mirror of
				https://github.com/python/cpython.git
				synced 2025-10-30 21:21:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			422 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			422 lines
		
	
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Complex math module */
 | |
| 
 | |
| /* much code borrowed from mathmodule.c */
 | |
| 
 | |
| #include "Python.h"
 | |
| 
 | |
| #include "mymath.h"
 | |
| 
 | |
| #ifdef i860
 | |
| /* Cray APP has bogus definition of HUGE_VAL in <math.h> */
 | |
| #undef HUGE_VAL
 | |
| #endif
 | |
| 
 | |
| #ifdef HUGE_VAL
 | |
| #define CHECK(x) if (errno != 0) ; \
 | |
| 	else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \
 | |
| 	else errno = ERANGE
 | |
| #else
 | |
| #define CHECK(x) /* Don't know how to check */
 | |
| #endif
 | |
| 
 | |
| #ifndef M_PI
 | |
| #define M_PI (3.141592653589793239)
 | |
| #endif
 | |
| 
 | |
| /* First, the C functions that do the real work */
 | |
| 
 | |
| /* constants */
 | |
| static Py_complex c_1 = {1., 0.};
 | |
| static Py_complex c_half = {0.5, 0.};
 | |
| static Py_complex c_i = {0., 1.};
 | |
| static Py_complex c_i2 = {0., 0.5};
 | |
| #if 0
 | |
| static Py_complex c_mi = {0., -1.};
 | |
| static Py_complex c_pi2 = {M_PI/2., 0.};
 | |
| #endif
 | |
| 
 | |
| /* forward declarations */
 | |
| staticforward Py_complex c_log();
 | |
| staticforward Py_complex c_prodi();
 | |
| staticforward Py_complex c_sqrt();
 | |
| 
 | |
| 
 | |
| static Py_complex c_acos(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i,
 | |
| 		    c_sqrt(c_diff(c_1,c_prod(x,x))))))));
 | |
| }
 | |
| 
 | |
| static char c_acos_doc [] =
 | |
| "acos(x)\n\
 | |
| \n\
 | |
| Return the arc cosine of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_acosh(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	return c_log(c_sum(x,c_prod(c_i,
 | |
| 		    c_sqrt(c_diff(c_1,c_prod(x,x))))));
 | |
| }
 | |
| 
 | |
| static char c_acosh_doc [] =
 | |
| "acosh(x)\n\
 | |
| \n\
 | |
| Return the hyperbolic cosine of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_asin(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	return c_neg(c_prodi(c_log(c_sum(c_prod(c_i,x),
 | |
| 		    c_sqrt(c_diff(c_1,c_prod(x,x)))))));
 | |
| }
 | |
| 
 | |
| static char c_asin_doc [] =
 | |
| "asin(x)\n\
 | |
| \n\
 | |
| Return the arc sine of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_asinh(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	/* Break up long expression for WATCOM */
 | |
| 	Py_complex z;
 | |
| 	z = c_sum(c_1,c_prod(x,x));
 | |
| 	z = c_diff(c_sqrt(z),x);
 | |
| 	return c_neg(c_log(z));
 | |
| }
 | |
| 
 | |
| static char c_asinh_doc [] =
 | |
| "asinh(x)\n\
 | |
| \n\
 | |
| Return the hyperbolic arc sine of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_atan(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	return c_prod(c_i2,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x))));
 | |
| }
 | |
| 
 | |
| static char c_atan_doc [] =
 | |
| "atan(x)\n\
 | |
| \n\
 | |
| Return the arc tangent of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_atanh(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	return c_prod(c_half,c_log(c_quot(c_sum(c_1,x),c_diff(c_1,x))));
 | |
| }
 | |
| 
 | |
| static char c_atanh_doc [] =
 | |
| "atanh(x)\n\
 | |
| \n\
 | |
| Return the hyperbolic arc tangent of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_cos(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = cos(x.real)*cosh(x.imag);
 | |
| 	r.imag = -sin(x.real)*sinh(x.imag);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static char c_cos_doc [] =
 | |
| "cos(x)\n\
 | |
| \n\
 | |
