mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 13:41:24 +00:00 
			
		
		
		
	 32c7dbb2bc
			
		
	
	
		32c7dbb2bc
		
			
		
	
	
	
	
		
			
			Use 64-bit integers instead of platform specific size_t or Py_ssize_t to represent the number of bits in Python integer.
		
			
				
	
	
		
			4166 lines
		
	
	
	
		
			129 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4166 lines
		
	
	
	
		
			129 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Math module -- standard C math library functions, pi and e */
 | ||
| 
 | ||
| /* Here are some comments from Tim Peters, extracted from the
 | ||
|    discussion attached to http://bugs.python.org/issue1640.  They
 | ||
|    describe the general aims of the math module with respect to
 | ||
|    special values, IEEE-754 floating-point exceptions, and Python
 | ||
|    exceptions.
 | ||
| 
 | ||
| These are the "spirit of 754" rules:
 | ||
| 
 | ||
| 1. If the mathematical result is a real number, but of magnitude too
 | ||
| large to approximate by a machine float, overflow is signaled and the
 | ||
| result is an infinity (with the appropriate sign).
 | ||
| 
 | ||
| 2. If the mathematical result is a real number, but of magnitude too
 | ||
| small to approximate by a machine float, underflow is signaled and the
 | ||
| result is a zero (with the appropriate sign).
 | ||
| 
 | ||
| 3. At a singularity (a value x such that the limit of f(y) as y
 | ||
| approaches x exists and is an infinity), "divide by zero" is signaled
 | ||
| and the result is an infinity (with the appropriate sign).  This is
 | ||
| complicated a little by that the left-side and right-side limits may
 | ||
| not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
 | ||
| from the positive or negative directions.  In that specific case, the
 | ||
| sign of the zero determines the result of 1/0.
 | ||
| 
 | ||
| 4. At a point where a function has no defined result in the extended
 | ||
| reals (i.e., the reals plus an infinity or two), invalid operation is
 | ||
| signaled and a NaN is returned.
 | ||
| 
 | ||
| And these are what Python has historically /tried/ to do (but not
 | ||
| always successfully, as platform libm behavior varies a lot):
 | ||
| 
 | ||
| For #1, raise OverflowError.
 | ||
| 
 | ||
| For #2, return a zero (with the appropriate sign if that happens by
 | ||
| accident ;-)).
 | ||
| 
 | ||
| For #3 and #4, raise ValueError.  It may have made sense to raise
 | ||
| Python's ZeroDivisionError in #3, but historically that's only been
 | ||
| raised for division by zero and mod by zero.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| /*
 | ||
|    In general, on an IEEE-754 platform the aim is to follow the C99
 | ||
|    standard, including Annex 'F', whenever possible.  Where the
 | ||
|    standard recommends raising the 'divide-by-zero' or 'invalid'
 | ||
|    floating-point exceptions, Python should raise a ValueError.  Where
 | ||
|    the standard recommends raising 'overflow', Python should raise an
 | ||
|    OverflowError.  In all other circumstances a value should be
 | ||
|    returned.
 | ||
|  */
 | ||
| 
 | ||
| #ifndef Py_BUILD_CORE_BUILTIN
 | ||
| #  define Py_BUILD_CORE_MODULE 1
 | ||
| #endif
 | ||
| 
 | ||
| #include "Python.h"
 | ||
| #include "pycore_abstract.h"      // _PyNumber_Index()
 | ||
| #include "pycore_bitutils.h"      // _Py_bit_length()
 | ||
| #include "pycore_call.h"          // _PyObject_CallNoArgs()
 | ||
| #include "pycore_long.h"          // _PyLong_GetZero()
 | ||
| #include "pycore_moduleobject.h"  // _PyModule_GetState()
 | ||
| #include "pycore_object.h"        // _PyObject_LookupSpecial()
 | ||
| #include "pycore_pymath.h"        // _PY_SHORT_FLOAT_REPR
 | ||
| /* For DBL_EPSILON in _math.h */
 | ||
| #include <float.h>
 | ||
| /* For _Py_log1p with workarounds for buggy handling of zeros. */
 | ||
| #include "_math.h"
 | ||
| #include <stdbool.h>
 | ||
| 
 | ||
| #include "clinic/mathmodule.c.h"
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| module math
 | ||
| [clinic start generated code]*/
 | ||
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/
 | ||
| 
 | ||
| 
 | ||
| typedef struct {
 | ||
|     PyObject *str___ceil__;
 | ||
|     PyObject *str___floor__;
 | ||
|     PyObject *str___trunc__;
 | ||
| } math_module_state;
 | ||
| 
 | ||
| static inline math_module_state*
 | ||
| get_math_module_state(PyObject *module)
 | ||
| {
 | ||
|     void *state = _PyModule_GetState(module);
 | ||
|     assert(state != NULL);
 | ||
|     return (math_module_state *)state;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
