mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			357 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			357 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| \section{\module{operator} ---
 | |
|          Standard operators as functions.}
 | |
| \declaremodule{builtin}{operator}
 | |
| \sectionauthor{Skip Montanaro}{skip@automatrix.com}
 | |
| 
 | |
| \modulesynopsis{All Python's standard operators as built-in functions.}
 | |
| 
 | |
| 
 | |
| The \module{operator} module exports a set of functions implemented in C
 | |
| corresponding to the intrinsic operators of Python.  For example,
 | |
| \code{operator.add(x, y)} is equivalent to the expression \code{x+y}.  The
 | |
| function names are those used for special class methods; variants without
 | |
| leading and trailing \samp{__} are also provided for convenience.
 | |
| 
 | |
| The functions fall into categories that perform object comparisons,
 | |
| logical operations, mathematical operations, sequence operations, and
 | |
| abstract type tests.
 | |
| 
 | |
| The object comparison functions are useful for all objects, and are
 | |
| named after the rich comparison operators they support:
 | |
| 
 | |
| \begin{funcdesc}{lt}{a, b}
 | |
| \funcline{le}{a, b}
 | |
| \funcline{eq}{a, b}
 | |
| \funcline{ne}{a, b}
 | |
| \funcline{ge}{a, b}
 | |
| \funcline{gt}{a, b}
 | |
| \funcline{__lt__}{a, b}
 | |
| \funcline{__le__}{a, b}
 | |
| \funcline{__eq__}{a, b}
 | |
| \funcline{__ne__}{a, b}
 | |
| \funcline{__ge__}{a, b}
 | |
| \funcline{__gt__}{a, b}
 | |
| Perform ``rich comparisons'' between \var{a} and \var{b}. Specifically,
 | |
| \code{lt(\var{a}, \var{b})} is equivalent to \code{\var{a} < \var{b}},
 | |
| \code{le(\var{a}, \var{b})} is equivalent to \code{\var{a} <= \var{b}},
 | |
| \code{eq(\var{a}, \var{b})} is equivalent to \code{\var{a} == \var{b}},
 | |
| \code{ne(\var{a}, \var{b})} is equivalent to \code{\var{a} != \var{b}},
 | |
| \code{gt(\var{a}, \var{b})} is equivalent to \code{\var{a} > \var{b}}
 | |
| and
 | |
| \code{ge(\var{a}, \var{b})} is equivalent to \code{\var{a} >= \var{b}}.
 | |
| Note that unlike the built-in \function{cmp()}, these functions can
 | |
| return any value, which may or may not be interpretable as a Boolean
 | |
| value.  See the \citetitle[../ref/ref.html]{Python Reference Manual}
 | |
| for more informations about rich comparisons.
 | |
| \versionadded{2.2}
 | |
| \end{funcdesc}
 | |
| 
 | |
| 
 | |
| The logical operations are also generally applicable to all objects,
 | |
| and support truth tests and Boolean operations:
 | |
| 
 | |
| \begin{funcdesc}{not_}{o}
 | |
| \funcline{__not__}{o}
 | |
| Return the outcome of \keyword{not} \var{o}.  (Note that there is no
 | |
| \method{__not__()} method for object instances; only the interpreter
 | |
| core defines this operation.  The result is affected by the
 | |
| \method{__nonzero__()} and \method{__len__()} methods.)
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{truth}{o}
 | |
| Return \code{1} if \var{o} is true, and 0 otherwise.
 | |
| \end{funcdesc}
 | |
| 
 | |
| 
 | |
| The mathematical and bitwise operations are the most numerous:
 | |
| 
 | |
| \begin{funcdesc}{abs}{o}
 | |
| \funcline{__abs__}{o}
 | |
| Return the absolute value of \var{o}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{add}{a, b}
 | |
| \funcline{__add__}{a, b}
 | |
| Return \var{a} \code{+} \var{b}, for \var{a} and \var{b} numbers.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{and_}{a, b}
 | |
| \funcline{__and__}{a, b}
 | |
| Return the bitwise and of \var{a} and \var{b}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{div}{a, b}
 | |
| \funcline{__div__}{a, b}
 | |
| Return \var{a} \code{/} \var{b} when \code{__future__.division} is not
 | |
| in effect.  This is also known as ``classic'' division.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{floordiv}{a, b}
 | |
| \funcline{__floordiv__}{a, b}
 | |
| Return \var{a} \code{//} \var{b}.
