mirror of
				https://github.com/python/cpython.git
				synced 2025-11-04 07:31:38 +00:00 
			
		
		
		
	ints. (In theory, other variables should be widened to long as well, but this won't ever be needed, since the len of a list is still an int.)
		
			
				
	
	
		
			1515 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1515 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/***********************************************************
 | 
						|
Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam,
 | 
						|
The Netherlands.
 | 
						|
 | 
						|
                        All Rights Reserved
 | 
						|
 | 
						|
Permission to use, copy, modify, and distribute this software and its
 | 
						|
documentation for any purpose and without fee is hereby granted,
 | 
						|
provided that the above copyright notice appear in all copies and that
 | 
						|
both that copyright notice and this permission notice appear in
 | 
						|
supporting documentation, and that the names of Stichting Mathematisch
 | 
						|
Centrum or CWI or Corporation for National Research Initiatives or
 | 
						|
CNRI not be used in advertising or publicity pertaining to
 | 
						|
distribution of the software without specific, written prior
 | 
						|
permission.
 | 
						|
 | 
						|
While CWI is the initial source for this software, a modified version
 | 
						|
is made available by the Corporation for National Research Initiatives
 | 
						|
(CNRI) at the Internet address ftp://ftp.python.org.
 | 
						|
 | 
						|
STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
 | 
						|
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
 | 
						|
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
 | 
						|
CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
 | 
						|
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
 | 
						|
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
 | 
						|
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 | 
						|
PERFORMANCE OF THIS SOFTWARE.
 | 
						|
 | 
						|
******************************************************************/
 | 
						|
 | 
						|
/* List object implementation */
 | 
						|
 | 
						|
#include "Python.h"
 | 
						|
 | 
						|
#ifdef STDC_HEADERS
 | 
						|
#include <stddef.h>
 | 
						|
#else
 | 
						|
#include <sys/types.h>		/* For size_t */
 | 
						|
#endif
 | 
						|
 | 
						|
#define ROUNDUP(n, PyTryBlock) \
 | 
						|
	((((n)+(PyTryBlock)-1)/(PyTryBlock))*(PyTryBlock))
 | 
						|
 | 
						|
static int
 | 
						|
roundupsize(n)
 | 
						|
	int n;
 | 
						|
{
 | 
						|
	if (n < 500)
 | 
						|
		return ROUNDUP(n, 10);
 | 
						|
	else
 | 
						|
		return ROUNDUP(n, 100);
 | 
						|
}
 | 
						|
 | 
						|
#define NRESIZE(var, type, nitems) PyMem_RESIZE(var, type, roundupsize(nitems))
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_New(size)
 | 
						|
	int size;
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	PyListObject *op;
 | 
						|
	size_t nbytes;
 | 
						|
	if (size < 0) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	nbytes = size * sizeof(PyObject *);
 | 
						|
	/* Check for overflow */
 | 
						|
	if (nbytes / sizeof(PyObject *) != (size_t)size) {
 | 
						|
		return PyErr_NoMemory();
 | 
						|
	}
 | 
						|
	op = (PyListObject *) malloc(sizeof(PyListObject));
 | 
						|
	if (op == NULL) {
 | 
						|
		return PyErr_NoMemory();
 | 
						|
	}
 | 
						|
	if (size <= 0) {
 | 
						|
		op->ob_item = NULL;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		op->ob_item = (PyObject **) malloc(nbytes);
 | 
						|
		if (op->ob_item == NULL) {
 | 
						|
			free((ANY *)op);
 | 
						|
			return PyErr_NoMemory();
 | 
						|
		}
 | 
						|
	}
 | 
						|
	op->ob_type = &PyList_Type;
 | 
						|
	op->ob_size = size;
 | 
						|
	for (i = 0; i < size; i++)
 | 
						|
		op->ob_item[i] = NULL;
 | 
						|
	_Py_NewReference(op);
 | 
						|
	return (PyObject *) op;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Size(op)
 | 
						|
	PyObject *op;
 | 
						|
{
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		return ((PyListObject *)op) -> ob_size;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *indexerr;
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_GetItem(op, i)
 | 
						|
	PyObject *op;
 | 
						|
	int i;
 | 
						|
{
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
 | 
						|
		if (indexerr == NULL)
 | 
						|
			indexerr = PyString_FromString(
 | 
						|
				"list index out of range");
 | 
						|
		PyErr_SetObject(PyExc_IndexError, indexerr);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return ((PyListObject *)op) -> ob_item[i];
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_SetItem(op, i, newitem)
 | 
						|
	register PyObject *op;
 | 
						|
	register int i;
 | 
						|
	register PyObject *newitem;
 | 
						|
{
 | 
						|
	register PyObject *olditem;
 | 
						|
	register PyObject **p;
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		Py_XDECREF(newitem);
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
 | 
						|
		Py_XDECREF(newitem);
 | 
						|
		PyErr_SetString(PyExc_IndexError,
 | 
						|
				"list assignment index out of range");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	p = ((PyListObject *)op) -> ob_item + i;
 | 
						|
	olditem = *p;
 | 
						|
	*p = newitem;
 | 
						|
	Py_XDECREF(olditem);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ins1(self, where, v)
 | 
						|
	PyListObject *self;
 | 
						|
	int where;
 | 
						|
	PyObject *v;
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	PyObject **items;
 | 
						|
	if (v == NULL) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	items = self->ob_item;
 | 
						|
	NRESIZE(items, PyObject *, self->ob_size+1);
 | 
						|
	if (items == NULL) {
 | 
						|
		PyErr_NoMemory();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (where < 0)
 | 
						|
		where = 0;
 | 
						|
	if (where > self->ob_size)
 | 
						|
		where = self->ob_size;
 | 
						|
	for (i = self->ob_size; --i >= where; )
 | 
						|
		items[i+1] = items[i];
 | 
						|
	Py_INCREF(v);
 | 
						|
	items[where] = v;
 | 
						|
	self->ob_item = items;
 | 
						|
	self->ob_size++;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Insert(op, where, newitem)
 | 
						|
	PyObject *op;
 | 
						|
	int where;
 | 
						|
	PyObject *newitem;
 | 
						|
{
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	return ins1((PyListObject *)op, where, newitem);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Append(op, newitem)
 | 
						|
	PyObject *op;
 | 
						|
	PyObject *newitem;
 | 
						|
{
 | 
						|
	if (!PyList_Check(op)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	return ins1((PyListObject *)op,
 | 
						|
		(int) ((PyListObject *)op)->ob_size, newitem);
 | 
						|
}
 | 
						|
 | 
						|
/* Methods */
