mirror of
				https://github.com/python/cpython.git
				synced 2025-11-03 23:21:29 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2005 lines
		
	
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2005 lines
		
	
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Math module -- standard C math library functions, pi and e */
 | 
						|
 | 
						|
/* Here are some comments from Tim Peters, extracted from the
 | 
						|
   discussion attached to http://bugs.python.org/issue1640.  They
 | 
						|
   describe the general aims of the math module with respect to
 | 
						|
   special values, IEEE-754 floating-point exceptions, and Python
 | 
						|
   exceptions.
 | 
						|
 | 
						|
These are the "spirit of 754" rules:
 | 
						|
 | 
						|
1. If the mathematical result is a real number, but of magnitude too
 | 
						|
large to approximate by a machine float, overflow is signaled and the
 | 
						|
result is an infinity (with the appropriate sign).
 | 
						|
 | 
						|
2. If the mathematical result is a real number, but of magnitude too
 | 
						|
small to approximate by a machine float, underflow is signaled and the
 | 
						|
result is a zero (with the appropriate sign).
 | 
						|
 | 
						|
3. At a singularity (a value x such that the limit of f(y) as y
 | 
						|
approaches x exists and is an infinity), "divide by zero" is signaled
 | 
						|
and the result is an infinity (with the appropriate sign).  This is
 | 
						|
complicated a little by that the left-side and right-side limits may
 | 
						|
not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
 | 
						|
from the positive or negative directions.  In that specific case, the
 | 
						|
sign of the zero determines the result of 1/0.
 | 
						|
 | 
						|
4. At a point where a function has no defined result in the extended
 | 
						|
reals (i.e., the reals plus an infinity or two), invalid operation is
 | 
						|
signaled and a NaN is returned.
 | 
						|
 | 
						|
And these are what Python has historically /tried/ to do (but not
 | 
						|
always successfully, as platform libm behavior varies a lot):
 | 
						|
 | 
						|
For #1, raise OverflowError.
 | 
						|
 | 
						|
For #2, return a zero (with the appropriate sign if that happens by
 | 
						|
accident ;-)).
 | 
						|
 | 
						|
For #3 and #4, raise ValueError.  It may have made sense to raise
 | 
						|
Python's ZeroDivisionError in #3, but historically that's only been
 | 
						|
raised for division by zero and mod by zero.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
   In general, on an IEEE-754 platform the aim is to follow the C99
 | 
						|
   standard, including Annex 'F', whenever possible.  Where the
 | 
						|
   standard recommends raising the 'divide-by-zero' or 'invalid'
 | 
						|
   floating-point exceptions, Python should raise a ValueError.  Where
 | 
						|
   the standard recommends raising 'overflow', Python should raise an
 | 
						|
   OverflowError.  In all other circumstances a value should be
 | 
						|
   returned.
 | 
						|
 */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
#include "_math.h"
 | 
						|
 | 
						|
/*
 | 
						|
   sin(pi*x), giving accurate results for all finite x (especially x
 | 
						|
   integral or close to an integer).  This is here for use in the
 | 
						|
   reflection formula for the gamma function.  It conforms to IEEE
 | 
						|
   754-2008 for finite arguments, but not for infinities or nans.
 | 
						|
*/
 | 
						|
 | 
						|
static const double pi = 3.141592653589793238462643383279502884197;
 | 
						|
static const double sqrtpi = 1.772453850905516027298167483341145182798;
 | 
						|
static const double logpi = 1.144729885849400174143427351353058711647;
 | 
						|
 | 
						|
static double
 | 
						|
sinpi(double x)
 | 
						|
{
 | 
						|
    double y, r;
 | 
						|
    int n;
 | 
						|
    /* this function should only ever be called for finite arguments */
 | 
						|
    assert(Py_IS_FINITE(x));
 | 
						|
    y = fmod(fabs(x), 2.0);
 | 
						|
    n = (int)round(2.0*y);
 | 
						|
    assert(0 <= n && n <= 4);
 | 
						|
    switch (n) {
 | 
						|
    case 0:
 | 
						|
        r = sin(pi*y);
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        r = cos(pi*(y-0.5));
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
 | 
						|
           -0.0 instead of 0.0 when y == 1.0. */
 | 
						|
        r = sin(pi*(1.0-y));
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        r = -cos(pi*(y-1.5));
 | 
						|
        break;
 | 
						|
    case 4:
 | 
						|
        r = sin(pi*(y-2.0));
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        assert(0);  /* should never get here */
 | 
						|
        r = -1.23e200; /* silence gcc warning */
 | 
						|
    }
 | 
						|
    return copysign(1.0, x)*r;
 | 
						|
}
 | 
						|
 | 
						|
/* Implementation of the real gamma function.  In extensive but non-exhaustive
 | 
						|
   random tests, this function proved accurate to within <= 10 ulps across the
 | 
						|
   entire float domain.  Note that accuracy may depend on the quality of the
 | 
						|
   system math functions, the pow function in particular.  Special cases
 | 
						|
   follow C99 annex F.  The parameters and method are tailored to platforms
 | 
						|
   whose double format is the IEEE 754 binary64 format.
 | 
						|
 | 
						|
   Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
 | 
						|
   and g=6.024680040776729583740234375; these parameters are amongst those
 | 
						|
   used by the Boost library.  Following Boost (again), we re-express the
 | 
						|
   Lanczos sum as a rational function, and compute it that way.  The
 | 
						|
   coefficients below were computed independently using MPFR, and have been
 | 
						|
   double-checked against the coefficients in the Boost source code.
 | 
						|
 | 
						|
   For x < 0.0 we use the reflection formula.
 | 
						|
 | 
						|
   There's one minor tweak that deserves explanation: Lanczos' formula for
 | 
						|
   Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5).  For many x
 | 
						|
   values, x+g-0.5 can be represented exactly.  However, in cases where it
 | 
						|
   can't be represented exactly the small error in x+g-0.5 can be magnified
 | 
						|
   significantly by the pow and exp calls, especially for large x.  A cheap
 | 
						|
   correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
 | 
						|
   involved in the computation of x+g-0.5 (that is, e = computed value of
 | 
						|
   x+g-0.5 - exact value of x+g-0.5).  Here's the proof:
 | 
						|
 | 
						|
   Correction factor
 | 
						|
   -----------------
 | 
						|
   Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
 | 
						|
   double, and e is tiny.  Then:
 | 
						|
 | 
						|
     pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
 | 
						|
     = pow(y, x-0.5)/exp(y) * C,
 | 
						|
 | 
						|
   where the correction_factor C is given by
 | 
						|
 | 
						|
     C = pow(1-e/y, x-0.5) * exp(e)
 | 
						|
 | 
						|
   Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
 | 
						|
 | 
						|
     C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
 | 
						|
 | 
						|
   But y-(x-0.5) = g+e, and g+e ~ g.  So we get C ~ 1 + e*g/y, and
 | 
						|
 | 
						|
     pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
 | 
						|
 | 
						|
   Note that for accuracy, when computing r*C it's better to do
 | 
						|
 | 
						|
     r + e*g/y*r;
 | 
						|
 | 
						|
   than
 | 
						|
 | 
						|
     r * (1 + e*g/y);
 | 
						|
 | 
						|
   since the addition in the latter throws away most of the bits of
 | 
						|
   information in e*g/y.
 | 
						|
*/
 | 
						|
 | 
						|
#define LANCZOS_N 13
 | 
						|
static const double lanczos_g = 6.024680040776729583740234375;
 | 
						|
static const double lanczos_g_minus_half = 5.524680040776729583740234375;
 | 
						|
static const double lanczos_num_coeffs[LANCZOS_N] = {
 | 
						|
    23531376880.410759688572007674451636754734846804940,
 | 
						|
    42919803642.649098768957899047001988850926355848959,
 | 
						|
    35711959237.355668049440185451547166705960488635843,
 | 
						|
    17921034426.037209699919755754458931112671403265390,
 | 
						|
    6039542586.3520280050642916443072979210699388420708,
 | 
						|
    1439720407.3117216736632230727949123939715485786772,
 | 
						|
    248874557.86205415651146038641322942321632125127801,
 | 
						|
    31426415.585400194380614231628318205362874684987640,
 | 
						|
    2876370.6289353724412254090516208496135991145378768,
 | 
						|
    186056.26539522349504029498971604569928220784236328,
 | 
						|
    8071.6720023658162106380029022722506138218516325024,
 | 
						|
    210.82427775157934587250973392071336271166969580291,
 | 
						|
    2.5066282746310002701649081771338373386264310793408
 | 
						|
};
 | 
						|
 | 
						|
/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
 | 
						|
static const double lanczos_den_coeffs[LANCZOS_N] = {
 | 
						|
    0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
 | 
						|
    13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
 | 
						|
 | 
						|
/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
 | 
						|
#define NGAMMA_INTEGRAL 23
 | 
						|
static const double gamma_integral[NGAMMA_INTEGRAL] = {
 | 
						|
    1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
 | 
						|
    3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
 | 
						|
    1307674368000.0, 20922789888000.0, 355687428096000.0,
 | 
						|
    6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
 | 
						|
    51090942171709440000.0, 1124000727777607680000.0,
 | 
						|
};
 | 
						|
 | 
						|
/* Lanczos' sum L_g(x), for positive x */
 | 
						|
 | 
						|
static double
 | 
						|
lanczos_sum(double x)
 | 
						|
{
 | 
						|
    double num = 0.0, den = 0.0;
 | 
						|
    int i;
 | 
						|
    assert(x > 0.0);
 | 
						|
    /* evaluate the rational function lanczos_sum(x).  For large
 | 
						|
       x, the obvious algorithm risks overflow, so we instead
 | 
						|
       rescale the denominator and numerator of the rational
 | 
						|
       function by x**(1-LANCZOS_N) and treat this as a
 | 
						|
       rational function in 1/x.  This also reduces the error for
 | 
						|
       larger x values.  The choice of cutoff point (5.0 below) is
 | 
						|
       somewhat arbitrary; in tests, smaller cutoff values than
 | 
						|
       this resulted in lower accuracy. */
 | 
						|
    if (x < 5.0) {
 | 
						|
        for (i = LANCZOS_N; --i >= 0; ) {
 | 
						|
            num = num * x + lanczos_num_coeffs[i];
 | 
						|
            den = den * x + lanczos_den_coeffs[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        for (i = 0; i < LANCZOS_N; i++) {
 | 
						|
            num = num / x + lanczos_num_coeffs[i];
 | 
						|
            den = den / x + lanczos_den_coeffs[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return num/den;
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
m_tgamma(double x)
 | 
						|
{
 | 
						|
    double absx, r, y, z, sqrtpow;
 | 
						|
 | 
						|
    /* special cases */
 | 
