mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 23:21:29 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			52 lines
		
	
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			52 lines
		
	
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# module 'poly' -- Polynomials
 | 
						|
 | 
						|
# A polynomial is represented by a list of coefficients, e.g.,
 | 
						|
# [1, 10, 5] represents 1*x**0 + 10*x**1 + 5*x**2 (or 1 + 10x + 5x**2).
 | 
						|
# There is no way to suppress internal zeros; trailing zeros are
 | 
						|
# taken out by normalize().
 | 
						|
 | 
						|
def normalize(p): # Strip unnecessary zero coefficients
 | 
						|
	n = len(p)
 | 
						|
	while p:
 | 
						|
		if p[n-1]: return p[:n]
 | 
						|
		n = n-1
 | 
						|
	return []
 | 
						|
 | 
						|
def plus(a, b):
 | 
						|
	if len(a) < len(b): a, b = b, a # make sure a is the longest
 | 
						|
	res = a[:] # make a copy
 | 
						|
	for i in range(len(b)):
 | 
						|
		res[i] = res[i] + b[i]
 | 
						|
	return normalize(res)
 | 
						|
 | 
						|
def minus(a, b):
 | 
						|
	neg_b = map(lambda x: -x, b[:])
 | 
						|
	return plus(a, neg_b)
 | 
						|
 | 
						|
def one(power, coeff): # Representation of coeff * x**power
 | 
						|
	res = []
 | 
						|
	for i in range(power): res.append(0)
 | 
						|
	return res + [coeff]
 | 
						|
 | 
						|
def times(a, b):
 | 
						|
	res = []
 | 
						|
	for i in range(len(a)):
 | 
						|
		for j in range(len(b)):
 | 
						|
			res = plus(res, one(i+j, a[i]*b[j]))
 | 
						|
	return res
 | 
						|
 | 
						|
def power(a, n): # Raise polynomial a to the positive integral power n
 | 
						|
	if n == 0: return [1]
 | 
						|
	if n == 1: return a
 | 
						|
	if n/2*2 == n:
 | 
						|
		b = power(a, n/2)
 | 
						|
		return times(b, b)
 | 
						|
	return times(power(a, n-1), a)
 | 
						|
 | 
						|
def der(a): # First derivative
 | 
						|
	res = a[1:]
 | 
						|
	for i in range(len(res)):
 | 
						|
		res[i] = res[i] * (i+1)
 | 
						|
	return res
 | 
						|
 | 
						|
# Computing a primitive function would require rational arithmetic...
 |