| Return the cosine of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_cosh(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = cos(x.imag)*cosh(x.real);
 | |
| 	r.imag = sin(x.imag)*sinh(x.real);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static char c_cosh_doc [] =
 | |
| "cosh(x)\n\
 | |
| \n\
 | |
| Return the hyperbolic cosine of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_exp(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double l = exp(x.real);
 | |
| 	r.real = l*cos(x.imag);
 | |
| 	r.imag = l*sin(x.imag);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static char c_exp_doc [] =
 | |
| "exp(x)\n\
 | |
| \n\
 | |
| Return the exponential value e**x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_log(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double l = hypot(x.real,x.imag);
 | |
| 	r.imag = atan2(x.imag, x.real);
 | |
| 	r.real = log(l);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static char c_log_doc [] =
 | |
| "log(x)\n\
 | |
| \n\
 | |
| Return the natural logarithm of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_log10(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double l = hypot(x.real,x.imag);
 | |
| 	r.imag = atan2(x.imag, x.real)/log(10.);
 | |
| 	r.real = log10(l);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static char c_log10_doc [] =
 | |
| "log10(x)\n\
 | |
| \n\
 | |
| Return the base-10 logarithm of x.";
 | |
| 
 | |
| 
 | |
| /* internal function not available from Python */
 | |
| static Py_complex c_prodi(x)
 | |
|      Py_complex x;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = -x.imag;
 | |
| 	r.imag = x.real;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static Py_complex c_sin(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = sin(x.real)*cosh(x.imag);
 | |
| 	r.imag = cos(x.real)*sinh(x.imag);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static char c_sin_doc [] =
 | |
| "sin(x)\n\
 | |
| \n\
 | |
| Return the sine of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_sinh(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	r.real = cos(x.imag)*sinh(x.real);
 | |
| 	r.imag = sin(x.imag)*cosh(x.real);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static char c_sinh_doc [] =
 | |
| "sinh(x)\n\
 | |
| \n\
 | |
| Return the hyperbolic sine of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_sqrt(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double s,d;
 | |
| 	if (x.real == 0. && x.imag == 0.)
 | |
| 		r = x;
 | |
| 	else {
 | |
| 		s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag)));
 | |
| 		d = 0.5*x.imag/s;
 | |
| 		if (x.real > 0.) {
 | |
| 			r.real = s;
 | |
| 			r.imag = d;
 | |
| 		}
 | |
| 		else if (x.imag >= 0.) {
 | |
| 			r.real = d;
 | |
| 			r.imag = s;
 | |
| 		}
 | |
| 		else {
 | |
| 			r.real = -d;
 | |
| 			r.imag = -s;
 | |
| 		}
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static char c_sqrt_doc [] =
 | |
| "sqrt(x)\n\
 | |
| \n\
 | |
| Return the square root of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_tan(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double sr,cr,shi,chi;
 | |
| 	double rs,is,rc,ic;
 | |
| 	double d;
 | |
| 	sr = sin(x.real);
 | |
| 	cr = cos(x.real);
 | |
| 	shi = sinh(x.imag);
 | |
| 	chi = cosh(x.imag);
 | |
| 	rs = sr*chi;
 | |
| 	is = cr*shi;
 | |
| 	rc = cr*chi;
 | |
| 	ic = -sr*shi;
 | |
| 	d = rc*rc + ic*ic;
 | |
| 	r.real = (rs*rc+is*ic)/d;
 | |
| 	r.imag = (is*rc-rs*ic)/d;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static char c_tan_doc [] =
 | |
| "tan(x)\n\
 | |
| \n\
 | |
| Return the tangent of x.";
 | |
| 
 | |
| 
 | |
| static Py_complex c_tanh(x)
 | |