						|
    if (!Py_IS_FINITE(x)) {
 | 
						|
        if (Py_IS_NAN(x) || x > 0.0)
 | 
						|
            return x;  /* tgamma(nan) = nan, tgamma(inf) = inf */
 | 
						|
        else {
 | 
						|
            errno = EDOM;
 | 
						|
            return Py_NAN;  /* tgamma(-inf) = nan, invalid */
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (x == 0.0) {
 | 
						|
        errno = EDOM;
 | 
						|
        /* tgamma(+-0.0) = +-inf, divide-by-zero */
 | 
						|
        return copysign(Py_HUGE_VAL, x);
 | 
						|
    }
 | 
						|
 | 
						|
    /* integer arguments */
 | 
						|
    if (x == floor(x)) {
 | 
						|
        if (x < 0.0) {
 | 
						|
            errno = EDOM;  /* tgamma(n) = nan, invalid for */
 | 
						|
            return Py_NAN; /* negative integers n */
 | 
						|
        }
 | 
						|
        if (x <= NGAMMA_INTEGRAL)
 | 
						|
            return gamma_integral[(int)x - 1];
 | 
						|
    }
 | 
						|
    absx = fabs(x);
 | 
						|
 | 
						|
    /* tiny arguments:  tgamma(x) ~ 1/x for x near 0 */
 | 
						|
    if (absx < 1e-20) {
 | 
						|
        r = 1.0/x;
 | 
						|
        if (Py_IS_INFINITY(r))
 | 
						|
            errno = ERANGE;
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
 | 
						|
    /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
 | 
						|
       x > 200, and underflows to +-0.0 for x < -200, not a negative
 | 
						|
       integer. */
 | 
						|
    if (absx > 200.0) {
 | 
						|
        if (x < 0.0) {
 | 
						|
            return 0.0/sinpi(x);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            errno = ERANGE;
 | 
						|
            return Py_HUGE_VAL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    y = absx + lanczos_g_minus_half;
 | 
						|
    /* compute error in sum */
 | 
						|
    if (absx > lanczos_g_minus_half) {
 | 
						|
        /* note: the correction can be foiled by an optimizing
 | 
						|
           compiler that (incorrectly) thinks that an expression like
 | 
						|
           a + b - a - b can be optimized to 0.0.  This shouldn't
 | 
						|
           happen in a standards-conforming compiler. */
 | 
						|
        double q = y - absx;
 | 
						|
        z = q - lanczos_g_minus_half;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        double q = y - lanczos_g_minus_half;
 | 
						|
        z = q - absx;
 | 
						|
    }
 | 
						|
    z = z * lanczos_g / y;
 | 
						|
    if (x < 0.0) {
 | 
						|
        r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
 | 
						|
        r -= z * r;
 | 
						|
        if (absx < 140.0) {
 | 
						|
            r /= pow(y, absx - 0.5);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            sqrtpow = pow(y, absx / 2.0 - 0.25);
 | 
						|
            r /= sqrtpow;
 | 
						|
            r /= sqrtpow;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        r = lanczos_sum(absx) / exp(y);
 | 
						|
        r += z * r;
 | 
						|
        if (absx < 140.0) {
 | 
						|
            r *= pow(y, absx - 0.5);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            sqrtpow = pow(y, absx / 2.0 - 0.25);
 | 
						|
            r *= sqrtpow;
 | 
						|
            r *= sqrtpow;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (Py_IS_INFINITY(r))
 | 
						|
        errno = ERANGE;
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   lgamma:  natural log of the absolute value of the Gamma function.
 | 
						|
   For large arguments, Lanczos' formula works extremely well here.
 | 
						|
*/
 | 
						|
 | 
						|
static double
 | 
						|
m_lgamma(double x)
 | 
						|
{
 | 
						|
    double r, absx;
 | 
						|
 | 
						|
    /* special cases */
 | 
						|
    if (!Py_IS_FINITE(x)) {
 | 
						|
        if (Py_IS_NAN(x))
 | 
						|
            return x;  /* lgamma(nan) = nan */
 | 
						|
        else
 | 
						|
            return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
 | 
						|
    }
 | 
						|
 | 
						|
    /* integer arguments */
 | 
						|
    if (x == floor(x) && x <= 2.0) {
 | 
						|
        if (x <= 0.0) {
 | 
						|
            errno = EDOM;  /* lgamma(n) = inf, divide-by-zero for */
 | 
						|
            return Py_HUGE_VAL; /* integers n <= 0 */
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    absx = fabs(x);
 | 
						|
    /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
 | 
						|
    if (absx < 1e-20)
 | 
						|
        return -log(absx);
 | 
						|
 | 
						|
    /* Lanczos' formula.  We could save a fraction of a ulp in accuracy by
 | 
						|
       having a second set of numerator coefficients for lanczos_sum that
 | 
						|
       absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
 | 
						|
       subtraction below; it's probably not worth it. */
 | 
						|
    r = log(lanczos_sum(absx)) - lanczos_g;
 | 
						|
    r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
 | 
						|
    if (x < 0.0)
 | 
						|
        /* Use reflection formula to get value for negative x. */
 | 
						|
        r = logpi - log(fabs(sinpi(absx))) - log(absx) - r;
 | 
						|
    if (Py_IS_INFINITY(r))
 | 
						|
        errno = ERANGE;
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   Implementations of the error function erf(x) and the complementary error
 | 
						|
   function erfc(x).
 | 
						|
 | 
						|
   Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
 | 
						|
   Cambridge University Press), we use a series approximation for erf for
 | 
						|
   small x, and a continued fraction approximation for erfc(x) for larger x;
 | 
						|
   combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
 | 
						|
   this gives us erf(x) and erfc(x) for all x.
 | 
						|
 | 
						|
   The series expansion used is:
 | 
						|
 | 
						|
      erf(x) = x*exp(-x*x)/sqrt(pi) * [
 | 
						|
                     2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
 | 
						|
 | 
						|
   The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
 | 
						|
   This series converges well for smallish x, but slowly for larger x.
 | 
						|
 | 
						|
   The continued fraction expansion used is:
 | 
						|
 | 
						|
      erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
 | 
						|
                              3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
 | 
						|
 | 
						|
   after the first term, the general term has the form:
 | 
						|
 | 
						|
      k*(k-0.5)/(2*k+0.5 + x**2 - ...).
 | 
						|
 | 
						|
   This expansion converges fast for larger x, but convergence becomes
 | 
						|
   infinitely slow as x approaches 0.0.  The (somewhat naive) continued
 | 
						|
   fraction evaluation algorithm used below also risks overflow for large x;
 | 
						|
   but for large x, erfc(x) == 0.0 to within machine precision.  (For
 | 
						|
   example, erfc(30.0) is approximately 2.56e-393).
 | 
						|
 | 
						|
   Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
 | 
						|
   continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
 | 
						|
   ERFC_CONTFRAC_CUTOFF.  ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
 | 
						|
   numbers of terms to use for the relevant expansions.  */
 | 
						|
 | 
						|
#define ERF_SERIES_CUTOFF 1.5
 | 
						|
#define ERF_SERIES_TERMS 25
 | 
						|
#define ERFC_CONTFRAC_CUTOFF 30.0
 | 
						|
#define ERFC_CONTFRAC_TERMS 50
 | 
						|
 | 
						|
/*
 | 
						|
   Error function, via power series.
 | 
						|
 | 
						|
   Given a finite float x, return an approximation to erf(x).
 | 
						|
   Converges reasonably fast for small x.
 | 
						|
*/
 | 
						|
 | 
						|
static double
 | 
						|
m_erf_series(double x)
 | 
						|
{
 | 
						|
    double x2, acc, fk, result;
 | 
						|
    int i, saved_errno;
 | 
						|
 | 
						|
    x2 = x * x;
 | 
						|
    acc = 0.0;
 | 
						|
    fk = (double)ERF_SERIES_TERMS + 0.5;
 | 
						|
    for (i = 0; i < ERF_SERIES_TERMS; i++) {
 | 
						|
        acc = 2.0 + x2 * acc / fk;
 | 
						|
        fk -= 1.0;
 | 
						|
    }
 | 
						|
    /* Make sure the exp call doesn't affect errno;
 | 
						|
       see m_erfc_contfrac for more. */
 | 
						|
    saved_errno = errno;
 | 
						|
    result = acc * x * exp(-x2) / sqrtpi;
 | 
						|
    errno = saved_errno;
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   Complementary error function, via continued fraction expansion.
 | 
						|
 | 
						|
   Given a positive float x, return an approximation to erfc(x).  Converges
 | 
						|
   reasonably fast for x large (say, x > 2.0), and should be safe from
 | 
						|
   overflow if x and nterms are not too large.  On an IEEE 754 machine, with x
 | 
						|
   <= 30.0, we're safe up to nterms = 100.  For x >= 30.0, erfc(x) is smaller
 | 
						|
   than the smallest representable nonzero float.  */
 | 
						|
 | 
						|
static double
 | 
						|
m_erfc_contfrac(double x)
 | 
						|
{
 | 
						|
    double x2, a, da, p, p_last, q, q_last, b, result;
 | 
						|
    int i, saved_errno;
 | 
						|
 | 
						|
    if (x >= ERFC_CONTFRAC_CUTOFF)
 | 
						|
        return 0.0;
 | 
						|
 | 
						|
    x2 = x*x;
 | 
						|
    a = 0.0;
 | 
						|
    da = 0.5;
 | 
						|
    p = 1.0; p_last = 0.0;
 | 
						|
    q = da + x2; q_last = 1.0;
 | 
						|
    for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
 | 
						|
        double temp;
 | 
						|
        a += da;
 | 
						|
        da += 2.0;
 | 
						|
        b = da + x2;
 | 
						|
        temp = p; p = b*p - a*p_last; p_last = temp;
 | 
						|
        temp = q; q = b*q - a*q_last; q_last = temp;
 | 
						|
    }
 | 
						|
    /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
 | 
						|
       save the current errno value so that we can restore it later. */
 | 
						|
    saved_errno = errno;
 | 
						|
    result = p / q * x * exp(-x2) / sqrtpi;
 | 
						|
    errno = saved_errno;
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/* Error function erf(x), for general x */
 | 
						|
 | 
						|
static double
 | 
						|
m_erf(double x)
 | 
						|
{
 | 
						|
    double absx, cf;
 | 
						|
 | 
						|
    if (Py_IS_NAN(x))
 | 
						|
        return x;
 | 
						|
    absx = fabs(x);
 | 
						|
    if (absx < ERF_SERIES_CUTOFF)
 | 
						|
        return m_erf_series(x);
 | 
						|
    else {
 | 
						|
        cf = m_erfc_contfrac(absx);
 | 
						|
        return x > 0.0 ? 1.0 - cf : cf - 1.0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Complementary error function erfc(x), for general x. */
 | 
						|
 | 
						|
static double
 | 
						|
m_erfc(double x)
 | 
						|
{
 | 
						|
    double absx, cf;
 | 
						|
 | 
						|
    if (Py_IS_NAN(x))
 | 
						|
        return x;
 | 
						|
    absx = fabs(x);
 | 
						|
    if (absx < ERF_SERIES_CUTOFF)
 | 
						|
        return 1.0 - m_erf_series(x);
 | 
						|
    else {
 | 
						|
        cf = m_erfc_contfrac(absx);
 | 
						|
        return x > 0.0 ? cf : 2.0 - cf;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   wrapper for atan2 that deals directly with special cases before
 | 
						|
   delegating to the platform libm for the remaining cases.  This
 | 
						|
   is necessary to get consistent behaviour across platforms.