 | 
						|
 | 
						|
static void
 | 
						|
list_dealloc(op)
 | 
						|
	PyListObject *op;
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	if (op->ob_item != NULL) {
 | 
						|
		for (i = 0; i < op->ob_size; i++) {
 | 
						|
			Py_XDECREF(op->ob_item[i]);
 | 
						|
		}
 | 
						|
		free((ANY *)op->ob_item);
 | 
						|
	}
 | 
						|
	free((ANY *)op);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_print(op, fp, flags)
 | 
						|
	PyListObject *op;
 | 
						|
	FILE *fp;
 | 
						|
	int flags;
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	i = Py_ReprEnter((PyObject*)op);
 | 
						|
	if (i != 0) {
 | 
						|
		if (i < 0)
 | 
						|
			return i;
 | 
						|
		fprintf(fp, "[...]");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	fprintf(fp, "[");
 | 
						|
	for (i = 0; i < op->ob_size; i++) {
 | 
						|
		if (i > 0)
 | 
						|
			fprintf(fp, ", ");
 | 
						|
		if (PyObject_Print(op->ob_item[i], fp, 0) != 0) {
 | 
						|
			Py_ReprLeave((PyObject *)op);
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	fprintf(fp, "]");
 | 
						|
	Py_ReprLeave((PyObject *)op);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_repr(v)
 | 
						|
	PyListObject *v;
 | 
						|
{
 | 
						|
	PyObject *s, *comma;
 | 
						|
	int i;
 | 
						|
 | 
						|
	i = Py_ReprEnter((PyObject*)v);
 | 
						|
	if (i != 0) {
 | 
						|
		if (i > 0)
 | 
						|
			return PyString_FromString("[...]");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	s = PyString_FromString("[");
 | 
						|
	comma = PyString_FromString(", ");
 | 
						|
	for (i = 0; i < v->ob_size && s != NULL; i++) {
 | 
						|
		if (i > 0)
 | 
						|
			PyString_Concat(&s, comma);
 | 
						|
		PyString_ConcatAndDel(&s, PyObject_Repr(v->ob_item[i]));
 | 
						|
	}
 | 
						|
	Py_XDECREF(comma);
 | 
						|
	PyString_ConcatAndDel(&s, PyString_FromString("]"));
 | 
						|
	Py_ReprLeave((PyObject *)v);
 | 
						|
	return s;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_compare(v, w)
 | 
						|
	PyListObject *v, *w;
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for (i = 0; i < v->ob_size && i < w->ob_size; i++) {
 | 
						|
		int cmp = PyObject_Compare(v->ob_item[i], w->ob_item[i]);
 | 
						|
		if (cmp != 0)
 | 
						|
			return cmp;
 | 
						|
	}
 | 
						|
	return v->ob_size - w->ob_size;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_length(a)
 | 
						|
	PyListObject *a;
 | 
						|
{
 | 
						|
	return a->ob_size;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_item(a, i)
 | 
						|
	PyListObject *a;
 | 
						|
	int i;
 | 
						|
{
 | 
						|
	if (i < 0 || i >= a->ob_size) {
 | 
						|
		if (indexerr == NULL)
 | 
						|
			indexerr = PyString_FromString(
 | 
						|
				"list index out of range");
 | 
						|
		PyErr_SetObject(PyExc_IndexError, indexerr);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	Py_INCREF(a->ob_item[i]);
 | 
						|
	return a->ob_item[i];
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_slice(a, ilow, ihigh)
 | 
						|
	PyListObject *a;
 | 
						|
	int ilow, ihigh;
 | 
						|
{
 | 
						|
	PyListObject *np;
 | 
						|
	int i;
 | 
						|
	if (ilow < 0)
 | 
						|
		ilow = 0;
 | 
						|
	else if (ilow > a->ob_size)
 | 
						|
		ilow = a->ob_size;
 | 
						|
	if (ihigh < ilow)
 | 
						|
		ihigh = ilow;
 | 
						|
	else if (ihigh > a->ob_size)
 | 
						|
		ihigh = a->ob_size;
 | 
						|
	np = (PyListObject *) PyList_New(ihigh - ilow);
 | 
						|
	if (np == NULL)
 | 
						|
		return NULL;
 | 
						|
	for (i = ilow; i < ihigh; i++) {
 | 
						|
		PyObject *v = a->ob_item[i];
 | 
						|
		Py_INCREF(v);
 | 
						|
		np->ob_item[i - ilow] = v;
 | 
						|
	}
 | 
						|
	return (PyObject *)np;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_GetSlice(a, ilow, ihigh)
 | 
						|
	PyObject *a;
 | 
						|
	int ilow, ihigh;
 | 
						|
{
 | 
						|
	if (!PyList_Check(a)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return list_slice((PyListObject *)a, ilow, ihigh);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_concat(a, bb)
 | 
						|
	PyListObject *a;
 | 
						|
	PyObject *bb;
 | 
						|
{
 | 
						|
	int size;
 | 
						|
	int i;
 | 
						|
	PyListObject *np;
 | 
						|
	if (!PyList_Check(bb)) {
 | 
						|
		PyErr_BadArgument();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
#define b ((PyListObject *)bb)
 | 
						|
	size = a->ob_size + b->ob_size;
 | 
						|
	np = (PyListObject *) PyList_New(size);
 | 
						|
	if (np == NULL) {
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	for (i = 0; i < a->ob_size; i++) {
 | 
						|
		PyObject *v = a->ob_item[i];
 | 
						|
		Py_INCREF(v);
 | 
						|
		np->ob_item[i] = v;
 | 
						|
	}
 | 
						|
	for (i = 0; i < b->ob_size; i++) {
 | 
						|
		PyObject *v = b->ob_item[i];
 | 
						|
		Py_INCREF(v);
 | 
						|
		np->ob_item[i + a->ob_size] = v;
 | 
						|
	}
 | 
						|
	return (PyObject *)np;
 | 
						|
#undef b
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_repeat(a, n)
 | 
						|
	PyListObject *a;
 | 
						|
	int n;
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	int size;
 | 
						|
	PyListObject *np;
 | 
						|
	PyObject **p;
 | 
						|
	if (n < 0)
 | 
						|
		n = 0;
 | 
						|
	size = a->ob_size * n;
 | 
						|
	np = (PyListObject *) PyList_New(size);
 | 
						|
	if (np == NULL)
 | 
						|
		return NULL;
 | 
						|
	p = np->ob_item;
 | 
						|
	for (i = 0; i < n; i++) {
 | 
						|
		for (j = 0; j < a->ob_size; j++) {
 | 
						|
			*p = a->ob_item[j];
 | 
						|
			Py_INCREF(*p);
 | 
						|
			p++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (PyObject *) np;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_ass_slice(a, ilow, ihigh, v)
 | 
						|
	PyListObject *a;
 | 
						|
	int ilow, ihigh;
 | 
						|
	PyObject *v;
 | 
						|
{
 | 
						|
	/* Because [X]DECREF can recursively invoke list operations on
 | 
						|
	   this list, we must postpone all [X]DECREF activity until
 | 
						|
	   after the list is back in its canonical shape.  Therefore
 | 
						|
	   we must allocate an additional array, 'recycle', into which
 | 
						|
	   we temporarily copy the items that are deleted from the
 | 
						|
	   list. :-( */
 | 
						|
	PyObject **recycle, **p;
 | 
						|
	PyObject **item;
 | 
						|
	int n; /* Size of replacement list */
 | 
						|
	int d; /* Change in size */
 | 
						|
	int k; /* Loop index */
 | 
						|
#define b ((PyListObject *)v)
 | 
						|
	if (v == NULL)
 | 
						|
		n = 0;
 | 
						|
	else if (PyList_Check(v)) {
 | 
						|
		n = b->ob_size;
 | 
						|
		if (a == b) {
 | 
						|
			/* Special case "a[i:j] = a" -- copy b first */
 | 
						|
			int ret;
 | 
						|
			v = list_slice(b, 0, n);
 | 
						|
			ret = list_ass_slice(a, ilow, ihigh, v);
 | 
						|
