 | |
|     for (i = 0; i < xx_nstates; i++) {
 | |
|         yy = &xx_state[i];
 | |
|         if (yy->ss_deleted)
 | |
|             continue;
 | |
|         yy->ss_rename = addstate(d);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < xx_nstates; i++) {
 | |
|         yy = &xx_state[i];
 | |
|         if (yy->ss_deleted)
 | |
|             continue;
 | |
|         for (j = 0; j < yy->ss_narcs; j++) {
 | |
|             zz = &yy->ss_arc[j];
 | |
|             addarc(d, yy->ss_rename,
 | |
|                 xx_state[zz->sa_arrow].ss_rename,
 | |
|                 zz->sa_label);
 | |
|         }
 | |
|         if (yy->ss_finish)
 | |
|             addarc(d, yy->ss_rename, yy->ss_rename, 0);
 | |
|     }
 | |
| 
 | |
|     d->d_initial = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* PART FIVE -- GLUE IT ALL TOGETHER */
 | |
| 
 | |
| static grammar *
 | |
| maketables(nfagrammar *gr)
 | |
| {
 | |
|     int i;
 | |
|     nfa *nf;
 | |
|     dfa *d;
 | |
|     grammar *g;
 | |
| 
 | |
|     if (gr->gr_nnfas == 0)
 | |
|         return NULL;
 | |
|     g = newgrammar(gr->gr_nfa[0]->nf_type);
 | |
|                     /* XXX first rule must be start rule */
 | |
|     g->g_ll = gr->gr_ll;
 | |
| 
 | |
|     for (i = 0; i < gr->gr_nnfas; i++) {
 | |
|         nf = gr->gr_nfa[i];
 | |
|         if (Py_DebugFlag) {
 | |
|             printf("Dump of NFA for '%s' ...\n", nf->nf_name);
 | |
|             dumpnfa(&gr->gr_ll, nf);
 | |
|             printf("Making DFA for '%s' ...\n", nf->nf_name);
 | |
|         }
 | |
|         d = adddfa(g, nf->nf_type, nf->nf_name);
 | |
|         makedfa(gr, gr->gr_nfa[i], d);
 | |
|     }
 | |
| 
 | |
|     return g;
 | |
| }
 | |
| 
 | |
| grammar *
 | |
| pgen(node *n)
 | |
| {
 | |
|     nfagrammar *gr;
 | |
|     grammar *g;
 | |
| 
 | |
|     gr = metacompile(n);
 | |
|     g = maketables(gr);
 | |
|     translatelabels(g);
 | |
|     addfirstsets(g);
 | |
|     PyObject_FREE(gr);
 | |
|     return g;
 | |
| }
 | |
| 
 | |
| grammar *
 | |
| Py_pgen(node *n)
 | |
| {
 | |
|   return pgen(n);
 | |
| }
 | |
| 
 | |
| /*
 | |
| 
 | |
| Description
 | |
| -----------
 | |
| 
 | |
| Input is a grammar in extended BNF (using * for repetition, + for
 | |
| at-least-once repetition, [] for optional parts, | for alternatives and
 | |
| () for grouping).  This has already been parsed and turned into a parse
 | |
| tree.
 | |
| 
 | |
| Each rule is considered as a regular expression in its own right.
 | |
| It is turned into a Non-deterministic Finite Automaton (NFA), which
 | |
| is then turned into a Deterministic Finite Automaton (DFA), which is then
 | |
| optimized to reduce the number of states.  See [Aho&Ullman 77] chapter 3,
 | |
| or similar compiler books (this technique is more often used for lexical
 | |
| analyzers).
 | |
| 
 | |
| The DFA's are used by the parser as parsing tables in a special way
 | |
| that's probably unique.  Before they are usable, the FIRST sets of all
 | |
| non-terminals are computed.
 | |
| 
 | |
| Reference
 | |
| ---------
 | |
| 
 | |
| [Aho&Ullman 77]
 | |
|     Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977
 | |
|     (first edition)
 | |
| 
 | |
| */
 | 