 | 
						|
   Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
 | 
						|
   always follow C99.
 | 
						|
*/
 | 
						|
 | 
						|
static double
 | 
						|
m_atan2(double y, double x)
 | 
						|
{
 | 
						|
    if (Py_IS_NAN(x) || Py_IS_NAN(y))
 | 
						|
        return Py_NAN;
 | 
						|
    if (Py_IS_INFINITY(y)) {
 | 
						|
        if (Py_IS_INFINITY(x)) {
 | 
						|
            if (copysign(1., x) == 1.)
 | 
						|
                /* atan2(+-inf, +inf) == +-pi/4 */
 | 
						|
                return copysign(0.25*Py_MATH_PI, y);
 | 
						|
            else
 | 
						|
                /* atan2(+-inf, -inf) == +-pi*3/4 */
 | 
						|
                return copysign(0.75*Py_MATH_PI, y);
 | 
						|
        }
 | 
						|
        /* atan2(+-inf, x) == +-pi/2 for finite x */
 | 
						|
        return copysign(0.5*Py_MATH_PI, y);
 | 
						|
    }
 | 
						|
    if (Py_IS_INFINITY(x) || y == 0.) {
 | 
						|
        if (copysign(1., x) == 1.)
 | 
						|
            /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
 | 
						|
            return copysign(0., y);
 | 
						|
        else
 | 
						|
            /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
 | 
						|
            return copysign(Py_MATH_PI, y);
 | 
						|
    }
 | 
						|
    return atan2(y, x);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
    Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
 | 
						|
    log(-ve), log(NaN).  Here are wrappers for log and log10 that deal with
 | 
						|
    special values directly, passing positive non-special values through to
 | 
						|
    the system log/log10.
 | 
						|
 */
 | 
						|
 | 
						|
static double
 | 
						|
m_log(double x)
 | 
						|
{
 | 
						|
    if (Py_IS_FINITE(x)) {
 | 
						|
        if (x > 0.0)
 | 
						|
            return log(x);
 | 
						|
        errno = EDOM;
 | 
						|
        if (x == 0.0)
 | 
						|
            return -Py_HUGE_VAL; /* log(0) = -inf */
 | 
						|
        else
 | 
						|
            return Py_NAN; /* log(-ve) = nan */
 | 
						|
    }
 | 
						|
    else if (Py_IS_NAN(x))
 | 
						|
        return x; /* log(nan) = nan */
 | 
						|
    else if (x > 0.0)
 | 
						|
        return x; /* log(inf) = inf */
 | 
						|
    else {
 | 
						|
        errno = EDOM;
 | 
						|
        return Py_NAN; /* log(-inf) = nan */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   log2: log to base 2.
 | 
						|
 | 
						|
   Uses an algorithm that should:
 | 
						|
 | 
						|
     (a) produce exact results for powers of 2, and
 | 
						|
     (b) give a monotonic log2 (for positive finite floats),
 | 
						|
         assuming that the system log is monotonic.
 | 
						|
*/
 | 
						|
 | 
						|
static double
 | 
						|
m_log2(double x)
 | 
						|
{
 | 
						|
    if (!Py_IS_FINITE(x)) {
 | 
						|
        if (Py_IS_NAN(x))
 | 
						|
            return x; /* log2(nan) = nan */
 | 
						|
        else if (x > 0.0)
 | 
						|
            return x; /* log2(+inf) = +inf */
 | 
						|
        else {
 | 
						|
            errno = EDOM;
 | 
						|
            return Py_NAN; /* log2(-inf) = nan, invalid-operation */
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (x > 0.0) {
 | 
						|
#ifdef HAVE_LOG2
 | 
						|
        return log2(x);
 | 
						|
#else
 | 
						|
        double m;
 | 
						|
        int e;
 | 
						|
        m = frexp(x, &e);
 | 
						|
        /* We want log2(m * 2**e) == log(m) / log(2) + e.  Care is needed when
 | 
						|
         * x is just greater than 1.0: in that case e is 1, log(m) is negative,
 | 
						|
         * and we get significant cancellation error from the addition of
 | 
						|
         * log(m) / log(2) to e.  The slight rewrite of the expression below
 | 
						|
         * avoids this problem.
 | 
						|
         */
 | 
						|
        if (x >= 1.0) {
 | 
						|
            return log(2.0 * m) / log(2.0) + (e - 1);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            return log(m) / log(2.0) + e;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else if (x == 0.0) {
 | 
						|
        errno = EDOM;
 | 
						|
        return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        errno = EDOM;
 | 
						|
        return Py_NAN; /* log2(-inf) = nan, invalid-operation */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
m_log10(double x)
 | 
						|
{
 | 
						|
    if (Py_IS_FINITE(x)) {
 | 
						|
        if (x > 0.0)
 | 
						|
            return log10(x);
 | 
						|
        errno = EDOM;
 | 
						|
        if (x == 0.0)
 | 
						|
            return -Py_HUGE_VAL; /* log10(0) = -inf */
 | 
						|
        else
 | 
						|
            return Py_NAN; /* log10(-ve) = nan */
 | 
						|
    }
 | 
						|
    else if (Py_IS_NAN(x))
 | 
						|
        return x; /* log10(nan) = nan */
 | 
						|
    else if (x > 0.0)
 | 
						|
        return x; /* log10(inf) = inf */
 | 
						|
    else {
 | 
						|
        errno = EDOM;
 | 
						|
        return Py_NAN; /* log10(-inf) = nan */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Call is_error when errno != 0, and where x is the result libm
 | 
						|
 * returned.  is_error will usually set up an exception and return
 | 
						|
 * true (1), but may return false (0) without setting up an exception.
 | 
						|
 */
 | 
						|
static int
 | 
						|
is_error(double x)
 | 
						|
{
 | 
						|
    int result = 1;     /* presumption of guilt */
 | 
						|
    assert(errno);      /* non-zero errno is a precondition for calling */
 | 
						|
    if (errno == EDOM)
 | 
						|
        PyErr_SetString(PyExc_ValueError, "math domain error");
 | 
						|
 | 
						|
    else if (errno == ERANGE) {
 | 
						|
        /* ANSI C generally requires libm functions to set ERANGE
 | 
						|
         * on overflow, but also generally *allows* them to set
 | 
						|
         * ERANGE on underflow too.  There's no consistency about
 | 
						|
         * the latter across platforms.
 | 
						|
         * Alas, C99 never requires that errno be set.
 | 
						|
         * Here we suppress the underflow errors (libm functions
 | 
						|
         * should return a zero on underflow, and +- HUGE_VAL on
 | 
						|
         * overflow, so testing the result for zero suffices to
 | 
						|
         * distinguish the cases).
 | 
						|
         *
 | 
						|
         * On some platforms (Ubuntu/ia64) it seems that errno can be
 | 
						|
         * set to ERANGE for subnormal results that do *not* underflow
 | 
						|
         * to zero.  So to be safe, we'll ignore ERANGE whenever the
 | 
						|
         * function result is less than one in absolute value.
 | 
						|
         */
 | 
						|
        if (fabs(x) < 1.0)
 | 
						|
            result = 0;
 | 
						|
        else
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                            "math range error");
 | 
						|
    }
 | 
						|
    else
 | 
						|
        /* Unexpected math error */
 | 
						|
        PyErr_SetFromErrno(PyExc_ValueError);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   math_1 is used to wrap a libm function f that takes a double
 | 
						|
   arguments and returns a double.
 | 
						|
 | 
						|
   The error reporting follows these rules, which are designed to do
 | 
						|
   the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | 
						|
   platforms.
 | 
						|
 | 
						|
   - a NaN result from non-NaN inputs causes ValueError to be raised
 | 
						|
   - an infinite result from finite inputs causes OverflowError to be
 | 
						|
     raised if can_overflow is 1, or raises ValueError if can_overflow
 | 
						|
     is 0.
 | 
						|
   - if the result is finite and errno == EDOM then ValueError is
 | 
						|
     raised
 | 
						|
   - if the result is finite and nonzero and errno == ERANGE then
 | 
						|
     OverflowError is raised
 | 
						|
 | 
						|
   The last rule is used to catch overflow on platforms which follow
 | 
						|
   C89 but for which HUGE_VAL is not an infinity.
 | 
						|
 | 
						|
   For the majority of one-argument functions these rules are enough
 | 
						|
   to ensure that Python's functions behave as specified in 'Annex F'
 | 
						|
   of the C99 standard, with the 'invalid' and 'divide-by-zero'
 | 
						|
   floating-point exceptions mapping to Python's ValueError and the
 | 
						|
   'overflow' floating-point exception mapping to OverflowError.
 | 
						|
   math_1 only works for functions that don't have singularities *and*
 | 
						|
   the possibility of overflow; fortunately, that covers everything we
 | 
						|
   care about right now.