			Py_DECREF(v);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		PyErr_BadArgument();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (ilow < 0)
 | 
						|
		ilow = 0;
 | 
						|
	else if (ilow > a->ob_size)
 | 
						|
		ilow = a->ob_size;
 | 
						|
	if (ihigh < ilow)
 | 
						|
		ihigh = ilow;
 | 
						|
	else if (ihigh > a->ob_size)
 | 
						|
		ihigh = a->ob_size;
 | 
						|
	item = a->ob_item;
 | 
						|
	d = n - (ihigh-ilow);
 | 
						|
	if (ihigh > ilow)
 | 
						|
		p = recycle = PyMem_NEW(PyObject *, (ihigh-ilow));
 | 
						|
	else
 | 
						|
		p = recycle = NULL;
 | 
						|
	if (d <= 0) { /* Delete -d items; recycle ihigh-ilow items */
 | 
						|
		for (k = ilow; k < ihigh; k++)
 | 
						|
			*p++ = item[k];
 | 
						|
		if (d < 0) {
 | 
						|
			for (/*k = ihigh*/; k < a->ob_size; k++)
 | 
						|
				item[k+d] = item[k];
 | 
						|
			a->ob_size += d;
 | 
						|
			NRESIZE(item, PyObject *, a->ob_size); /* Can't fail */
 | 
						|
			a->ob_item = item;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else { /* Insert d items; recycle ihigh-ilow items */
 | 
						|
		NRESIZE(item, PyObject *, a->ob_size + d);
 | 
						|
		if (item == NULL) {
 | 
						|
			PyMem_XDEL(recycle);
 | 
						|
			PyErr_NoMemory();
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
		for (k = a->ob_size; --k >= ihigh; )
 | 
						|
			item[k+d] = item[k];
 | 
						|
		for (/*k = ihigh-1*/; k >= ilow; --k)
 | 
						|
			*p++ = item[k];
 | 
						|
		a->ob_item = item;
 | 
						|
		a->ob_size += d;
 | 
						|
	}
 | 
						|
	for (k = 0; k < n; k++, ilow++) {
 | 
						|
		PyObject *w = b->ob_item[k];
 | 
						|
		Py_XINCREF(w);
 | 
						|
		item[ilow] = w;
 | 
						|
	}
 | 
						|
	if (recycle) {
 | 
						|
		while (--p >= recycle)
 | 
						|
			Py_XDECREF(*p);
 | 
						|
		PyMem_DEL(recycle);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
#undef b
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_SetSlice(a, ilow, ihigh, v)
 | 
						|
	PyObject *a;
 | 
						|
	int ilow, ihigh;
 | 
						|
	PyObject *v;
 | 
						|
{
 | 
						|
	if (!PyList_Check(a)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
list_ass_item(a, i, v)
 | 
						|
	PyListObject *a;
 | 
						|
	int i;
 | 
						|
	PyObject *v;
 | 
						|
{
 | 
						|
	PyObject *old_value;
 | 
						|
	if (i < 0 || i >= a->ob_size) {
 | 
						|
		PyErr_SetString(PyExc_IndexError,
 | 
						|
				"list assignment index out of range");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	if (v == NULL)
 | 
						|
		return list_ass_slice(a, i, i+1, v);
 | 
						|
	Py_INCREF(v);
 | 
						|
	old_value = a->ob_item[i];
 | 
						|
	a->ob_item[i] = v;
 | 
						|
	Py_DECREF(old_value); 
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
ins(self, where, v)
 | 
						|
	PyListObject *self;
 | 
						|
	int where;
 | 
						|
	PyObject *v;
 | 
						|
{
 | 
						|
	if (ins1(self, where, v) != 0)
 | 
						|
		return NULL;
 | 
						|
	Py_INCREF(Py_None);
 | 
						|
	return Py_None;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listinsert(self, args)
 | 
						|
	PyListObject *self;
 | 
						|
	PyObject *args;
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	PyObject *v;
 | 
						|
	if (!PyArg_Parse(args, "(iO)", &i, &v))
 | 
						|
		return NULL;
 | 
						|
	return ins(self, i, v);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listappend(self, args)
 | 
						|
	PyListObject *self;
 | 
						|
	PyObject *args;
 | 
						|
{
 | 
						|
	PyObject *v;
 | 
						|
	if (!PyArg_Parse(args, "O", &v))
 | 
						|
		return NULL;
 | 
						|
	return ins(self, (int) self->ob_size, v);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listextend(self, args)
 | 
						|
	PyListObject *self;
 | 
						|
	PyObject *args;
 | 
						|
{
 | 
						|
	PyObject *b = NULL, *res = NULL;
 | 
						|
	PyObject **items;
 | 
						|
	int selflen = PyList_GET_SIZE(self);
 | 
						|
	int blen;
 | 
						|
	register int i;
 | 
						|
 | 
						|
	if (!PyArg_ParseTuple(args, "O", &b))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (!PyList_Check(b)) {
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"list.extend() argument must be a list");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (PyList_GET_SIZE(b) == 0) {
 | 
						|
		/* short circuit when b is empty */
 | 
						|
		Py_INCREF(Py_None);
 | 
						|
		return Py_None;
 | 
						|
	}
 | 
						|
	if (self == (PyListObject*)b) {
 | 
						|
		/* as in list_ass_slice() we must special case the
 | 
						|
		 * situation: a.extend(a)
 | 
						|
		 *
 | 
						|
		 * XXX: I think this way ought to be faster than using
 | 
						|
		 * list_slice() the way list_ass_slice() does.
 | 
						|
		 */
 | 
						|
		b = PyList_New(selflen);
 | 
						|
		if (!b)
 | 
						|
			return NULL;
 | 
						|
		for (i = 0; i < selflen; i++) {
 | 
						|
			PyObject *o = PyList_GET_ITEM(self, i);
 | 
						|
			Py_INCREF(o);
 | 
						|
			PyList_SET_ITEM(b, i, o);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else
 | 
						|
		/* we want b to have the same refcount semantics for the
 | 
						|
		 * Py_XDECREF() in the finally clause regardless of which
 | 
						|
		 * branch in the above conditional we took.
 | 
						|
		 */
 | 
						|
		Py_INCREF(b);
 | 
						|
 | 
						|
	blen = PyList_GET_SIZE(b);
 | 
						|
	/* resize a using idiom */
 | 
						|
	items = self->ob_item;
 | 
						|
	NRESIZE(items, PyObject*, selflen + blen);
 | 
						|
	if (items == NULL ) {
 | 
						|
		PyErr_NoMemory();
 | 
						|
		goto finally;
 | 
						|
	}
 | 
						|
	self->ob_item = items;
 | 
						|
 | 
						|
	/* populate the end self with b's items */
 | 
						|
	for (i = 0; i < blen; i++) {
 | 
						|
		PyObject *o = PyList_GET_ITEM(b, i);
 | 
						|
		Py_INCREF(o);
 | 
						|
		PyList_SET_ITEM(self, self->ob_size++, o);
 | 
						|
	}
 | 
						|
	res = Py_None;
 | 
						|
	Py_INCREF(res);
 | 
						|
  finally:
 | 
						|
	Py_XDECREF(b);
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listpop(self, args)
 | 
						|
	PyListObject *self;
 | 
						|
	PyObject *args;
 | 
						|
{
 | 
						|
	int i = -1;
 | 
						|
	PyObject *v;
 | 
						|
	if (!PyArg_ParseTuple(args, "|i", &i))
 | 
						|
		return NULL;
 | 
						|
	if (self->ob_size == 0) {
 | 
						|
		/* Special-case most common failure cause */
 | 
						|
		PyErr_SetString(PyExc_IndexError, "pop from empty list");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (i < 0)
 | 
						|
		i += self->ob_size;
 | 
						|
	if (i < 0 || i >= self->ob_size) {
 | 
						|
		PyErr_SetString(PyExc_IndexError, "pop index out of range");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	v = self->ob_item[i];
 | 
						|
	Py_INCREF(v);
 | 
						|
	if (list_ass_slice(self, i, i+1, (PyObject *)NULL) != 0) {
 | 
						|
		Py_DECREF(v);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
/* New quicksort implementation for arrays of object pointers.