 | |
| \versionadded{2.2}
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{inv}{o}
 | |
| \funcline{invert}{o}
 | |
| \funcline{__inv__}{o}
 | |
| \funcline{__invert__}{o}
 | |
| Return the bitwise inverse of the number \var{o}.  This is equivalent
 | |
| to \code{\textasciitilde}\var{o}.  The names \function{invert()} and
 | |
| \function{__invert__()} were added in Python 2.0.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{lshift}{a, b}
 | |
| \funcline{__lshift__}{a, b}
 | |
| Return \var{a} shifted left by \var{b}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{mod}{a, b}
 | |
| \funcline{__mod__}{a, b}
 | |
| Return \var{a} \code{\%} \var{b}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{mul}{a, b}
 | |
| \funcline{__mul__}{a, b}
 | |
| Return \var{a} \code{*} \var{b}, for \var{a} and \var{b} numbers.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{neg}{o}
 | |
| \funcline{__neg__}{o}
 | |
| Return \var{o} negated.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{or_}{a, b}
 | |
| \funcline{__or__}{a, b}
 | |
| Return the bitwise or of \var{a} and \var{b}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{pos}{o}
 | |
| \funcline{__pos__}{o}
 | |
| Return \var{o} positive.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{rshift}{a, b}
 | |
| \funcline{__rshift__}{a, b}
 | |
| Return \var{a} shifted right by \var{b}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{sub}{a, b}
 | |
| \funcline{__sub__}{a, b}
 | |
| Return \var{a} \code{-} \var{b}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{truediv}{a, b}
 | |
| \funcline{__truediv__}{a, b}
 | |
| Return \var{a} \code{/} \var{b} when \code{__future__.division} is in
 | |
| effect.  This is also known as division.
 | |
| \versionadded{2.2}
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{xor}{a, b}
 | |
| \funcline{__xor__}{a, b}
 | |
| Return the bitwise exclusive or of \var{a} and \var{b}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| 
 | |
| Operations which work with sequences include:
 | |
| 
 | |
| \begin{funcdesc}{concat}{a, b}
 | |
| \funcline{__concat__}{a, b}
 | |
| Return \var{a} \code{+} \var{b} for \var{a} and \var{b} sequences.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{contains}{a, b}
 | |
| \funcline{__contains__}{a, b}
 | |
| Return the outcome of the test \var{b} \code{in} \var{a}.
 | |
| Note the reversed operands.  The name \function{__contains__()} was
 | |
| added in Python 2.0.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{countOf}{a, b}
 | |
| Return the number of occurrences of \var{b} in \var{a}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{delitem}{a, b}
 | |
| \funcline{__delitem__}{a, b}
 | |
| Remove the value of \var{a} at index \var{b}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{delslice}{a, b, c}
 | |
| \funcline{__delslice__}{a, b, c}
 | |
| Delete the slice of \var{a} from index \var{b} to index \var{c}\code{-1}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{getitem}{a, b}
 | |
| \funcline{__getitem__}{a, b}
 | |
| Return the value of \var{a} at index \var{b}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{getslice}{a, b, c}
 | |
| \funcline{__getslice__}{a, b, c}
 | |
| Return the slice of \var{a} from index \var{b} to index \var{c}\code{-1}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{indexOf}{a, b}
 | |
| Return the index of the first of occurrence of \var{b} in \var{a}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{repeat}{a, b}
 | |
| \funcline{__repeat__}{a, b}
 | |
| Return \var{a} \code{*} \var{b} where \var{a} is a sequence and
 | |
| \var{b} is an integer.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{sequenceIncludes}{\unspecified}
 | |
| \deprecated{2.0}{Use \function{contains()} instead.}
 | |
| Alias for \function{contains()}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{setitem}{a, b, c}
 | |
| \funcline{__setitem__}{a, b, c}
 | |
| Set the value of \var{a} at index \var{b} to \var{c}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{setslice}{a, b, c, v}
 | |
| \funcline{__setslice__}{a, b, c, v}
 | |
| Set the slice of \var{a} from index \var{b} to index \var{c}\code{-1} to the
 | |
| sequence \var{v}.