 | 
						|
*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_1_to_whatever(PyObject *arg, double (*func) (double),
 | 
						|
                   PyObject *(*from_double_func) (double),
 | 
						|
                   int can_overflow)
 | 
						|
{
 | 
						|
    double x, r;
 | 
						|
    x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    errno = 0;
 | 
						|
    PyFPE_START_PROTECT("in math_1", return 0);
 | 
						|
    r = (*func)(x);
 | 
						|
    PyFPE_END_PROTECT(r);
 | 
						|
    if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "math domain error"); /* invalid arg */
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
 | 
						|
        if (can_overflow)
 | 
						|
            PyErr_SetString(PyExc_OverflowError,
 | 
						|
                            "math range error"); /* overflow */
 | 
						|
        else
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "math domain error"); /* singularity */
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (Py_IS_FINITE(r) && errno && is_error(r))
 | 
						|
        /* this branch unnecessary on most platforms */
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    return (*from_double_func)(r);
 | 
						|
}
 | 
						|
 | 
						|
/* variant of math_1, to be used when the function being wrapped is known to
 | 
						|
   set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
 | 
						|
   errno = ERANGE for overflow). */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_1a(PyObject *arg, double (*func) (double))
 | 
						|
{
 | 
						|
    double x, r;
 | 
						|
    x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    errno = 0;
 | 
						|
    PyFPE_START_PROTECT("in math_1a", return 0);
 | 
						|
    r = (*func)(x);
 | 
						|
    PyFPE_END_PROTECT(r);
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
   math_2 is used to wrap a libm function f that takes two double
 | 
						|
   arguments and returns a double.
 | 
						|
 | 
						|
   The error reporting follows these rules, which are designed to do
 | 
						|
   the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | 
						|
   platforms.
 | 
						|
 | 
						|
   - a NaN result from non-NaN inputs causes ValueError to be raised
 | 
						|
   - an infinite result from finite inputs causes OverflowError to be
 | 
						|
     raised.
 | 
						|
   - if the result is finite and errno == EDOM then ValueError is
 | 
						|
     raised
 | 
						|
   - if the result is finite and nonzero and errno == ERANGE then
 | 
						|
     OverflowError is raised
 | 
						|
 | 
						|
   The last rule is used to catch overflow on platforms which follow
 | 
						|
   C89 but for which HUGE_VAL is not an infinity.
 | 
						|
 | 
						|
   For most two-argument functions (copysign, fmod, hypot, atan2)
 | 
						|
   these rules are enough to ensure that Python's functions behave as
 | 
						|
   specified in 'Annex F' of the C99 standard, with the 'invalid' and
 | 
						|
   'divide-by-zero' floating-point exceptions mapping to Python's
 | 
						|
   ValueError and the 'overflow' floating-point exception mapping to
 | 
						|
   OverflowError.
 | 
						|
*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_1(PyObject *arg, double (*func) (double), int can_overflow)
 | 
						|
{
 | 
						|
    return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
 | 
						|
{
 | 
						|
    return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_2(PyObject *args, double (*func) (double, double), char *funcname)
 | 
						|
{
 | 
						|
    PyObject *ox, *oy;
 | 
						|
    double x, y, r;
 | 
						|
    if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
 | 
						|
        return NULL;
 | 
						|
    x = PyFloat_AsDouble(ox);
 | 
						|
    y = PyFloat_AsDouble(oy);
 | 
						|
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    errno = 0;
 | 
						|
    PyFPE_START_PROTECT("in math_2", return 0);
 | 
						|
    r = (*func)(x, y);
 | 
						|
    PyFPE_END_PROTECT(r);
 | 
						|
    if (Py_IS_NAN(r)) {
 | 
						|
        if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | 
						|
            errno = EDOM;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    else if (Py_IS_INFINITY(r)) {
 | 
						|
        if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
 | 
						|
            errno = ERANGE;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
#define FUNC1(funcname, func, can_overflow, docstring)                  \
 | 
						|
    static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | 
						|
        return math_1(args, func, can_overflow);                            \
 | 
						|
    }\
 | 
						|
    PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | 
						|
 | 
						|
#define FUNC1A(funcname, func, docstring)                               \
 | 
						|
    static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | 
						|
        return math_1a(args, func);                                     \
 | 
						|
    }\
 | 
						|
    PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | 
						|
 | 
						|
#define FUNC2(funcname, func, docstring) \
 | 
						|
    static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | 
						|
        return math_2(args, func, #funcname); \
 | 
						|
    }\
 | 
						|
    PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | 
						|
 | 
						|
FUNC1(acos, acos, 0,
 | 
						|
      "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
 | 
						|
FUNC1(acosh, m_acosh, 0,
 | 
						|
      "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
 | 
						|
FUNC1(asin, asin, 0,
 | 
						|
      "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
 | 
						|
FUNC1(asinh, m_asinh, 0,
 | 
						|
      "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
 | 
						|
FUNC1(atan, atan, 0,
 | 
						|
      "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
 | 
						|
FUNC2(atan2, m_atan2,
 | 
						|
      "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
 | 
						|
      "Unlike atan(y/x), the signs of both x and y are considered.")
 | 
						|
FUNC1(atanh, m_atanh, 0,
 | 
						|
      "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
 | 
						|
 | 
						|
static PyObject * math_ceil(PyObject *self, PyObject *number) {
 | 
						|
    _Py_IDENTIFIER(__ceil__);
 | 
						|
    PyObject *method, *result;
 | 
						|
 | 
						|
    method = _PyObject_LookupSpecial(number, &PyId___ceil__);
 | 
						|
    if (method == NULL) {
 | 
						|
        if (PyErr_Occurred())
 | 
						|
            return NULL;
 | 
						|
        return math_1_to_int(number, ceil, 0);
 | 
						|
    }
 | 
						|
    result = PyObject_CallFunctionObjArgs(method, NULL);
 | 
						|
    Py_DECREF(method);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_ceil_doc,
 | 
						|
             "ceil(x)\n\nReturn the ceiling of x as an int.\n"
 | 
						|
             "This is the smallest integral value >= x.");
 | 
						|
 | 
						|
FUNC2(copysign, copysign,
 | 
						|
      "copysign(x, y)\n\nReturn x with the sign of y.")
 | 
						|
FUNC1(cos, cos, 0,
 | 
						|
      "cos(x)\n\nReturn the cosine of x (measured in radians).")
 | 
						|
FUNC1(cosh, cosh, 1,
 | 
						|
      "cosh(x)\n\nReturn the hyperbolic cosine of x.")
 | 
						|
FUNC1A(erf, m_erf,
 | 
						|
       "erf(x)\n\nError function at x.")
 | 
						|
FUNC1A(erfc, m_erfc,
 | 
						|
       "erfc(x)\n\nComplementary error function at x.")
 | 
						|
FUNC1(exp, exp, 1,
 | 
						|
      "exp(x)\n\nReturn e raised to the power of x.")
 | 
						|
FUNC1(expm1, m_expm1, 1,
 | 
						|
      "expm1(x)\n\nReturn exp(x)-1.\n"
 | 
						|
      "This function avoids the loss of precision involved in the direct "
 | 
						|
      "evaluation of exp(x)-1 for small x.")
 | 
						|
FUNC1(fabs, fabs, 0,
 | 
						|
      "fabs(x)\n\nReturn the absolute value of the float x.")
 | 
						|
 | 
						|
static PyObject * math_floor(PyObject *self, PyObject *number) {
 | 
						|
    _Py_IDENTIFIER(__floor__);
 | 
						|
    PyObject *method, *result;
 | 
						|
 | 
						|
    method = _PyObject_LookupSpecial(number, &PyId___floor__);
 | 
						|
    if (method == NULL) {
 | 
						|
        if (PyErr_Occurred())
 | 
						|
            return NULL;
 | 
						|
        return math_1_to_int(number, floor, 0);
 | 
						|
    }
 | 
						|
    result = PyObject_CallFunctionObjArgs(method, NULL);
 | 
						|
    Py_DECREF(method);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_floor_doc,
 | 
						|
             "floor(x)\n\nReturn the floor of x as an int.\n"
 | 
						|
             "This is the largest integral value <= x.");
 | 
						|
 | 
						|
FUNC1A(gamma, m_tgamma,
 | 
						|
      "gamma(x)\n\nGamma function at x.")
 | 
						|
FUNC1A(lgamma, m_lgamma,
 | 
						|
      "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
 | 
						|
FUNC1(log1p, m_log1p, 0,
 | 
						|
      "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
 | 
						|
      "The result is computed in a way which is accurate for x near zero.")
 | 
						|
FUNC1(sin, sin, 0,
 | 
						|
      "sin(x)\n\nReturn the sine of x (measured in radians).")
 | 
						|
FUNC1(sinh, sinh, 1,
 | 
						|
      "sinh(x)\n\nReturn the hyperbolic sine of x.")
 | 
						|
FUNC1(sqrt, sqrt, 0,
 | 
						|
      "sqrt(x)\n\nReturn the square root of x.")
 | 
						|
FUNC1(tan, tan, 0,
 | 
						|
      "tan(x)\n\nReturn the tangent of x (measured in radians).")
 | 
						|
FUNC1(tanh, tanh, 0,
 | 
						|
      "tanh(x)\n\nReturn the hyperbolic tangent of x.")
 | 
						|
 | 
						|
/* Precision summation function as msum() by Raymond Hettinger in
 | 
						|
   <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
 | 
						|
   enhanced with the exact partials sum and roundoff from Mark
 | 
						|
   Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
 | 
						|
   See those links for more details, proofs and other references.
 | 
						|
 | 
						|
   Note 1: IEEE 754R floating point semantics are assumed,
 | 
						|
   but the current implementation does not re-establish special
 | 
						|
   value semantics across iterations (i.e. handling -Inf + Inf).
 | 
						|
 | 
						|
   Note 2:  No provision is made for intermediate overflow handling;
 | 
						|
   therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
 | 
						|
   sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
 | 
						|
   overflow of the first partial sum.
 | 
						|
 | 
						|
   Note 3: The intermediate values lo, yr, and hi are declared volatile so
 | 
						|
   aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
 | 
						|
   Also, the volatile declaration forces the values to be stored in memory as
 | 
						|
   regular doubles instead of extended long precision (80-bit) values.  This
 | 
						|
   prevents double rounding because any addition or subtraction of two doubles
 | 
						|
   can be resolved exactly into double-sized hi and lo values.  As long as the
 | 
						|
   hi value gets forced into a double before yr and lo are computed, the extra
 | 
						|
   bits in downstream extended precision operations (x87 for example) will be
 | 
						|
   exactly zero and therefore can be losslessly stored back into a double,
 | 
						|
   thereby preventing double rounding.