 | 
						|
   Thanks to discussions with Tim Peters. */
 | 
						|
 | 
						|
/* CMPERROR is returned by our comparison function when an error
 | 
						|
   occurred.  This is the largest negative integer (0x80000000 on a
 | 
						|
   32-bit system). */
 | 
						|
#define CMPERROR ( (int) ((unsigned int)1 << (8*sizeof(int) - 1)) )
 | 
						|
 | 
						|
/* Comparison function.  Takes care of calling a user-supplied
 | 
						|
   comparison function (any callable Python object).  Calls the
 | 
						|
   standard comparison function, PyObject_Compare(), if the user-
 | 
						|
   supplied function is NULL. */
 | 
						|
 | 
						|
static int
 | 
						|
docompare(x, y, compare)
 | 
						|
	PyObject *x;
 | 
						|
	PyObject *y;
 | 
						|
	PyObject *compare;
 | 
						|
{
 | 
						|
	PyObject *args, *res;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (compare == NULL) {
 | 
						|
		i = PyObject_Compare(x, y);
 | 
						|
		if (i && PyErr_Occurred())
 | 
						|
			i = CMPERROR;
 | 
						|
		return i;
 | 
						|
	}
 | 
						|
 | 
						|
	args = Py_BuildValue("(OO)", x, y);
 | 
						|
	if (args == NULL)
 | 
						|
		return CMPERROR;
 | 
						|
	res = PyEval_CallObject(compare, args);
 | 
						|
	Py_DECREF(args);
 | 
						|
	if (res == NULL)
 | 
						|
		return CMPERROR;
 | 
						|
	if (!PyInt_Check(res)) {
 | 
						|
		Py_DECREF(res);
 | 
						|
		PyErr_SetString(PyExc_TypeError,
 | 
						|
				"comparison function should return int");
 | 
						|
		return CMPERROR;
 | 
						|
	}
 | 
						|
	i = PyInt_AsLong(res);
 | 
						|
	Py_DECREF(res);
 | 
						|
	if (i < 0)
 | 
						|
		return -1;
 | 
						|
	if (i > 0)
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* MINSIZE is the smallest array that will get a full-blown samplesort
 | 
						|
   treatment; smaller arrays are sorted using binary insertion.  It must
 | 
						|
   be at least 7 for the samplesort implementation to work.  Binary
 | 
						|
   insertion does fewer compares, but can suffer O(N**2) data movement.
 | 
						|
   The more expensive compares, the larger MINSIZE should be. */
 | 
						|
#define MINSIZE 100
 | 
						|
 | 
						|
/* MINPARTITIONSIZE is the smallest array slice samplesort will bother to
 | 
						|
   partition; smaller slices are passed to binarysort.  It must be at
 | 
						|
   least 2, and no larger than MINSIZE.  Setting it higher reduces the #
 | 
						|
   of compares slowly, but increases the amount of data movement quickly.
 | 
						|
   The value here was chosen assuming a compare costs ~25x more than
 | 
						|
   swapping a pair of memory-resident pointers -- but under that assumption,
 | 
						|
   changing the value by a few dozen more or less has aggregate effect
 | 
						|
   under 1%.  So the value is crucial, but not touchy <wink>. */
 | 
						|
#define MINPARTITIONSIZE 40
 | 
						|
 | 
						|
/* MAXMERGE is the largest number of elements we'll always merge into
 | 
						|
   a known-to-be sorted chunk via binary insertion, regardless of the
 | 
						|
   size of that chunk.  Given a chunk of N sorted elements, and a group
 | 
						|
   of K unknowns, the largest K for which it's better to do insertion
 | 
						|
   (than a full-blown sort) is a complicated function of N and K mostly
 | 
						|
   involving the expected number of compares and data moves under each
 | 
						|
   approach, and the relative cost of those operations on a specific
 | 
						|
   architecure.  The fixed value here is conservative, and should be a
 | 
						|
   clear win regardless of architecture or N. */
 | 
						|
#define MAXMERGE 15
 | 
						|
 | 
						|
/* STACKSIZE is the size of our work stack.  A rough estimate is that
 | 
						|
   this allows us to sort arrays of size N where
 | 
						|
   N / ln(N) = MINPARTITIONSIZE * 2**STACKSIZE, so 60 is more than enough
 | 
						|
   for arrays of size 2**64.  Because we push the biggest partition
 | 
						|
   first, the worst case occurs when all subarrays are always partitioned
 | 
						|
   exactly in two. */
 | 
						|
#define STACKSIZE 60
 | 
						|
 | 
						|
 | 
						|
#define SETK(X,Y) if ((k = docompare(X,Y,compare))==CMPERROR) goto fail
 | 
						|
 | 
						|
/* binarysort is the best method for sorting small arrays: it does
 | 
						|
   few compares, but can do data movement quadratic in the number of
 | 
						|
   elements.
 | 
						|
   [lo, hi) is a contiguous slice of a list, and is sorted via
 | 
						|
   binary insertion.
 | 
						|
   On entry, must have lo <= start <= hi, and that [lo, start) is already
 | 
						|
   sorted (pass start == lo if you don't know!).
 | 
						|
   If docompare complains (returns CMPERROR) return -1, else 0.
 | 
						|
   Even in case of error, the output slice will be some permutation of
 | 
						|
   the input (nothing is lost or duplicated).
 | 
						|
*/
 | 
						|
 | 
						|
static int
 | 
						|
binarysort(lo, hi, start, compare)
 | 
						|
	PyObject **lo;
 | 
						|
	PyObject **hi;
 | 
						|
	PyObject **start;
 | 
						|
	PyObject *compare;/* Comparison function object, or NULL for default */
 | 
						|
{
 | 
						|
	/* assert lo <= start <= hi
 | 
						|
	   assert [lo, start) is sorted */
 | 
						|
	register int k;
 | 
						|
	register PyObject **l, **p, **r;
 | 
						|
	register PyObject *pivot;
 | 
						|
 | 
						|
	if (lo == start)
 | 
						|
		++start;
 | 
						|
	for (; start < hi; ++start) {
 | 
						|
		/* set l to where *start belongs */
 | 
						|
		l = lo;
 | 
						|
		r = start;
 | 
						|
		pivot = *r;
 | 
						|
		do {
 | 
						|
			p = l + ((r - l) >> 1);
 | 
						|
			SETK(pivot, *p);
 | 
						|
			if (k < 0)
 | 
						|
				r = p;
 | 
						|
			else
 | 
						|
				l = p + 1;
 | 
						|
		} while (l < r);
 | 
						|
		/* Pivot should go at l -- slide over to make room.
 | 
						|
		   Caution: using memmove is much slower under MSVC 5;
 | 
						|
		   we're not usually moving many slots. */
 | 
						|
		for (p = start; p > l; --p)
 | 
						|
			*p = *(p-1);
 | 
						|
		*l = pivot;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
 fail:
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* samplesortslice is the sorting workhorse.
 | 
						|
   [lo, hi) is a contiguous slice of a list, to be sorted in place.
 | 
						|
   On entry, must have lo <= hi,
 | 
						|
   If docompare complains (returns CMPERROR) return -1, else 0.
 | 
						|
   Even in case of error, the output slice will be some permutation of
 | 
						|
   the input (nothing is lost or duplicated).