 | |
| \end{funcdesc}
 | |
| 
 | |
| 
 | |
| The \module{operator} module also defines a few predicates to test the
 | |
| type of objects.  \note{Be careful not to misinterpret the
 | |
| results of these functions; only \function{isCallable()} has any
 | |
| measure of reliability with instance objects.  For example:}
 | |
| 
 | |
| \begin{verbatim}
 | |
| >>> class C:
 | |
| ...     pass
 | |
| ... 
 | |
| >>> import operator
 | |
| >>> o = C()
 | |
| >>> operator.isMappingType(o)
 | |
| 1
 | |
| \end{verbatim}
 | |
| 
 | |
| \begin{funcdesc}{isCallable}{o}
 | |
| \deprecated{2.0}{Use the \function{callable()} built-in function instead.}
 | |
| Returns true if the object \var{o} can be called like a function,
 | |
| otherwise it returns false.  True is returned for functions, bound and
 | |
| unbound methods, class objects, and instance objects which support the
 | |
| \method{__call__()} method.
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{isMappingType}{o}
 | |
| Returns true if the object \var{o} supports the mapping interface.
 | |
| This is true for dictionaries and all instance objects.
 | |
| \warning{There is no reliable way to test if an instance
 | |
| supports the complete mapping protocol since the interface itself is
 | |
| ill-defined.  This makes this test less useful than it otherwise might
 | |
| be.}
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{isNumberType}{o}
 | |
| Returns true if the object \var{o} represents a number.  This is true
 | |
| for all numeric types implemented in C, and for all instance objects.
 | |
| \warning{There is no reliable way to test if an instance
 | |
| supports the complete numeric interface since the interface itself is
 | |
| ill-defined.  This makes this test less useful than it otherwise might
 | |
| be.}
 | |
| \end{funcdesc}
 | |
| 
 | |
| \begin{funcdesc}{isSequenceType}{o}
 | |
| Returns true if the object \var{o} supports the sequence protocol.
 | |
| This returns true for all objects which define sequence methods in C,
 | |
| and for all instance objects.  \warning{There is no reliable
 | |
| way to test if an instance supports the complete sequence interface
 | |
| since the interface itself is ill-defined.  This makes this test less
 | |
| useful than it otherwise might be.}
 | |
| \end{funcdesc}
 | |
| 
 | |
| 
 | |
| Example: Build a dictionary that maps the ordinals from \code{0} to
 | |
| \code{256} to their character equivalents.
 | |
| 
 | |
| \begin{verbatim}
 | |
| >>> import operator
 | |
| >>> d = {}
 | |
| >>> keys = range(256)
 | |
| >>> vals = map(chr, keys)
 | |
| >>> map(operator.setitem, [d]*len(keys), keys, vals)
 | |
| \end{verbatim}
 | |
| 
 | |
| 
 | |
| \subsection{Mapping Operators to Functions \label{operator-map}}
 | |
| 
 | |
| This table shows how abstract operations correspond to operator
 | |
| symbols in the Python syntax and the functions in the
 | |
| \refmodule{operator} module.