 | 
						|
 | 
						|
   Note 4: A similar implementation is in Modules/cmathmodule.c.
 | 
						|
   Be sure to update both when making changes.
 | 
						|
 | 
						|
   Note 5: The signature of math.fsum() differs from __builtin__.sum()
 | 
						|
   because the start argument doesn't make sense in the context of
 | 
						|
   accurate summation.  Since the partials table is collapsed before
 | 
						|
   returning a result, sum(seq2, start=sum(seq1)) may not equal the
 | 
						|
   accurate result returned by sum(itertools.chain(seq1, seq2)).
 | 
						|
*/
 | 
						|
 | 
						|
#define NUM_PARTIALS  32  /* initial partials array size, on stack */
 | 
						|
 | 
						|
/* Extend the partials array p[] by doubling its size. */
 | 
						|
static int                          /* non-zero on error */
 | 
						|
_fsum_realloc(double **p_ptr, Py_ssize_t  n,
 | 
						|
             double  *ps,    Py_ssize_t *m_ptr)
 | 
						|
{
 | 
						|
    void *v = NULL;
 | 
						|
    Py_ssize_t m = *m_ptr;
 | 
						|
 | 
						|
    m += m;  /* double */
 | 
						|
    if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
 | 
						|
        double *p = *p_ptr;
 | 
						|
        if (p == ps) {
 | 
						|
            v = PyMem_Malloc(sizeof(double) * m);
 | 
						|
            if (v != NULL)
 | 
						|
                memcpy(v, ps, sizeof(double) * n);
 | 
						|
        }
 | 
						|
        else
 | 
						|
            v = PyMem_Realloc(p, sizeof(double) * m);
 | 
						|
    }
 | 
						|
    if (v == NULL) {        /* size overflow or no memory */
 | 
						|
        PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    *p_ptr = (double*) v;
 | 
						|
    *m_ptr = m;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Full precision summation of a sequence of floats.
 | 
						|
 | 
						|
   def msum(iterable):
 | 
						|
       partials = []  # sorted, non-overlapping partial sums
 | 
						|
       for x in iterable:
 | 
						|
           i = 0
 | 
						|
           for y in partials:
 | 
						|
               if abs(x) < abs(y):
 | 
						|
                   x, y = y, x
 | 
						|
               hi = x + y
 | 
						|
               lo = y - (hi - x)
 | 
						|
               if lo:
 | 
						|
                   partials[i] = lo
 | 
						|
                   i += 1
 | 
						|
               x = hi
 | 
						|
           partials[i:] = [x]
 | 
						|
       return sum_exact(partials)
 | 
						|
 | 
						|
   Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo
 | 
						|
   are exactly equal to x+y.  The inner loop applies hi/lo summation to each
 | 
						|
   partial so that the list of partial sums remains exact.
 | 
						|
 | 
						|
   Sum_exact() adds the partial sums exactly and correctly rounds the final
 | 
						|
   result (using the round-half-to-even rule).  The items in partials remain
 | 
						|
   non-zero, non-special, non-overlapping and strictly increasing in
 | 
						|
   magnitude, but possibly not all having the same sign.
 | 
						|
 | 
						|
   Depends on IEEE 754 arithmetic guarantees and half-even rounding.
 | 
						|
*/
 | 
						|
 | 
						|
static PyObject*
 | 
						|
math_fsum(PyObject *self, PyObject *seq)
 | 
						|
{
 | 
						|
    PyObject *item, *iter, *sum = NULL;
 | 
						|
    Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
 | 
						|
    double x, y, t, ps[NUM_PARTIALS], *p = ps;
 | 
						|
    double xsave, special_sum = 0.0, inf_sum = 0.0;
 | 
						|
    volatile double hi, yr, lo;
 | 
						|
 | 
						|
    iter = PyObject_GetIter(seq);
 | 
						|
    if (iter == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
 | 
						|
 | 
						|
    for(;;) {           /* for x in iterable */
 | 
						|
        assert(0 <= n && n <= m);
 | 
						|
        assert((m == NUM_PARTIALS && p == ps) ||
 | 
						|
               (m >  NUM_PARTIALS && p != NULL));
 | 
						|
 | 
						|
        item = PyIter_Next(iter);
 | 
						|
        if (item == NULL) {
 | 
						|
            if (PyErr_Occurred())
 | 
						|
                goto _fsum_error;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        x = PyFloat_AsDouble(item);
 | 
						|
        Py_DECREF(item);
 | 
						|
        if (PyErr_Occurred())
 | 
						|
            goto _fsum_error;
 | 
						|
 | 
						|
        xsave = x;
 | 
						|
        for (i = j = 0; j < n; j++) {       /* for y in partials */
 | 
						|
            y = p[j];
 | 
						|
            if (fabs(x) < fabs(y)) {
 | 
						|
                t = x; x = y; y = t;
 | 
						|
            }
 | 
						|
            hi = x + y;
 | 
						|
            yr = hi - x;
 | 
						|
            lo = y - yr;
 | 
						|
            if (lo != 0.0)
 | 
						|
                p[i++] = lo;
 | 
						|
            x = hi;
 | 
						|
        }
 | 
						|
 | 
						|
        n = i;                              /* ps[i:] = [x] */
 | 
						|
        if (x != 0.0) {
 | 
						|
            if (! Py_IS_FINITE(x)) {
 | 
						|
                /* a nonfinite x could arise either as
 | 
						|
                   a result of intermediate overflow, or
 | 
						|
                   as a result of a nan or inf in the
 | 
						|
                   summands */
 | 
						|
                if (Py_IS_FINITE(xsave)) {
 | 
						|
                    PyErr_SetString(PyExc_OverflowError,
 | 
						|
                          "intermediate overflow in fsum");
 | 
						|
                    goto _fsum_error;
 | 
						|
                }
 | 
						|
                if (Py_IS_INFINITY(xsave))
 | 
						|
                    inf_sum += xsave;
 | 
						|
                special_sum += xsave;
 | 
						|
                /* reset partials */
 | 
						|
                n = 0;
 | 
						|
            }
 | 
						|
            else if (n >= m && _fsum_realloc(&p, n, ps, &m))
 | 
						|
                goto _fsum_error;
 | 
						|
            else
 | 
						|
                p[n++] = x;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (special_sum != 0.0) {
 | 
						|
        if (Py_IS_NAN(inf_sum))
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "-inf + inf in fsum");
 | 
						|
        else
 | 
						|
            sum = PyFloat_FromDouble(special_sum);
 | 
						|
        goto _fsum_error;
 | 
						|
    }
 | 
						|
 | 
						|
    hi = 0.0;
 | 
						|
    if (n > 0) {
 | 
						|
        hi = p[--n];
 | 
						|
        /* sum_exact(ps, hi) from the top, stop when the sum becomes
 | 
						|
           inexact. */
 | 
						|
        while (n > 0) {
 | 
						|
            x = hi;
 | 
						|
            y = p[--n];
 | 
						|
            assert(fabs(y) < fabs(x));
 | 
						|
            hi = x + y;
 | 
						|
            yr = hi - x;
 | 
						|
            lo = y - yr;
 | 
						|
            if (lo != 0.0)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        /* Make half-even rounding work across multiple partials.
 | 
						|
           Needed so that sum([1e-16, 1, 1e16]) will round-up the last
 | 
						|
           digit to two instead of down to zero (the 1e-16 makes the 1
 | 
						|
           slightly closer to two).  With a potential 1 ULP rounding
 | 
						|
           error fixed-up, math.fsum() can guarantee commutativity. */
 | 
						|
        if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
 | 
						|
                      (lo > 0.0 && p[n-1] > 0.0))) {
 | 
						|
            y = lo * 2.0;
 | 
						|
            x = hi + y;
 | 
						|
            yr = x - hi;
 | 
						|
            if (y == yr)
 | 
						|
                hi = x;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    sum = PyFloat_FromDouble(hi);
 | 
						|
 | 
						|
_fsum_error:
 | 
						|
    PyFPE_END_PROTECT(hi)
 | 
						|
    Py_DECREF(iter);
 | 
						|
    if (p != ps)
 | 
						|
        PyMem_Free(p);
 | 
						|
    return sum;
 | 
						|
}
 | 
						|
 | 
						|
#undef NUM_PARTIALS
 | 
						|
 | 
						|
PyDoc_STRVAR(math_fsum_doc,
 | 
						|
"fsum(iterable)\n\n\
 | 
						|
Return an accurate floating point sum of values in the iterable.\n\
 | 
						|
Assumes IEEE-754 floating point arithmetic.");
 | 
						|
 | 
						|
/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
 | 
						|
 * Equivalent to floor(lg(x))+1.  Also equivalent to: bitwidth_of_type -
 | 
						|
 * count_leading_zero_bits(x)
 | 
						|
 */
 | 
						|
 | 
						|
/* XXX: This routine does more or less the same thing as
 | 
						|
 * bits_in_digit() in Objects/longobject.c.  Someday it would be nice to
 | 
						|
 * consolidate them.  On BSD, there's a library function called fls()
 | 
						|
 * that we could use, and GCC provides __builtin_clz().
 | 
						|
 */
 | 
						|
 | 
						|
static unsigned long
 | 
						|
bit_length(unsigned long n)
 | 
						|
{
 | 
						|
    unsigned long len = 0;
 | 
						|
    while (n != 0) {
 | 
						|
        ++len;
 | 
						|
        n >>= 1;
 | 
						|
    }
 | 
						|
    return len;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
count_set_bits(unsigned long n)
 | 
						|
{
 | 
						|
    unsigned long count = 0;
 | 
						|
    while (n != 0) {
 | 
						|
        ++count;
 | 
						|
        n &= n - 1; /* clear least significant bit */
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/* Divide-and-conquer factorial algorithm
 | 
						|
 *
 | 
						|
 * Based on the formula and psuedo-code provided at:
 | 
						|
 * http://www.luschny.de/math/factorial/binarysplitfact.html
 | 
						|
 *
 | 
						|
 * Faster algorithms exist, but they're more complicated and depend on
 | 
						|
 * a fast prime factorization algorithm.