 | 
						|
 | 
						|
   samplesort is basically quicksort on steroids:  a power of 2 close
 | 
						|
   to n/ln(n) is computed, and that many elements (less 1) are picked at
 | 
						|
   random from the array and sorted.  These 2**k - 1 elements are then
 | 
						|
   used as preselected pivots for an equal number of quicksort
 | 
						|
   partitioning steps, partitioning the slice into 2**k chunks each of
 | 
						|
   size about ln(n).  These small final chunks are then usually handled
 | 
						|
   by binarysort.  Note that when k=1, this is roughly the same as an
 | 
						|
   ordinary quicksort using a random pivot, and when k=2 this is roughly
 | 
						|
   a median-of-3 quicksort.  From that view, using k ~= lg(n/ln(n)) makes
 | 
						|
   this a "median of n/ln(n)" quicksort.  You can also view it as a kind
 | 
						|
   of bucket sort, where 2**k-1 bucket boundaries are picked dynamically.
 | 
						|
 | 
						|
   The large number of samples makes a quadratic-time case almost
 | 
						|
   impossible, and asymptotically drives the average-case number of
 | 
						|
   compares from quicksort's 2 N ln N (or 12/7 N ln N for the median-of-
 | 
						|
   3 variant) down to N lg N.
 | 
						|
 | 
						|
   We also play lots of low-level tricks to cut the number of compares.
 | 
						|
   
 | 
						|
   Very obscure:  To avoid using extra memory, the PPs are stored in the
 | 
						|
   array and shuffled around as partitioning proceeds.  At the start of a
 | 
						|
   partitioning step, we'll have 2**m-1 (for some m) PPs in sorted order,
 | 
						|
   adjacent (either on the left or the right!) to a chunk of X elements
 | 
						|
   that are to be partitioned: P X or X P.  In either case we need to
 | 
						|
   shuffle things *in place* so that the 2**(m-1) smaller PPs are on the
 | 
						|
   left, followed by the PP to be used for this step (that's the middle
 | 
						|
   of the PPs), followed by X, followed by the 2**(m-1) larger PPs:
 | 
						|
       P X or X P -> Psmall pivot X Plarge
 | 
						|
   and the order of the PPs must not be altered.  It can take a while
 | 
						|
   to realize this isn't trivial!  It can take even longer <wink> to
 | 
						|
   understand why the simple code below works, using only 2**(m-1) swaps.
 | 
						|
   The key is that the order of the X elements isn't necessarily
 | 
						|
   preserved:  X can end up as some cyclic permutation of its original
 | 
						|
   order.  That's OK, because X is unsorted anyway.  If the order of X
 | 
						|
   had to be preserved too, the simplest method I know of using O(1)
 | 
						|
   scratch storage requires len(X) + 2**(m-1) swaps, spread over 2 passes.
 | 
						|
   Since len(X) is typically several times larger than 2**(m-1), that
 | 
						|
   would slow things down.
 | 
						|
*/
 | 
						|
 | 
						|
struct SamplesortStackNode {
 | 
						|
	/* Represents a slice of the array, from (& including) lo up
 | 
						|
	   to (but excluding) hi.  "extra" additional & adjacent elements
 | 
						|
	   are pre-selected pivots (PPs), spanning [lo-extra, lo) if
 | 
						|
	   extra > 0, or [hi, hi-extra) if extra < 0.  The PPs are
 | 
						|
	   already sorted, but nothing is known about the other elements
 | 
						|
	   in [lo, hi). |extra| is always one less than a power of 2.
 | 
						|
	   When extra is 0, we're out of PPs, and the slice must be
 | 
						|
	   sorted by some other means. */
 | 
						|
	PyObject **lo;
 | 
						|
	PyObject **hi;
 | 
						|
	int extra;
 | 
						|
};
 | 
						|
 | 
						|
/* The number of PPs we want is 2**k - 1, where 2**k is as close to
 | 
						|
   N / ln(N) as possible.  So k ~= lg(N / ln(N)).  Calling libm routines
 | 
						|
   is undesirable, so cutoff values are canned in the "cutoff" table
 | 
						|
   below:  cutoff[i] is the smallest N such that k == CUTOFFBASE + i. */
 | 
						|
#define CUTOFFBASE 4
 | 
						|
static long cutoff[] = {
 | 
						|
	43,        /* smallest N such that k == 4 */
 | 
						|
	106,       /* etc */
 | 
						|
	250,
 | 
						|
	576,
 | 
						|
	1298,
 | 
						|
	2885,
 | 
						|
	6339,
 | 
						|
	13805,
 | 
						|
	29843,
 | 
						|
	64116,
 | 
						|
	137030,
 | 
						|
	291554,
 | 
						|
	617916,
 | 
						|
	1305130,
 | 
						|
	2748295,
 | 
						|
	5771662,
 | 
						|
	12091672,
 | 
						|
	25276798,
 | 
						|
	52734615,
 | 
						|
	109820537,
 | 
						|
	228324027,
 | 
						|
	473977813,
 | 
						|
	982548444,   /* smallest N such that k == 26 */
 | 
						|
	2034159050   /* largest N that fits in signed 32-bit; k == 27 */
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
samplesortslice(lo, hi, compare)
 | 
						|
	PyObject **lo;
 | 
						|
	PyObject **hi;
 | 
						|
	PyObject *compare;/* Comparison function object, or NULL for default */
 | 
						|
{
 | 
						|
	register PyObject **l, **r;
 | 
						|
	register PyObject *tmp, *pivot;
 | 
						|
	register int k;
 | 
						|
	int n, extra, top, extraOnRight;
 | 
						|
	struct SamplesortStackNode stack[STACKSIZE];
 | 
						|
 | 
						|
	/* assert lo <= hi */
 | 
						|
	n = hi - lo;
 | 
						|
 | 
						|
	/* ----------------------------------------------------------
 | 
						|
	 * Special cases
 | 
						|
	 * --------------------------------------------------------*/
 | 
						|
	if (n < 2)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Set r to the largest value such that [lo,r) is sorted.
 | 
						|
	   This catches the already-sorted case, the all-the-same
 | 
						|
	   case, and the appended-a-few-elements-to-a-sorted-list case.
 | 
						|
	   If the array is unsorted, we're very likely to get out of
 | 
						|
	   the loop fast, so the test is cheap if it doesn't pay off.
 | 
						|
	*/
 | 
						|
	/* assert lo < hi */
 | 
						|
	for (r = lo+1; r < hi; ++r) {
 | 
						|
		SETK(*r, *(r-1));
 | 
						|
		if (k < 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	/* [lo,r) is sorted, [r,hi) unknown.  Get out cheap if there are
 | 
						|
	   few unknowns, or few elements in total. */
 | 
						|
	if (hi - r <= MAXMERGE || n < MINSIZE)
 | 
						|
		return binarysort(lo, hi, r, compare);
 | 
						|
 | 
						|
	/* Check for the array already being reverse-sorted.  Typical
 | 
						|
	   benchmark-driven silliness <wink>. */
 | 
						|
	/* assert lo < hi */
 | 
						|
	for (r = lo+1; r < hi; ++r) {
 | 
						|
		SETK(*(r-1), *r);
 | 
						|
		if (k < 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (hi - r <= MAXMERGE) {
 | 
						|
		/* Reverse the reversed prefix, then insert the tail */
 | 
						|
		PyObject **originalr = r;
 | 
						|
		l = lo;
 | 
						|
		do {
 | 
						|
			--r;
 | 
						|
			tmp = *l; *l = *r; *r = tmp;
 | 
						|
			++l;
 | 
						|
		} while (l < r);
 | 
						|
		return binarysort(lo, hi, originalr, compare);
 | 
						|
	}
 | 
						|
 | 
						|
	/* ----------------------------------------------------------
 | 
						|
	 * Normal case setup: a large array without obvious pattern.
