mirror of
				https://github.com/python/cpython.git
				synced 2025-10-27 19:54:38 +00:00 
			
		
		
		
	 1919b7e72b
			
		
	
	
		1919b7e72b
		
	
	
	
	
		
			
			up the decimal module. Performance gains of the new C implementation are between 12x and 80x, depending on the application.
		
			
				
	
	
		
			179 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			179 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2008-2012 Stefan Krah. All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "mpdecimal.h"
 | |
| #include <stdio.h>
 | |
| #include <assert.h>
 | |
| #include "numbertheory.h"
 | |
| #include "umodarith.h"
 | |
| #include "crt.h"
 | |
| 
 | |
| 
 | |
| /* Bignum: Chinese Remainder Theorem, extends the maximum transform length. */
 | |
| 
 | |
| 
 | |
| /* Multiply P1P2 by v, store result in w. */
 | |
| static inline void
 | |
| _crt_mulP1P2_3(mpd_uint_t w[3], mpd_uint_t v)
 | |
| {
 | |
|     mpd_uint_t hi1, hi2, lo;
 | |
| 
 | |
|     _mpd_mul_words(&hi1, &lo, LH_P1P2, v);
 | |
|     w[0] = lo;
 | |
| 
 | |
|     _mpd_mul_words(&hi2, &lo, UH_P1P2, v);
 | |
|     lo = hi1 + lo;
 | |
|     if (lo < hi1) hi2++;
 | |
| 
 | |
|     w[1] = lo;
 | |
|     w[2] = hi2;
 | |
| }
 | |
| 
 | |
| /* Add 3 words from v to w. The result is known to fit in w. */
 | |
| static inline void
 | |
| _crt_add3(mpd_uint_t w[3], mpd_uint_t v[3])
 | |
| {
 | |
|     mpd_uint_t carry;
 | |
|     mpd_uint_t s;
 | |
| 
 | |
|     s = w[0] + v[0];
 | |
|     carry = (s < w[0]);
 | |
|     w[0] = s;
 | |
| 
 | |
|     s = w[1] + (v[1] + carry);
 | |
|     carry = (s < w[1]);
 | |
|     w[1] = s;
 | |
| 
 | |
|     w[2] = w[2] + (v[2] + carry);
 | |
| }
 | |
| 
 | |
| /* Divide 3 words in u by v, store result in w, return remainder. */
 | |
| static inline mpd_uint_t
 | |
| _crt_div3(mpd_uint_t *w, const mpd_uint_t *u, mpd_uint_t v)
 | |
| {
 | |
|     mpd_uint_t r1 = u[2];
 | |
|     mpd_uint_t r2;
 | |
| 
 | |
|     if (r1 < v) {
 | |
|         w[2] = 0;
 | |
|     }
 | |
|     else {
 | |
|         _mpd_div_word(&w[2], &r1, u[2], v); /* GCOV_NOT_REACHED */
 | |
|     }
 | |
| 
 | |
|     _mpd_div_words(&w[1], &r2, r1, u[1], v);
 | |
|     _mpd_div_words(&w[0], &r1, r2, u[0], v);
 | |
| 
 | |
|     return r1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Chinese Remainder Theorem:
 | |
|  * Algorithm from Joerg Arndt, "Matters Computational",
 | |
|  * Chapter 37.4.1 [http://www.jjj.de/fxt/]
 | |
|  *
 | |
|  * See also Knuth, TAOCP, Volume 2, 4.3.2, exercise 7.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * CRT with carry: x1, x2, x3 contain numbers modulo p1, p2, p3. For each
 | |
|  * triple of members of the arrays, find the unique z modulo p1*p2*p3, with
 | |
|  * zmax = p1*p2*p3 - 1.
 | |
|  *
 | |
|  * In each iteration of the loop, split z into result[i] = z % MPD_RADIX
 | |
|  * and carry = z / MPD_RADIX. Let N be the size of carry[] and cmax the
 | |
|  * maximum carry.
 | |
|  *
 | |
|  * Limits for the 32-bit build:
 | |
|  *
 | |
|  *   N    = 2**96
 | |
|  *   cmax = 7711435591312380274
 | |
|  *
 | |
|  * Limits for the 64 bit build:
 | |
|  *
 | |
|  *   N    = 2**192
 | |
|  *   cmax = 627710135393475385904124401220046371710
 | |
|  *
 | |
|  * The following statements hold for both versions:
 | |
|  *
 | |
|  *   1) cmax + zmax < N, so the addition does not overflow.
 | |
|  *
 | |
|  *   2) (cmax + zmax) / MPD_RADIX == cmax.
 | |
|  *
 | |
|  *   3) If c <= cmax, then c_next = (c + zmax) / MPD_RADIX <= cmax.
 | |
|  */
 | |
| void
 | |
| crt3(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_size_t rsize)
 | |
| {
 | |
|     mpd_uint_t p1 = mpd_moduli[P1];
 | |
|     mpd_uint_t umod;
 | |
| #ifdef PPRO
 | |
|     double dmod;
 | |
|     uint32_t dinvmod[3];
 | |
| #endif
 | |
|     mpd_uint_t a1, a2, a3;
 | |
|     mpd_uint_t s;
 | |
|     mpd_uint_t z[3], t[3];
 | |
|     mpd_uint_t carry[3] = {0,0,0};
 | |
|     mpd_uint_t hi, lo;
 | |
|     mpd_size_t i;
 | |
| 
 | |
|     for (i = 0; i < rsize; i++) {
 | |
| 
 | |
|         a1 = x1[i];
 | |
|         a2 = x2[i];
 | |
|         a3 = x3[i];
 | |
| 
 | |
|         SETMODULUS(P2);
 | |
|         s = ext_submod(a2, a1, umod);
 | |
|         s = MULMOD(s, INV_P1_MOD_P2);
 | |
| 
 | |
|         _mpd_mul_words(&hi, &lo, s, p1);
 | |
|         lo = lo + a1;
 | |
|         if (lo < a1) hi++;
 | |
| 
 | |
|         SETMODULUS(P3);
 | |
|         s = dw_submod(a3, hi, lo, umod);
 | |
|         s = MULMOD(s, INV_P1P2_MOD_P3);
 | |
| 
 | |
|         z[0] = lo;
 | |
|         z[1] = hi;
 | |
|         z[2] = 0;
 | |
| 
 | |
|         _crt_mulP1P2_3(t, s);
 | |
|         _crt_add3(z, t);
 | |
|         _crt_add3(carry, z);
 | |
| 
 | |
|         x1[i] = _crt_div3(carry, carry, MPD_RADIX);
 | |
|     }
 | |
| 
 | |
|     assert(carry[0] == 0 && carry[1] == 0 && carry[2] == 0);
 | |
| }
 | |
| 
 | |
| 
 |