 | 
						|
 *
 | 
						|
 * Notes on the algorithm
 | 
						|
 * ----------------------
 | 
						|
 *
 | 
						|
 * factorial(n) is written in the form 2**k * m, with m odd.  k and m are
 | 
						|
 * computed separately, and then combined using a left shift.
 | 
						|
 *
 | 
						|
 * The function factorial_odd_part computes the odd part m (i.e., the greatest
 | 
						|
 * odd divisor) of factorial(n), using the formula:
 | 
						|
 *
 | 
						|
 *   factorial_odd_part(n) =
 | 
						|
 *
 | 
						|
 *        product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
 | 
						|
 *
 | 
						|
 * Example: factorial_odd_part(20) =
 | 
						|
 *
 | 
						|
 *        (1) *
 | 
						|
 *        (1) *
 | 
						|
 *        (1 * 3 * 5) *
 | 
						|
 *        (1 * 3 * 5 * 7 * 9)
 | 
						|
 *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 | 
						|
 *
 | 
						|
 * Here i goes from large to small: the first term corresponds to i=4 (any
 | 
						|
 * larger i gives an empty product), and the last term corresponds to i=0.
 | 
						|
 * Each term can be computed from the last by multiplying by the extra odd
 | 
						|
 * numbers required: e.g., to get from the penultimate term to the last one,
 | 
						|
 * we multiply by (11 * 13 * 15 * 17 * 19).
 | 
						|
 *
 | 
						|
 * To see a hint of why this formula works, here are the same numbers as above
 | 
						|
 * but with the even parts (i.e., the appropriate powers of 2) included.  For
 | 
						|
 * each subterm in the product for i, we multiply that subterm by 2**i:
 | 
						|
 *
 | 
						|
 *   factorial(20) =
 | 
						|
 *
 | 
						|
 *        (16) *
 | 
						|
 *        (8) *
 | 
						|
 *        (4 * 12 * 20) *
 | 
						|
 *        (2 * 6 * 10 * 14 * 18) *
 | 
						|
 *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 | 
						|
 *
 | 
						|
 * The factorial_partial_product function computes the product of all odd j in
 | 
						|
 * range(start, stop) for given start and stop.  It's used to compute the
 | 
						|
 * partial products like (11 * 13 * 15 * 17 * 19) in the example above.  It
 | 
						|
 * operates recursively, repeatedly splitting the range into two roughly equal
 | 
						|
 * pieces until the subranges are small enough to be computed using only C
 | 
						|
 * integer arithmetic.
 | 
						|
 *
 | 
						|
 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
 | 
						|
 * the factorial) is computed independently in the main math_factorial
 | 
						|
 * function.  By standard results, its value is:
 | 
						|
 *
 | 
						|
 *    two_valuation = n//2 + n//4 + n//8 + ....
 | 
						|
 *
 | 
						|
 * It can be shown (e.g., by complete induction on n) that two_valuation is
 | 
						|
 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
 | 
						|
 * '1'-bits in the binary expansion of n.
 | 
						|
 */
 | 
						|
 | 
						|
/* factorial_partial_product: Compute product(range(start, stop, 2)) using
 | 
						|
 * divide and conquer.  Assumes start and stop are odd and stop > start.
 | 
						|
 * max_bits must be >= bit_length(stop - 2). */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
factorial_partial_product(unsigned long start, unsigned long stop,
 | 
						|
                          unsigned long max_bits)
 | 
						|
{
 | 
						|
    unsigned long midpoint, num_operands;
 | 
						|
    PyObject *left = NULL, *right = NULL, *result = NULL;
 | 
						|
 | 
						|
    /* If the return value will fit an unsigned long, then we can
 | 
						|
     * multiply in a tight, fast loop where each multiply is O(1).
 | 
						|
     * Compute an upper bound on the number of bits required to store
 | 
						|
     * the answer.
 | 
						|
     *
 | 
						|
     * Storing some integer z requires floor(lg(z))+1 bits, which is
 | 
						|
     * conveniently the value returned by bit_length(z).  The
 | 
						|
     * product x*y will require at most
 | 
						|
     * bit_length(x) + bit_length(y) bits to store, based
 | 
						|
     * on the idea that lg product = lg x + lg y.
 | 
						|
     *
 | 
						|
     * We know that stop - 2 is the largest number to be multiplied.  From
 | 
						|
     * there, we have: bit_length(answer) <= num_operands *
 | 
						|
     * bit_length(stop - 2)
 | 
						|
     */
 | 
						|
 | 
						|
    num_operands = (stop - start) / 2;
 | 
						|
    /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
 | 
						|
     * unlikely case of an overflow in num_operands * max_bits. */
 | 
						|
    if (num_operands <= 8 * SIZEOF_LONG &&
 | 
						|
        num_operands * max_bits <= 8 * SIZEOF_LONG) {
 | 
						|
        unsigned long j, total;
 | 
						|
        for (total = start, j = start + 2; j < stop; j += 2)
 | 
						|
            total *= j;
 | 
						|
        return PyLong_FromUnsignedLong(total);
 | 
						|
    }
 | 
						|
 | 
						|
    /* find midpoint of range(start, stop), rounded up to next odd number. */
 | 
						|
    midpoint = (start + num_operands) | 1;
 | 
						|
    left = factorial_partial_product(start, midpoint,
 | 
						|
                                     bit_length(midpoint - 2));
 | 
						|
    if (left == NULL)
 | 
						|
        goto error;
 | 
						|
    right = factorial_partial_product(midpoint, stop, max_bits);
 | 
						|
    if (right == NULL)
 | 
						|
        goto error;
 | 
						|
    result = PyNumber_Multiply(left, right);
 | 
						|
 | 
						|
  error:
 | 
						|
    Py_XDECREF(left);
 | 
						|
    Py_XDECREF(right);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/* factorial_odd_part:  compute the odd part of factorial(n). */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
factorial_odd_part(unsigned long n)
 | 
						|
{
 | 
						|
    long i;
 | 
						|
    unsigned long v, lower, upper;
 | 
						|
    PyObject *partial, *tmp, *inner, *outer;
 | 
						|
 | 
						|
    inner = PyLong_FromLong(1);
 | 
						|
    if (inner == NULL)
 | 
						|
        return NULL;
 | 
						|
    outer = inner;
 | 
						|
    Py_INCREF(outer);
 | 
						|
 | 
						|
    upper = 3;
 | 
						|
    for (i = bit_length(n) - 2; i >= 0; i--) {
 | 
						|
        v = n >> i;
 | 
						|
        if (v <= 2)
 | 
						|
            continue;
 | 
						|
        lower = upper;
 | 
						|
        /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
 | 
						|
        upper = (v + 1) | 1;
 | 
						|
        /* Here inner is the product of all odd integers j in the range (0,
 | 
						|
           n/2**(i+1)].  The factorial_partial_product call below gives the
 | 
						|
           product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
 | 
						|
        partial = factorial_partial_product(lower, upper, bit_length(upper-2));
 | 
						|
        /* inner *= partial */
 | 
						|
        if (partial == NULL)
 | 
						|
            goto error;
 | 
						|
        tmp = PyNumber_Multiply(inner, partial);
 | 
						|
        Py_DECREF(partial);
 | 
						|
        if (tmp == NULL)
 | 
						|
            goto error;
 | 
						|
        Py_DECREF(inner);
 | 
						|
        inner = tmp;
 | 
						|
        /* Now inner is the product of all odd integers j in the range (0,
 | 
						|
           n/2**i], giving the inner product in the formula above. */
 | 
						|
 | 
						|
        /* outer *= inner; */
 | 
						|
        tmp = PyNumber_Multiply(outer, inner);
 | 
						|
        if (tmp == NULL)
 | 
						|
            goto error;
 | 
						|
        Py_DECREF(outer);
 | 
						|
        outer = tmp;
 | 
						|
    }
 | 
						|
    Py_DECREF(inner);
 | 
						|
    return outer;
 | 
						|
 | 
						|
  error:
 | 
						|
    Py_DECREF(outer);
 | 
						|
    Py_DECREF(inner);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Lookup table for small factorial values */
 | 
						|
 | 
						|
static const unsigned long SmallFactorials[] = {
 | 
						|
    1, 1, 2, 6, 24, 120, 720, 5040, 40320,
 | 
						|
    362880, 3628800, 39916800, 479001600,
 | 
						|
#if SIZEOF_LONG >= 8
 | 
						|
    6227020800, 87178291200, 1307674368000,
 | 
						|
    20922789888000, 355687428096000, 6402373705728000,
 | 
						|
    121645100408832000, 2432902008176640000
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_factorial(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    long x;
 | 
						|
    PyObject *result, *odd_part, *two_valuation;
 | 
						|
 | 
						|
    if (PyFloat_Check(arg)) {
 | 
						|
        PyObject *lx;
 | 
						|
        double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
 | 
						|
        if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "factorial() only accepts integral values");
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        lx = PyLong_FromDouble(dx);
 | 
						|
        if (lx == NULL)
 | 
						|
            return NULL;
 | 
						|
        x = PyLong_AsLong(lx);
 | 
						|
        Py_DECREF(lx);
 | 
						|
    }
 | 
						|
    else
 | 
						|
        x = PyLong_AsLong(arg);
 | 
						|
 | 
						|
    if (x == -1 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    if (x < 0) {
 | 
						|
        PyErr_SetString(PyExc_ValueError,
 | 
						|
                        "factorial() not defined for negative values");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* use lookup table if x is small */
 | 
						|
    if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
 | 
						|
        return PyLong_FromUnsignedLong(SmallFactorials[x]);
 | 
						|
 | 
						|
    /* else express in the form odd_part * 2**two_valuation, and compute as
 | 
						|
       odd_part << two_valuation. */
 | 
						|
    odd_part = factorial_odd_part(x);
 | 
						|
    if (odd_part == NULL)
 | 
						|
        return NULL;
 | 
						|
    two_valuation = PyLong_FromLong(x - count_set_bits(x));
 | 
						|
    if (two_valuation == NULL) {
 | 
						|
        Py_DECREF(odd_part);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    result = PyNumber_Lshift(odd_part, two_valuation);
 | 
						|
    Py_DECREF(two_valuation);
 | 
						|
    Py_DECREF(odd_part);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_factorial_doc,
 | 
						|
"factorial(x) -> Integral\n"
 | 
						|
"\n"
 | 
						|
"Find x!. Raise a ValueError if x is negative or non-integral.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_trunc(PyObject *self, PyObject *number)
 | 
						|
{
 | 
						|
    _Py_IDENTIFIER(__trunc__);
 | 
						|
    PyObject *trunc, *result;
 | 
						|
 | 
						|
    if (Py_TYPE(number)->tp_dict == NULL) {
 | 
						|
        if (PyType_Ready(Py_TYPE(number)) < 0)
 | 
						|
            return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    trunc = _PyObject_LookupSpecial(number, &PyId___trunc__);
 | 
						|
    if (trunc == NULL) {
 | 
						|
        if (!PyErr_Occurred())
 | 
						|