 | 
						|
	 * --------------------------------------------------------*/
 | 
						|
 | 
						|
	/* extra := a power of 2 ~= n/ln(n), less 1.
 | 
						|
	   First find the smallest extra s.t. n < cutoff[extra] */
 | 
						|
	for (extra = 0;
 | 
						|
	     extra < sizeof(cutoff) / sizeof(cutoff[0]);
 | 
						|
	     ++extra) {
 | 
						|
		if (n < cutoff[extra])
 | 
						|
			break;
 | 
						|
		/* note that if we fall out of the loop, the value of
 | 
						|
		   extra still makes *sense*, but may be smaller than
 | 
						|
		   we would like (but the array has more than ~= 2**31
 | 
						|
		   elements in this case!) */ 
 | 
						|
	}
 | 
						|
	/* Now k == extra - 1 + CUTOFFBASE.  The smallest value k can
 | 
						|
	   have is CUTOFFBASE-1, so
 | 
						|
	   assert MINSIZE >= 2**(CUTOFFBASE-1) - 1 */
 | 
						|
	extra = (1 << (extra - 1 + CUTOFFBASE)) - 1;
 | 
						|
	/* assert extra > 0 and n >= extra */
 | 
						|
 | 
						|
	/* Swap that many values to the start of the array.  The
 | 
						|
	   selection of elements is pseudo-random, but the same on
 | 
						|
	   every run (this is intentional! timing algorithm changes is
 | 
						|
	   a pain if timing varies across runs).  */
 | 
						|
	{
 | 
						|
		unsigned int seed = n / extra;  /* arbitrary */
 | 
						|
		unsigned int i;
 | 
						|
		for (i = 0; i < (unsigned)extra; ++i) {
 | 
						|
			/* j := random int in [i, n) */
 | 
						|
			unsigned int j;
 | 
						|
			seed = seed * 69069 + 7;
 | 
						|
			j = i + seed % (n - i);
 | 
						|
			tmp = lo[i]; lo[i] = lo[j]; lo[j] = tmp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Recursively sort the preselected pivots. */
 | 
						|
	if (samplesortslice(lo, lo + extra, compare) < 0)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	top = 0;          /* index of available stack slot */
 | 
						|
	lo += extra;      /* point to first unknown */
 | 
						|
	extraOnRight = 0; /* the PPs are at the left end */
 | 
						|
 | 
						|
	/* ----------------------------------------------------------
 | 
						|
	 * Partition [lo, hi), and repeat until out of work.
 | 
						|
	 * --------------------------------------------------------*/
 | 
						|
	for (;;) {
 | 
						|
		/* assert lo <= hi, so n >= 0 */
 | 
						|
		n = hi - lo;
 | 
						|
 | 
						|
		/* We may not want, or may not be able, to partition:
 | 
						|
		   If n is small, it's quicker to insert.
 | 
						|
		   If extra is 0, we're out of pivots, and *must* use
 | 
						|
		   another method.
 | 
						|
		*/
 | 
						|
		if (n < MINPARTITIONSIZE || extra == 0) {
 | 
						|
			if (n >= MINSIZE) {
 | 
						|
				/* assert extra == 0
 | 
						|
				   This is rare, since the average size
 | 
						|
				   of a final block is only about
 | 
						|
				   ln(original n). */
 | 
						|
				if (samplesortslice(lo, hi, compare) < 0)
 | 
						|
					goto fail;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* Binary insertion should be quicker,
 | 
						|
				   and we can take advantage of the PPs
 | 
						|
				   already being sorted. */
 | 
						|
				if (extraOnRight && extra) {
 | 
						|
					/* swap the PPs to the left end */
 | 
						|
					k = extra;
 | 
						|
					do {
 | 
						|
						tmp = *lo;
 | 
						|
						*lo = *hi;
 | 
						|
						*hi = tmp;
 | 
						|
						++lo; ++hi;
 | 
						|
					} while (--k);
 | 
						|
				}
 | 
						|
				if (binarysort(lo - extra, hi, lo,
 | 
						|
					       compare) < 0)
 | 
						|
					goto fail;
 | 
						|
			}
 | 
						|
 | 
						|
			/* Find another slice to work on. */
 | 
						|
			if (--top < 0)
 | 
						|
				break;   /* no more -- done! */
 | 
						|
			lo = stack[top].lo;
 | 
						|
			hi = stack[top].hi;
 | 
						|
			extra = stack[top].extra;
 | 
						|
			extraOnRight = 0;
 | 
						|
			if (extra < 0) {
 | 
						|
				extraOnRight = 1;
 | 
						|
				extra = -extra;
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Pretend the PPs are indexed 0, 1, ..., extra-1.
 | 
						|
		   Then our preselected pivot is at (extra-1)/2, and we
 | 
						|
		   want to move the PPs before that to the left end of
 | 
						|
		   the slice, and the PPs after that to the right end.
 | 
						|
		   The following section changes extra, lo, hi, and the
 | 
						|
		   slice such that:
 | 
						|
		   [lo-extra, lo) contains the smaller PPs.
 | 
						|
		   *lo == our PP.
 | 
						|
		   (lo, hi) contains the unknown elements.
 | 
						|
		   [hi, hi+extra) contains the larger PPs.
 | 
						|
		*/
 | 
						|
		k = extra >>= 1;  /* num PPs to move */ 
 | 
						|
		if (extraOnRight) {
 | 
						|
			/* Swap the smaller PPs to the left end.
 | 
						|
			   Note that this loop actually moves k+1 items:
 | 
						|
			   the last is our PP */
 | 
						|
			do {
 | 
						|
				tmp = *lo; *lo = *hi; *hi = tmp;
 | 
						|
				++lo; ++hi;
 | 
						|
			} while (k--);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* Swap the larger PPs to the right end. */
 | 
						|
			while (k--) {
 | 
						|
				--lo; --hi;
 | 
						|
				tmp = *lo; *lo = *hi; *hi = tmp;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		--lo;   /* *lo is now our PP */
 | 
						|
		pivot = *lo;
 | 
						|
 | 
						|
		/* Now an almost-ordinary quicksort partition step.
 | 
						|
		   Note that most of the time is spent here!
 | 
						|
		   Only odd thing is that we partition into < and >=,
 | 
						|
		   instead of the usual <= and >=.  This helps when
 | 
						|
		   there are lots of duplicates of different values,
 | 
						|
		   because it eventually tends to make subfiles
 | 
						|
		   "pure" (all duplicates), and we special-case for
 | 
						|
		   duplicates later. */
 | 
						|
		l = lo + 1;
 | 
						|
		r = hi - 1;
 | 
						|
		/* assert lo < l < r < hi (small n weeded out above) */
 | 
						|
 | 
						|
		do {
 | 
						|
			/* slide l right, looking for key >= pivot */
 | 
						|
			do {
 | 
						|
				SETK(*l, pivot);
 | 
						|
				if (k < 0)
 | 
						|
					++l;
 | 
						|
				else
 | 
						|
					break;
 | 
						|
			} while (l < r);
 | 
						|
 | 
						|
			/* slide r left, looking for key < pivot */
 | 
						|
			while (l < r) {
 | 
						|
				register PyObject *rval = *r--;
 | 
						|
				SETK(rval, pivot);
 | 
						|
				if (k < 0) {
 | 
						|
					/* swap and advance */
 | 
						|
					r[1] = *l;
 | 
						|
					*l++ = rval;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		} while (l < r);
 | 
						|
 | 
						|
		/* assert lo < r <= l < hi
 | 
						|
		   assert r == l or r+1 == l
 | 
						|
		   everything to the left of l is < pivot, and
 | 
						|
		   everything to the right of r is >= pivot */
 | 
						|
 | 
						|
		if (l == r) {
 | 
						|
			SETK(*r, pivot);
 | 
						|
			if (k < 0)
 | 
						|
				++l;
 | 
						|
			else
 | 
						|
				--r;
 | 
						|
		}
 | 
						|
		/* assert lo <= r and r+1 == l and l <= hi
 | 
						|
		   assert r == lo or a[r] < pivot
 | 
						|
		   assert a[lo] is pivot
 | 
						|
		   assert l == hi or a[l] >= pivot
 | 
						|
		   Swap the pivot into "the middle", so we can henceforth
 | 
						|
		   ignore it.