 | |
| 
 | |
| 
 | |
| \begin{tableiii}{l|c|l}{textrm}{Operation}{Syntax}{Function}
 | |
|   \lineiii{Addition}{\code{\var{a} + \var{b}}}
 | |
|           {\code{add(\var{a}, \var{b})}}
 | |
|   \lineiii{Concatenation}{\code{\var{seq1} + \var{seq2}}}
 | |
|           {\code{concat(\var{seq1}, \var{seq2})}}
 | |
|   \lineiii{Containment Test}{\code{\var{o} in \var{seq}}}
 | |
|           {\code{contains(\var{seq}, \var{o})}}
 | |
|   \lineiii{Division}{\code{\var{a} / \var{b}}}
 | |
|           {\code{div(\var{a}, \var{b}) \#} without \code{__future__.division}}
 | |
|   \lineiii{Division}{\code{\var{a} / \var{b}}}
 | |
|           {\code{truediv(\var{a}, \var{b}) \#} with \code{__future__.division}}
 | |
|   \lineiii{Division}{\code{\var{a} // \var{b}}}
 | |
|           {\code{floordiv(\var{a}, \var{b})}}
 | |
|   \lineiii{Bitwise And}{\code{\var{a} \&\ \var{b}}}
 | |
|           {\code{and_(\var{a}, \var{b})}}
 | |
|   \lineiii{Bitwise Exclusive Or}{\code{\var{a} \^\ \var{b}}}
 | |
|           {\code{xor(\var{a}, \var{b})}}
 | |
|   \lineiii{Bitwise Inversion}{\code{\~{} \var{a}}}
 | |
|           {\code{invert(\var{a})}}
 | |
|   \lineiii{Bitwise Or}{\code{\var{a} | \var{b}}}
 | |
|           {\code{or_(\var{a}, \var{b})}}
 | |
|   \lineiii{Indexed Assignment}{\code{\var{o}[\var{k}] = \var{v}}}
 | |
|           {\code{setitem(\var{o}, \var{k}, \var{v})}}
 | |
|   \lineiii{Indexed Deletion}{\code{del \var{o}[\var{k}]}}
 | |
|           {\code{delitem(\var{o}, \var{k})}}
 | |
|   \lineiii{Indexing}{\code{\var{o}[\var{k}]}}
 | |
|           {\code{getitem(\var{o}, \var{k})}}
 | |
|   \lineiii{Left Shift}{\code{\var{a} <\code{<} \var{b}}}
 | |
|           {\code{lshift(\var{a}, \var{b})}}
 | |
|   \lineiii{Modulo}{\code{\var{a} \%\ \var{b}}}
 | |
|           {\code{mod(\var{a}, \var{b})}}
 | |
|   \lineiii{Multiplication}{\code{\var{a} * \var{b}}}
 | |
|           {\code{mul(\var{a}, \var{b})}}
 | |
|   \lineiii{Negation (Arithmetic)}{\code{- \var{a}}}
 | |
|           {\code{neg(\var{a})}}
 | |
|   \lineiii{Negation (Logical)}{\code{not \var{a}}}
 | |
|           {\code{not_(\var{a})}}
 | |
|   \lineiii{Right Shift}{\code{\var{a} >\code{>} \var{b}}}
 | |
|           {\code{rshift(\var{a}, \var{b})}}
 | |
|   \lineiii{Sequence Repitition}{\code{\var{seq} * \var{i}}}
 | |
|           {\code{repeat(\var{seq}, \var{i})}}
 | |
|   \lineiii{Slice Assignment}{\code{\var{seq}[\var{i}:\var{j}]} = \var{values}}
 | |
|           {\code{setslice(\var{seq}, \var{i}, \var{j}, \var{values})}}
 | |
|   \lineiii{Slice Deletion}{\code{del \var{seq}[\var{i}:\var{j}]}}
 | |
|           {\code{delslice(\var{seq}, \var{i}, \var{j})}}
 | |
|   \lineiii{Slicing}{\code{\var{seq}[\var{i}:\var{j}]}}
 | |
|           {\code{getslice(\var{seq}, \var{i}, \var{j})}}
 | |
|   \lineiii{String Formatting}{\code{\var{s} \%\ \var{o}}}
 | |
|           {\code{mod(\var{s}, \var{o})}}
 | |
|   \lineiii{Subtraction}{\code{\var{a} - \var{b}}}
 | |
|           {\code{sub(\var{a}, \var{b})}}
 | |
|   \lineiii{Truth Test}{\code{\var{o}}}
 | |
|           {\code{truth(\var{o})}}
 | |
|   \lineiii{Ordering}{\code{\var{a} < \var{b}}}
 | |
|           {\code{lt(\var{a}, \var{b})}}
 | |
|   \lineiii{Ordering}{\code{\var{a} <= \var{b}}}
 | |
|           {\code{le(\var{a}, \var{b})}}
 | |
|   \lineiii{Equality}{\code{\var{a} == \var{b}}}
 | |
|           {\code{eq(\var{a}, \var{b})}}
 | |
|   \lineiii{Difference}{\code{\var{a} != \var{b}}}
 | |
|           {\code{ne(\var{a}, \var{b})}}
 | |
|   \lineiii{Ordering}{\code{\var{a} >= \var{b}}}
 | |
|           {\code{ge(\var{a}, \var{b})}}
 | |
|   \lineiii{Ordering}{\code{\var{a} > \var{b}}}
 | |
|           {\code{gt(\var{a}, \var{b})}}
 | |
| \end{tableiii}
 | 