            PyErr_Format(PyExc_TypeError,
 | 
						|
                         "type %.100s doesn't define __trunc__ method",
 | 
						|
                         Py_TYPE(number)->tp_name);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    result = PyObject_CallFunctionObjArgs(trunc, NULL);
 | 
						|
    Py_DECREF(trunc);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_trunc_doc,
 | 
						|
"trunc(x:Real) -> Integral\n"
 | 
						|
"\n"
 | 
						|
"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_frexp(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    double x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    /* deal with special cases directly, to sidestep platform
 | 
						|
       differences */
 | 
						|
    if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
 | 
						|
        i = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyFPE_START_PROTECT("in math_frexp", return 0);
 | 
						|
        x = frexp(x, &i);
 | 
						|
        PyFPE_END_PROTECT(x);
 | 
						|
    }
 | 
						|
    return Py_BuildValue("(di)", x, i);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_frexp_doc,
 | 
						|
"frexp(x)\n"
 | 
						|
"\n"
 | 
						|
"Return the mantissa and exponent of x, as pair (m, e).\n"
 | 
						|
"m is a float and e is an int, such that x = m * 2.**e.\n"
 | 
						|
"If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_ldexp(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    double x, r;
 | 
						|
    PyObject *oexp;
 | 
						|
    long exp;
 | 
						|
    int overflow;
 | 
						|
    if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    if (PyLong_Check(oexp)) {
 | 
						|
        /* on overflow, replace exponent with either LONG_MAX
 | 
						|
           or LONG_MIN, depending on the sign. */
 | 
						|
        exp = PyLong_AsLongAndOverflow(oexp, &overflow);
 | 
						|
        if (exp == -1 && PyErr_Occurred())
 | 
						|
            return NULL;
 | 
						|
        if (overflow)
 | 
						|
            exp = overflow < 0 ? LONG_MIN : LONG_MAX;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        PyErr_SetString(PyExc_TypeError,
 | 
						|
                        "Expected an int as second argument to ldexp.");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (x == 0. || !Py_IS_FINITE(x)) {
 | 
						|
        /* NaNs, zeros and infinities are returned unchanged */
 | 
						|
        r = x;
 | 
						|
        errno = 0;
 | 
						|
    } else if (exp > INT_MAX) {
 | 
						|
        /* overflow */
 | 
						|
        r = copysign(Py_HUGE_VAL, x);
 | 
						|
        errno = ERANGE;
 | 
						|
    } else if (exp < INT_MIN) {
 | 
						|
        /* underflow to +-0 */
 | 
						|
        r = copysign(0., x);
 | 
						|
        errno = 0;
 | 
						|
    } else {
 | 
						|
        errno = 0;
 | 
						|
        PyFPE_START_PROTECT("in math_ldexp", return 0);
 | 
						|
        r = ldexp(x, (int)exp);
 | 
						|
        PyFPE_END_PROTECT(r);
 | 
						|
        if (Py_IS_INFINITY(r))
 | 
						|
            errno = ERANGE;
 | 
						|
    }
 | 
						|
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_ldexp_doc,
 | 
						|
"ldexp(x, i)\n\n\
 | 
						|
Return x * (2**i).");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_modf(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    double y, x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    /* some platforms don't do the right thing for NaNs and
 | 
						|
       infinities, so we take care of special cases directly. */
 | 
						|
    if (!Py_IS_FINITE(x)) {
 | 
						|
        if (Py_IS_INFINITY(x))
 | 
						|
            return Py_BuildValue("(dd)", copysign(0., x), x);
 | 
						|
        else if (Py_IS_NAN(x))
 | 
						|
            return Py_BuildValue("(dd)", x, x);
 | 
						|
    }
 | 
						|
 | 
						|
    errno = 0;
 | 
						|
    PyFPE_START_PROTECT("in math_modf", return 0);
 | 
						|
    x = modf(x, &y);
 | 
						|
    PyFPE_END_PROTECT(x);
 | 
						|
    return Py_BuildValue("(dd)", x, y);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_modf_doc,
 | 
						|
"modf(x)\n"
 | 
						|
"\n"
 | 
						|
"Return the fractional and integer parts of x.  Both results carry the sign\n"
 | 
						|
"of x and are floats.");
 | 
						|
 | 
						|
/* A decent logarithm is easy to compute even for huge ints, but libm can't
 | 
						|
   do that by itself -- loghelper can.  func is log or log10, and name is
 | 
						|
   "log" or "log10".  Note that overflow of the result isn't possible: an int
 | 
						|
   can contain no more than INT_MAX * SHIFT bits, so has value certainly less
 | 
						|
   than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
 | 
						|
   small enough to fit in an IEEE single.  log and log10 are even smaller.
 | 
						|
   However, intermediate overflow is possible for an int if the number of bits
 | 
						|
   in that int is larger than PY_SSIZE_T_MAX. */
 | 
						|
 | 
						|
static PyObject*
 | 
						|
loghelper(PyObject* arg, double (*func)(double), char *funcname)
 | 
						|
{
 | 
						|
    /* If it is int, do it ourselves. */
 | 
						|
    if (PyLong_Check(arg)) {
 | 
						|
        double x, result;
 | 
						|
        Py_ssize_t e;
 | 
						|
 | 
						|
        /* Negative or zero inputs give a ValueError. */
 | 
						|
        if (Py_SIZE(arg) <= 0) {
 | 
						|
            PyErr_SetString(PyExc_ValueError,
 | 
						|
                            "math domain error");
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
 | 
						|
        x = PyLong_AsDouble(arg);
 | 
						|
        if (x == -1.0 && PyErr_Occurred()) {
 | 
						|
            if (!PyErr_ExceptionMatches(PyExc_OverflowError))
 | 
						|
                return NULL;
 | 
						|
            /* Here the conversion to double overflowed, but it's possible
 | 
						|
               to compute the log anyway.  Clear the exception and continue. */
 | 
						|
            PyErr_Clear();
 | 
						|
            x = _PyLong_Frexp((PyLongObject *)arg, &e);
 | 
						|
            if (x == -1.0 && PyErr_Occurred())
 | 
						|
                return NULL;
 | 
						|
            /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
 | 
						|
            result = func(x) + func(2.0) * e;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            /* Successfully converted x to a double. */
 | 
						|
            result = func(x);
 | 
						|
        return PyFloat_FromDouble(result);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Else let libm handle it by itself. */
 | 
						|
    return math_1(arg, func, 0);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_log(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    PyObject *arg;
 | 
						|
    PyObject *base = NULL;
 | 
						|
    PyObject *num, *den;
 | 
						|
    PyObject *ans;
 | 
						|
 | 
						|
    if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    num = loghelper(arg, m_log, "log");
 | 
						|
    if (num == NULL || base == NULL)
 | 
						|
        return num;
 | 
						|
 | 
						|
    den = loghelper(base, m_log, "log");
 | 
						|
    if (den == NULL) {
 | 
						|
        Py_DECREF(num);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    ans = PyNumber_TrueDivide(num, den);
 | 
						|
    Py_DECREF(num);
 | 
						|
    Py_DECREF(den);
 | 
						|
    return ans;
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_log_doc,
 | 
						|
"log(x[, base])\n\n\
 | 
						|
Return the logarithm of x to the given base.\n\
 | 
						|
If the base not specified, returns the natural logarithm (base e) of x.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_log2(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    return loghelper(arg, m_log2, "log2");
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_log2_doc,
 | 
						|
"log2(x)\n\nReturn the base 2 logarithm of x.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_log10(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    return loghelper(arg, m_log10, "log10");
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_log10_doc,
 | 
						|
"log10(x)\n\nReturn the base 10 logarithm of x.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_fmod(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    PyObject *ox, *oy;
 | 
						|
    double r, x, y;
 | 
						|
    if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
 | 
						|
        return NULL;
 | 
						|
    x = PyFloat_AsDouble(ox);
 | 
						|
    y = PyFloat_AsDouble(oy);
 | 
						|
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    /* fmod(x, +/-Inf) returns x for finite x. */
 | 
						|
    if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
 | 
						|
        return PyFloat_FromDouble(x);
 | 
						|
    errno = 0;
 | 
						|
    PyFPE_START_PROTECT("in math_fmod", return 0);
 | 
						|
    r = fmod(x, y);
 | 
						|
    PyFPE_END_PROTECT(r);
 | 
						|
    if (Py_IS_NAN(r)) {
 | 
						|
        if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | 
						|
            errno = EDOM;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_fmod_doc,
 | 
						|
"fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
 | 
						|
"  x % y may differ.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_hypot(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    PyObject *ox, *oy;
 | 
						|
    double r, x, y;
 | 
						|
    if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
 | 
						|
        return NULL;
 | 
						|
    x = PyFloat_AsDouble(ox);
 | 
						|
    y = PyFloat_AsDouble(oy);
 | 
						|
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
 | 
						|
    if (Py_IS_INFINITY(x))
 | 
						|
        return PyFloat_FromDouble(fabs(x));
 | 
						|
    if (Py_IS_INFINITY(y))
 | 
						|
        return PyFloat_FromDouble(fabs(y));
 | 
						|
    errno = 0;
 | 
						|
    PyFPE_START_PROTECT("in math_hypot", return 0);
 | 
						|
    r = hypot(x, y);
 | 
						|
    PyFPE_END_PROTECT(r);
 | 
						|
    if (Py_IS_NAN(r)) {
 | 
						|
        if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
 | 
						|
            errno = EDOM;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    else if (Py_IS_INFINITY(r)) {
 | 
						|
        if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
 | 
						|
            errno = ERANGE;
 | 
						|
        else
 | 
						|
            errno = 0;
 | 
						|
    }
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_hypot_doc,
 | 
						|
"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
 | 
						|
 | 
						|
/* pow can't use math_2, but needs its own wrapper: the problem is
 | 
						|
   that an infinite result can arise either as a result of overflow
 | 
						|
   (in which case OverflowError should be raised) or as a result of
 | 
						|
   e.g. 0.**-5. (for which ValueError needs to be raised.)