 | 
						|
		*/
 | 
						|
		*lo = *r;
 | 
						|
		*r = pivot;
 | 
						|
 | 
						|
		/* The following is true now, & will be preserved:
 | 
						|
		   All in [lo,r) are < pivot
 | 
						|
		   All in [r,l) == pivot (& so can be ignored)
 | 
						|
		   All in [l,hi) are >= pivot */
 | 
						|
 | 
						|
		/* Check for duplicates of the pivot.  One compare is
 | 
						|
		   wasted if there are no duplicates, but can win big
 | 
						|
		   when there are.
 | 
						|
		   Tricky: we're sticking to "<" compares, so deduce
 | 
						|
		   equality indirectly.  We know pivot <= *l, so they're
 | 
						|
		   equal iff not pivot < *l.
 | 
						|
		*/
 | 
						|
		while (l < hi) {
 | 
						|
			/* pivot <= *l known */
 | 
						|
			SETK(pivot, *l);
 | 
						|
			if (k < 0)
 | 
						|
				break;
 | 
						|
			else
 | 
						|
				/* <= and not < implies == */
 | 
						|
				++l;
 | 
						|
		}
 | 
						|
 | 
						|
		/* assert lo <= r < l <= hi
 | 
						|
		   Partitions are [lo, r) and [l, hi) */
 | 
						|
 | 
						|
		/* push fattest first; remember we still have extra PPs
 | 
						|
		   to the left of the left chunk and to the right of
 | 
						|
		   the right chunk! */
 | 
						|
		/* assert top < STACKSIZE */
 | 
						|
		if (r - lo <= hi - l) {
 | 
						|
			/* second is bigger */
 | 
						|
			stack[top].lo = l;
 | 
						|
			stack[top].hi = hi;
 | 
						|
			stack[top].extra = -extra;
 | 
						|
			hi = r;
 | 
						|
			extraOnRight = 0;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* first is bigger */
 | 
						|
			stack[top].lo = lo;
 | 
						|
			stack[top].hi = r;
 | 
						|
			stack[top].extra = extra;
 | 
						|
			lo = l;
 | 
						|
			extraOnRight = 1;
 | 
						|
		}
 | 
						|
		++top;
 | 
						|
 | 
						|
	}   /* end of partitioning loop */
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
 fail:
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
#undef SETK
 | 
						|
 | 
						|
staticforward PyTypeObject immutable_list_type;
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listsort(self, compare)
 | 
						|
	PyListObject *self;
 | 
						|
	PyObject *compare;
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	self->ob_type = &immutable_list_type;
 | 
						|
	err = samplesortslice(self->ob_item,
 | 
						|
			      self->ob_item + self->ob_size,
 | 
						|
			      compare);
 | 
						|
	self->ob_type = &PyList_Type;
 | 
						|
	if (err < 0)
 | 
						|
		return NULL;
 | 
						|
	Py_INCREF(Py_None);
 | 
						|
	return Py_None;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Sort(v)
 | 
						|
	PyObject *v;
 | 
						|
{
 | 
						|
	if (v == NULL || !PyList_Check(v)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	v = listsort((PyListObject *)v, (PyObject *)NULL);
 | 
						|
	if (v == NULL)
 | 
						|
		return -1;
 | 
						|
	Py_DECREF(v);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listreverse(self, args)
 | 
						|
	PyListObject *self;
 | 
						|
	PyObject *args;
 | 
						|
{
 | 
						|
	register PyObject **p, **q;
 | 
						|
	register PyObject *tmp;
 | 
						|
	
 | 
						|
	if (args != NULL) {
 | 
						|
		PyErr_BadArgument();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (self->ob_size > 1) {
 | 
						|
		for (p = self->ob_item, q = self->ob_item + self->ob_size - 1;
 | 
						|
						p < q; p++, q--) {
 | 
						|
			tmp = *p;
 | 
						|
			*p = *q;
 | 
						|
			*q = tmp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	Py_INCREF(Py_None);
 | 
						|
	return Py_None;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
PyList_Reverse(v)
 | 
						|
	PyObject *v;
 | 
						|
{
 | 
						|
	if (v == NULL || !PyList_Check(v)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	v = listreverse((PyListObject *)v, (PyObject *)NULL);
 | 
						|
	if (v == NULL)
 | 
						|
		return -1;
 | 
						|
	Py_DECREF(v);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
PyObject *
 | 
						|
PyList_AsTuple(v)
 | 
						|
	PyObject *v;
 | 
						|
{
 | 
						|
	PyObject *w;
 | 
						|
	PyObject **p;
 | 
						|
	int n;
 | 
						|
	if (v == NULL || !PyList_Check(v)) {
 | 
						|
		PyErr_BadInternalCall();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	n = ((PyListObject *)v)->ob_size;
 | 
						|
	w = PyTuple_New(n);
 | 
						|
	if (w == NULL)
 | 
						|
		return NULL;
 | 
						|
	p = ((PyTupleObject *)w)->ob_item;
 | 
						|
	memcpy((ANY *)p,
 | 
						|
	       (ANY *)((PyListObject *)v)->ob_item,
 | 
						|
	       n*sizeof(PyObject *));
 | 
						|
	while (--n >= 0) {
 | 
						|
		Py_INCREF(*p);
 | 
						|
		p++;
 | 
						|
	}
 | 
						|
	return w;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listindex(self, args)
 | 
						|
	PyListObject *self;
 | 
						|
	PyObject *args;
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	if (args == NULL) {
 | 
						|
		PyErr_BadArgument();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	for (i = 0; i < self->ob_size; i++) {
 | 
						|
		if (PyObject_Compare(self->ob_item[i], args) == 0)
 | 
						|
			return PyInt_FromLong((long)i);
 | 
						|
		if (PyErr_Occurred())
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listcount(self, args)
 | 
						|
	PyListObject *self;
 | 
						|
	PyObject *args;
 | 
						|
{
 | 
						|
	int count = 0;
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	if (args == NULL) {
 | 
						|
		PyErr_BadArgument();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	for (i = 0; i < self->ob_size; i++) {
 | 
						|
		if (PyObject_Compare(self->ob_item[i], args) == 0)
 | 
						|
			count++;
 | 
						|
		if (PyErr_Occurred())
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	return PyInt_FromLong((long)count);
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *
 | 
						|
listremove(self, args)
 | 
						|
	PyListObject *self;
 | 
						|
	PyObject *args;
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	if (args == NULL) {
 | 
						|
		PyErr_BadArgument();
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	for (i = 0; i < self->ob_size; i++) {