| 	Py_complex x;
 | |
| {
 | |
| 	Py_complex r;
 | |
| 	double si,ci,shr,chr;
 | |
| 	double rs,is,rc,ic;
 | |
| 	double d;
 | |
| 	si = sin(x.imag);
 | |
| 	ci = cos(x.imag);
 | |
| 	shr = sinh(x.real);
 | |
| 	chr = cosh(x.real);
 | |
| 	rs = ci*shr;
 | |
| 	is = si*chr;
 | |
| 	rc = ci*chr;
 | |
| 	ic = si*shr;
 | |
| 	d = rc*rc + ic*ic;
 | |
| 	r.real = (rs*rc+is*ic)/d;
 | |
| 	r.imag = (is*rc-rs*ic)/d;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static char c_tanh_doc [] =
 | |
| "tanh(x)\n\
 | |
| \n\
 | |
| Return the hyperbolic tangent of x.";
 | |
| 
 | |
| 
 | |
| /* And now the glue to make them available from Python: */
 | |
| 
 | |
| static PyObject *
 | |
| math_error()
 | |
| {
 | |
| 	if (errno == EDOM)
 | |
| 		PyErr_SetString(PyExc_ValueError, "math domain error");
 | |
| 	else if (errno == ERANGE)
 | |
| 		PyErr_SetString(PyExc_OverflowError, "math range error");
 | |
| 	else    /* Unexpected math error */
 | |
| 		PyErr_SetFromErrno(PyExc_ValueError); 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *
 | |
| math_1(args, func)
 | |
| 	PyObject *args;
 | |
| 	Py_complex (*func) Py_FPROTO((Py_complex));
 | |
| {
 | |
| 	Py_complex x;
 | |
| 	if (!PyArg_ParseTuple(args, "D", &x))
 | |
| 		return NULL;
 | |
| 	errno = 0;
 | |
| 	PyFPE_START_PROTECT("complex function", return 0)
 | |
| 	x = (*func)(x);
 | |
| 	PyFPE_END_PROTECT(x)
 | |
| 	CHECK(x.real);
 | |
| 	CHECK(x.imag);
 | |
| 	if (errno != 0)
 | |
| 		return math_error();
 | |
| 	else
 | |
| 		return PyComplex_FromCComplex(x);
 | |
| }
 | |
| 
 | |
| #define FUNC1(stubname, func) \
 | |
| 	static PyObject * stubname(self, args) PyObject *self, *args; { \
 | |
| 		return math_1(args, func); \
 | |
| 	}
 | |
| 
 | |
| FUNC1(cmath_acos, c_acos)
 | |
| FUNC1(cmath_acosh, c_acosh)
 | |
| FUNC1(cmath_asin, c_asin)
 | |
| FUNC1(cmath_asinh, c_asinh)
 | |
| FUNC1(cmath_atan, c_atan)
 | |
| FUNC1(cmath_atanh, c_atanh)
 | |
| FUNC1(cmath_cos, c_cos)
 | |
| FUNC1(cmath_cosh, c_cosh)
 | |
| FUNC1(cmath_exp, c_exp)
 | |
| FUNC1(cmath_log, c_log)
 | |
| FUNC1(cmath_log10, c_log10)
 | |
| FUNC1(cmath_sin, c_sin)
 | |
| FUNC1(cmath_sinh, c_sinh)
 | |
| FUNC1(cmath_sqrt, c_sqrt)
 | |
| FUNC1(cmath_tan, c_tan)
 | |
| FUNC1(cmath_tanh, c_tanh)
 | |
| 
 | |
| 
 | |
| static char module_doc [] =
 | |
| "This module is always available. It provides access to mathematical\n\
 | |
| functions for complex numbers.";
 | |
| 
 | |
| 
 | |
| static PyMethodDef cmath_methods[] = {
 | |
| 	{"acos", cmath_acos, 1, c_acos_doc},
 | |
| 	{"acosh", cmath_acosh, 1, c_acosh_doc},
 | |
| 	{"asin", cmath_asin, 1, c_asin_doc},
 | |
| 	{"asinh", cmath_asinh, 1, c_asinh_doc},
 | |
| 	{"atan", cmath_atan, 1, c_atan_doc},
 | |
| 	{"atanh", cmath_atanh, 1, c_atanh_doc},
 | |
| 	{"cos", cmath_cos, 1, c_cos_doc},
 | |
| 	{"cosh", cmath_cosh, 1, c_cosh_doc},
 | |
| 	{"exp", cmath_exp, 1, c_exp_doc},
 | |
| 	{"log", cmath_log, 1, c_log_doc},
 | |
| 	{"log10", cmath_log10, 1, c_log10_doc},
 | |
| 	{"sin", cmath_sin, 1, c_sin_doc},
 | |
| 	{"sinh", cmath_sinh, 1, c_sinh_doc},
 | |
| 	{"sqrt", cmath_sqrt, 1, c_sqrt_doc},
 | |
| 	{"tan", cmath_tan, 1, c_tan_doc},
 | |
| 	{"tanh", cmath_tanh, 1, c_tanh_doc},
 | |
| 	{NULL,		NULL}		/* sentinel */
 | |
| };
 | |
| 
 | |
| DL_EXPORT(void)
 | |
| initcmath()
 | |
| {
 | |
| 	PyObject *m, *d, *v;
 | |
| 	
 | |
| 	m = Py_InitModule3("cmath", cmath_methods, module_doc);
 | |
| 	d = PyModule_GetDict(m);
 | |
| 	PyDict_SetItemString(d, "pi",
 | |
| 			     v = PyFloat_FromDouble(atan(1.0) * 4.0));
 | |
| 	Py_DECREF(v);
 | |
| 	PyDict_SetItemString(d, "e", v = PyFloat_FromDouble(exp(1.0)));
 | |
| 	Py_DECREF(v);
 | |
| }
 | 