 | 
						|
*/
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_pow(PyObject *self, PyObject *args)
 | 
						|
{
 | 
						|
    PyObject *ox, *oy;
 | 
						|
    double r, x, y;
 | 
						|
    int odd_y;
 | 
						|
 | 
						|
    if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
 | 
						|
        return NULL;
 | 
						|
    x = PyFloat_AsDouble(ox);
 | 
						|
    y = PyFloat_AsDouble(oy);
 | 
						|
    if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    /* deal directly with IEEE specials, to cope with problems on various
 | 
						|
       platforms whose semantics don't exactly match C99 */
 | 
						|
    r = 0.; /* silence compiler warning */
 | 
						|
    if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
 | 
						|
        errno = 0;
 | 
						|
        if (Py_IS_NAN(x))
 | 
						|
            r = y == 0. ? 1. : x; /* NaN**0 = 1 */
 | 
						|
        else if (Py_IS_NAN(y))
 | 
						|
            r = x == 1. ? 1. : y; /* 1**NaN = 1 */
 | 
						|
        else if (Py_IS_INFINITY(x)) {
 | 
						|
            odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
 | 
						|
            if (y > 0.)
 | 
						|
                r = odd_y ? x : fabs(x);
 | 
						|
            else if (y == 0.)
 | 
						|
                r = 1.;
 | 
						|
            else /* y < 0. */
 | 
						|
                r = odd_y ? copysign(0., x) : 0.;
 | 
						|
        }
 | 
						|
        else if (Py_IS_INFINITY(y)) {
 | 
						|
            if (fabs(x) == 1.0)
 | 
						|
                r = 1.;
 | 
						|
            else if (y > 0. && fabs(x) > 1.0)
 | 
						|
                r = y;
 | 
						|
            else if (y < 0. && fabs(x) < 1.0) {
 | 
						|
                r = -y; /* result is +inf */
 | 
						|
                if (x == 0.) /* 0**-inf: divide-by-zero */
 | 
						|
                    errno = EDOM;
 | 
						|
            }
 | 
						|
            else
 | 
						|
                r = 0.;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* let libm handle finite**finite */
 | 
						|
        errno = 0;
 | 
						|
        PyFPE_START_PROTECT("in math_pow", return 0);
 | 
						|
        r = pow(x, y);
 | 
						|
        PyFPE_END_PROTECT(r);
 | 
						|
        /* a NaN result should arise only from (-ve)**(finite
 | 
						|
           non-integer); in this case we want to raise ValueError. */
 | 
						|
        if (!Py_IS_FINITE(r)) {
 | 
						|
            if (Py_IS_NAN(r)) {
 | 
						|
                errno = EDOM;
 | 
						|
            }
 | 
						|
            /*
 | 
						|
               an infinite result here arises either from:
 | 
						|
               (A) (+/-0.)**negative (-> divide-by-zero)
 | 
						|
               (B) overflow of x**y with x and y finite
 | 
						|
            */
 | 
						|
            else if (Py_IS_INFINITY(r)) {
 | 
						|
                if (x == 0.)
 | 
						|
                    errno = EDOM;
 | 
						|
                else
 | 
						|
                    errno = ERANGE;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (errno && is_error(r))
 | 
						|
        return NULL;
 | 
						|
    else
 | 
						|
        return PyFloat_FromDouble(r);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_pow_doc,
 | 
						|
"pow(x, y)\n\nReturn x**y (x to the power of y).");
 | 
						|
 | 
						|
static const double degToRad = Py_MATH_PI / 180.0;
 | 
						|
static const double radToDeg = 180.0 / Py_MATH_PI;
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_degrees(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    double x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    return PyFloat_FromDouble(x * radToDeg);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_degrees_doc,
 | 
						|
"degrees(x)\n\n\
 | 
						|
Convert angle x from radians to degrees.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_radians(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    double x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    return PyFloat_FromDouble(x * degToRad);
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_radians_doc,
 | 
						|
"radians(x)\n\n\
 | 
						|
Convert angle x from degrees to radians.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_isfinite(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    double x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    return PyBool_FromLong((long)Py_IS_FINITE(x));
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_isfinite_doc,
 | 
						|
"isfinite(x) -> bool\n\n\
 | 
						|
Return True if x is neither an infinity nor a NaN, and False otherwise.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_isnan(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    double x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    return PyBool_FromLong((long)Py_IS_NAN(x));
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_isnan_doc,
 | 
						|
"isnan(x) -> bool\n\n\
 | 
						|
Return True if x is a NaN (not a number), and False otherwise.");
 | 
						|
 | 
						|
static PyObject *
 | 
						|
math_isinf(PyObject *self, PyObject *arg)
 | 
						|
{
 | 
						|
    double x = PyFloat_AsDouble(arg);
 | 
						|
    if (x == -1.0 && PyErr_Occurred())
 | 
						|
        return NULL;
 | 
						|
    return PyBool_FromLong((long)Py_IS_INFINITY(x));
 | 
						|
}
 | 
						|
 | 
						|
PyDoc_STRVAR(math_isinf_doc,
 | 
						|
"isinf(x) -> bool\n\n\
 | 
						|
Return True if x is a positive or negative infinity, and False otherwise.");
 | 
						|
 | 
						|
static PyMethodDef math_methods[] = {
 | 
						|
    {"acos",            math_acos,      METH_O,         math_acos_doc},
 | 
						|
    {"acosh",           math_acosh,     METH_O,         math_acosh_doc},
 | 
						|
    {"asin",            math_asin,      METH_O,         math_asin_doc},
 | 
						|
    {"asinh",           math_asinh,     METH_O,         math_asinh_doc},
 | 
						|
    {"atan",            math_atan,      METH_O,         math_atan_doc},
 | 
						|
    {"atan2",           math_atan2,     METH_VARARGS,   math_atan2_doc},
 | 
						|
    {"atanh",           math_atanh,     METH_O,         math_atanh_doc},
 | 
						|
    {"ceil",            math_ceil,      METH_O,         math_ceil_doc},
 | 
						|
    {"copysign",        math_copysign,  METH_VARARGS,   math_copysign_doc},
 | 
						|
    {"cos",             math_cos,       METH_O,         math_cos_doc},
 | 
						|
    {"cosh",            math_cosh,      METH_O,         math_cosh_doc},
 | 
						|
    {"degrees",         math_degrees,   METH_O,         math_degrees_doc},
 | 
						|
    {"erf",             math_erf,       METH_O,         math_erf_doc},
 | 
						|
    {"erfc",            math_erfc,      METH_O,         math_erfc_doc},
 | 
						|
    {"exp",             math_exp,       METH_O,         math_exp_doc},
 | 
						|
    {"expm1",           math_expm1,     METH_O,         math_expm1_doc},
 | 
						|
    {"fabs",            math_fabs,      METH_O,         math_fabs_doc},
 | 
						|
    {"factorial",       math_factorial, METH_O,         math_factorial_doc},
 | 
						|
    {"floor",           math_floor,     METH_O,         math_floor_doc},
 | 
						|
    {"fmod",            math_fmod,      METH_VARARGS,   math_fmod_doc},
 | 
						|
    {"frexp",           math_frexp,     METH_O,         math_frexp_doc},
 | 
						|
    {"fsum",            math_fsum,      METH_O,         math_fsum_doc},
 | 
						|
    {"gamma",           math_gamma,     METH_O,         math_gamma_doc},
 | 
						|
    {"hypot",           math_hypot,     METH_VARARGS,   math_hypot_doc},
 | 
						|
    {"isfinite",        math_isfinite,  METH_O,         math_isfinite_doc},
 | 
						|
    {"isinf",           math_isinf,     METH_O,         math_isinf_doc},
 | 
						|
    {"isnan",           math_isnan,     METH_O,         math_isnan_doc},
 | 
						|
    {"ldexp",           math_ldexp,     METH_VARARGS,   math_ldexp_doc},
 | 
						|
    {"lgamma",          math_lgamma,    METH_O,         math_lgamma_doc},
 | 
						|
    {"log",             math_log,       METH_VARARGS,   math_log_doc},
 | 
						|
    {"log1p",           math_log1p,     METH_O,         math_log1p_doc},
 | 
						|
    {"log10",           math_log10,     METH_O,         math_log10_doc},
 | 
						|
    {"log2",            math_log2,      METH_O,         math_log2_doc},
 | 
						|
    {"modf",            math_modf,      METH_O,         math_modf_doc},
 | 
						|
    {"pow",             math_pow,       METH_VARARGS,   math_pow_doc},
 | 
						|
    {"radians",         math_radians,   METH_O,         math_radians_doc},
 | 
						|
    {"sin",             math_sin,       METH_O,         math_sin_doc},
 | 
						|
    {"sinh",            math_sinh,      METH_O,         math_sinh_doc},
 | 
						|
    {"sqrt",            math_sqrt,      METH_O,         math_sqrt_doc},
 | 
						|
    {"tan",             math_tan,       METH_O,         math_tan_doc},
 | 
						|
    {"tanh",            math_tanh,      METH_O,         math_tanh_doc},
 | 
						|
    {"trunc",           math_trunc,     METH_O,         math_trunc_doc},
 | 
						|
    {NULL,              NULL}           /* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
PyDoc_STRVAR(module_doc,
 | 
						|
"This module is always available.  It provides access to the\n"
 | 
						|
"mathematical functions defined by the C standard.");
 | 
						|
 | 
						|
 | 
						|
static struct PyModuleDef mathmodule = {
 | 
						|
    PyModuleDef_HEAD_INIT,
 | 
						|
    "math",
 | 
						|
    module_doc,
 | 
						|
    -1,
 | 
						|
    math_methods,
 | 
						|
    NULL,
 | 
						|
    NULL,
 | 
						|
    NULL,
 | 
						|
    NULL
 | 
						|
};
 | 
						|
 | 
						|
PyMODINIT_FUNC
 | 
						|
PyInit_math(void)
 | 
						|
{
 | 
						|
    PyObject *m;
 | 
						|
 | 
						|
    m = PyModule_Create(&mathmodule);
 | 
						|
    if (m == NULL)
 | 
						|
        goto finally;
 | 
						|
 | 
						|
    PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
 | 
						|
    PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
 | 
						|
 | 
						|
    finally:
 | 
						|
    return m;
 | 
						|
}
 |