 | 
						|
		if (PyObject_Compare(self->ob_item[i], args) == 0) {
 | 
						|
			if (list_ass_slice(self, i, i+1,
 | 
						|
					   (PyObject *)NULL) != 0)
 | 
						|
				return NULL;
 | 
						|
			Py_INCREF(Py_None);
 | 
						|
			return Py_None;
 | 
						|
		}
 | 
						|
		if (PyErr_Occurred())
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
	PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static char append_doc[] =
 | 
						|
"L.append(object) -- append object to end";
 | 
						|
static char extend_doc[] =
 | 
						|
"L.extend(list) -- extend list by appending list elements";
 | 
						|
static char insert_doc[] =
 | 
						|
"L.insert(index, object) -- insert object before index";
 | 
						|
static char pop_doc[] =
 | 
						|
"L.pop([index]) -> item -- remove and return item at index (default last)";
 | 
						|
static char remove_doc[] =
 | 
						|
"L.remove(value) -- remove first occurrence of value";
 | 
						|
static char index_doc[] =
 | 
						|
"L.index(value) -> integer -- return index of first occurrence of value";
 | 
						|
static char count_doc[] =
 | 
						|
"L.count(value) -> integer -- return number of occurrences of value";
 | 
						|
static char reverse_doc[] =
 | 
						|
"L.reverse() -- reverse *IN PLACE*";
 | 
						|
static char sort_doc[] =
 | 
						|
"L.sort([cmpfunc]) -- sort *IN PLACE*; if given, cmpfunc(x, y) -> -1, 0, 1";
 | 
						|
 | 
						|
static PyMethodDef list_methods[] = {
 | 
						|
	{"append",	(PyCFunction)listappend, 0, append_doc},
 | 
						|
	{"insert",	(PyCFunction)listinsert, 0, insert_doc},
 | 
						|
	{"extend",      (PyCFunction)listextend, 1, extend_doc},
 | 
						|
	{"pop",		(PyCFunction)listpop, 1, pop_doc},
 | 
						|
	{"remove",	(PyCFunction)listremove, 0, remove_doc},
 | 
						|
	{"index",	(PyCFunction)listindex, 0, index_doc},
 | 
						|
	{"count",	(PyCFunction)listcount, 0, count_doc},
 | 
						|
	{"reverse",	(PyCFunction)listreverse, 0, reverse_doc},
 | 
						|
	{"sort",	(PyCFunction)listsort, 0, sort_doc},
 | 
						|
	{NULL,		NULL}		/* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PyObject *
 | 
						|
list_getattr(f, name)
 | 
						|
	PyListObject *f;
 | 
						|
	char *name;
 | 
						|
{
 | 
						|
	return Py_FindMethod(list_methods, (PyObject *)f, name);
 | 
						|
}
 | 
						|
 | 
						|
static PySequenceMethods list_as_sequence = {
 | 
						|
	(inquiry)list_length, /*sq_length*/
 | 
						|
	(binaryfunc)list_concat, /*sq_concat*/
 | 
						|
	(intargfunc)list_repeat, /*sq_repeat*/
 | 
						|
	(intargfunc)list_item, /*sq_item*/
 | 
						|
	(intintargfunc)list_slice, /*sq_slice*/
 | 
						|
	(intobjargproc)list_ass_item, /*sq_ass_item*/
 | 
						|
	(intintobjargproc)list_ass_slice, /*sq_ass_slice*/
 | 
						|
};
 | 
						|
 | 
						|
PyTypeObject PyList_Type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,
 | 
						|
	"list",
 | 
						|
	sizeof(PyListObject),
 | 
						|
	0,
 | 
						|
	(destructor)list_dealloc, /*tp_dealloc*/
 | 
						|
	(printfunc)list_print, /*tp_print*/
 | 
						|
	(getattrfunc)list_getattr, /*tp_getattr*/
 | 
						|
	0,		/*tp_setattr*/
 | 
						|
	(cmpfunc)list_compare, /*tp_compare*/
 | 
						|
	(reprfunc)list_repr, /*tp_repr*/
 | 
						|
	0,		/*tp_as_number*/
 | 
						|
	&list_as_sequence,	/*tp_as_sequence*/
 | 
						|
	0,		/*tp_as_mapping*/
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* During a sort, we really can't have anyone modifying the list; it could
 | 
						|
   cause core dumps.  Thus, we substitute a dummy type that raises an
 | 
						|
   explanatory exception when a modifying operation is used.  Caveat:
 | 
						|
   comparisons may behave differently; but I guess it's a bad idea anyway to
 | 
						|
   compare a list that's being sorted... */
 | 
						|
 | 
						|
static PyObject *
 | 
						|
immutable_list_op(/*No args!*/)
 | 
						|
{
 | 
						|
	PyErr_SetString(PyExc_TypeError,
 | 
						|
			"a list cannot be modified while it is being sorted");
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PyMethodDef immutable_list_methods[] = {
 | 
						|
	{"append",	(PyCFunction)immutable_list_op},
 | 
						|
	{"insert",	(PyCFunction)immutable_list_op},
 | 
						|
	{"remove",	(PyCFunction)immutable_list_op},
 | 
						|
	{"index",	(PyCFunction)listindex},
 | 
						|
	{"count",	(PyCFunction)listcount},
 | 
						|
	{"reverse",	(PyCFunction)immutable_list_op},
 | 
						|
	{"sort",	(PyCFunction)immutable_list_op},
 | 
						|
	{NULL,		NULL}		/* sentinel */
 | 
						|
};
 | 
						|
 | 
						|
static PyObject *
 | 
						|
immutable_list_getattr(f, name)
 | 
						|
	PyListObject *f;
 | 
						|
	char *name;
 | 
						|
{
 | 
						|
	return Py_FindMethod(immutable_list_methods, (PyObject *)f, name);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
immutable_list_ass(/*No args!*/)
 | 
						|
{
 | 
						|
	immutable_list_op();
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static PySequenceMethods immutable_list_as_sequence = {
 | 
						|
	(inquiry)list_length, /*sq_length*/
 | 
						|
	(binaryfunc)list_concat, /*sq_concat*/
 | 
						|
	(intargfunc)list_repeat, /*sq_repeat*/
 | 
						|
	(intargfunc)list_item, /*sq_item*/
 | 
						|
	(intintargfunc)list_slice, /*sq_slice*/
 | 
						|
	(intobjargproc)immutable_list_ass, /*sq_ass_item*/
 | 
						|
	(intintobjargproc)immutable_list_ass, /*sq_ass_slice*/
 | 
						|
};
 | 
						|
 | 
						|
static PyTypeObject immutable_list_type = {
 | 
						|
	PyObject_HEAD_INIT(&PyType_Type)
 | 
						|
	0,
 | 
						|
	"list (immutable, during sort)",
 | 
						|
	sizeof(PyListObject),
 | 
						|
	0,
 | 
						|
	0,		/*tp_dealloc*/ /* Cannot happen */
 | 
						|
	(printfunc)list_print, /*tp_print*/
 | 
						|
	(getattrfunc)immutable_list_getattr, /*tp_getattr*/
 | 
						|
	0,		/*tp_setattr*/
 | 
						|
	0,		/*tp_compare*/ /* Won't be called */
 | 
						|
	(reprfunc)list_repr, /*tp_repr*/
 | 
						|
	0,		/*tp_as_number*/
 | 
						|
	&immutable_list_as_sequence,	/*tp_as_sequence*/
 | 
						|
	0,		/*tp_as_mapping*/
 | 
						|
};
 | 
						|
 |