| Double and triple length extended precision algorithms from:
 | ||
| 
 | ||
|   Accurate Sum and Dot Product
 | ||
|   by Takeshi Ogita, Siegfried M. Rump, and Shin’Ichi Oishi
 | ||
|   https://doi.org/10.1137/030601818
 | ||
|   https://www.tuhh.de/ti3/paper/rump/OgRuOi05.pdf
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| typedef struct{ double hi; double lo; } DoubleLength;
 | ||
| 
 | ||
| static DoubleLength
 | ||
| dl_fast_sum(double a, double b)
 | ||
| {
 | ||
|     /* Algorithm 1.1. Compensated summation of two floating-point numbers. */
 | ||
|     assert(fabs(a) >= fabs(b));
 | ||
|     double x = a + b;
 | ||
|     double y = (a - x) + b;
 | ||
|     return (DoubleLength) {x, y};
 | ||
| }
 | ||
| 
 | ||
| static DoubleLength
 | ||
| dl_sum(double a, double b)
 | ||
| {
 | ||
|     /* Algorithm 3.1 Error-free transformation of the sum */
 | ||
|     double x = a + b;
 | ||
|     double z = x - a;
 | ||
|     double y = (a - (x - z)) + (b - z);
 | ||
|     return (DoubleLength) {x, y};
 | ||
| }
 | ||
| 
 | ||
| #ifndef UNRELIABLE_FMA
 | ||
| 
 | ||
| static DoubleLength
 | ||
| dl_mul(double x, double y)
 | ||
| {
 | ||
|     /* Algorithm 3.5. Error-free transformation of a product */
 | ||
|     double z = x * y;
 | ||
|     double zz = fma(x, y, -z);
 | ||
|     return (DoubleLength) {z, zz};
 | ||
| }
 | ||
| 
 | ||
| #else
 | ||
| 
 | ||
| /*
 | ||
|    The default implementation of dl_mul() depends on the C math library
 | ||
|    having an accurate fma() function as required by § 7.12.13.1 of the
 | ||
|    C99 standard.
 | ||
| 
 | ||
|    The UNRELIABLE_FMA option is provided as a slower but accurate
 | ||
|    alternative for builds where the fma() function is found wanting.
 | ||
|    The speed penalty may be modest (17% slower on an Apple M1 Max),
 | ||
|    so don't hesitate to enable this build option.
 | ||
| 
 | ||
|    The algorithms are from the T. J. Dekker paper:
 | ||
|    A Floating-Point Technique for Extending the Available Precision
 | ||
|    https://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
 | ||
| */
 | ||
| 
 | ||
| static DoubleLength
 | ||
| dl_split(double x) {
 | ||
|     // Dekker (5.5) and (5.6).
 | ||
|     double t = x * 134217729.0;  // Veltkamp constant = 2.0 ** 27 + 1
 | ||
|     double hi = t - (t - x);
 | ||
|     double lo = x - hi;
 | ||
|     return (DoubleLength) {hi, lo};
 | ||
| }
 | ||
| 
 | ||
| static DoubleLength
 | ||
| dl_mul(double x, double y)
 | ||
| {
 | ||
|     // Dekker (5.12) and mul12()
 | ||
|     DoubleLength xx = dl_split(x);
 | ||
|     DoubleLength yy = dl_split(y);
 | ||
|     double p = xx.hi * yy.hi;
 | ||
|     double q = xx.hi * yy.lo + xx.lo * yy.hi;
 | ||
|     double z = p + q;
 | ||
|     double zz = p - z + q + xx.lo * yy.lo;
 | ||
|     return (DoubleLength) {z, zz};
 | ||
| }
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| typedef struct { double hi; double lo; double tiny; } TripleLength;
 | ||
| 
 | ||
| static const TripleLength tl_zero = {0.0, 0.0, 0.0};
 | ||
| 
 | ||
| static TripleLength
 | ||
| tl_fma(double x, double y, TripleLength total)
 | ||
| {
 | ||
|     /* Algorithm 5.10 with SumKVert for K=3 */
 | ||
|     DoubleLength pr = dl_mul(x, y);
 | ||
|     DoubleLength sm = dl_sum(total.hi, pr.hi);
 | ||
|     DoubleLength r1 = dl_sum(total.lo, pr.lo);
 | ||
|     DoubleLength r2 = dl_sum(r1.hi, sm.lo);
 | ||
|     return (TripleLength) {sm.hi, r2.hi, total.tiny + r1.lo + r2.lo};
 | ||
| }
 | ||
| 
 | ||
| static double
 | ||
| tl_to_d(TripleLength total)
 | ||
| {
 | ||
|     DoubleLength last = dl_sum(total.lo, total.hi);
 | ||
|     return total.tiny + last.lo + last.hi;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|    sin(pi*x), giving accurate results for all finite x (especially x
 | ||
|    integral or close to an integer).  This is here for use in the
 | ||
|    reflection formula for the gamma function.  It conforms to IEEE
 | ||
|    754-2008 for finite arguments, but not for infinities or nans.
 | ||
| */
 | ||
| 
 | ||
| static const double pi = 3.141592653589793238462643383279502884197;
 | ||
| static const double logpi = 1.144729885849400174143427351353058711647;
 | ||
| 
 | ||
| /* Version of PyFloat_AsDouble() with in-line fast paths
 | ||
|    for exact floats and integers.  Gives a substantial
 | ||
|    speed improvement for extracting float arguments.
 | ||
| */
 | ||
| 
 | ||
| #define ASSIGN_DOUBLE(target_var, obj, error_label)        \
 | ||
|     if (PyFloat_CheckExact(obj)) {                         \
 | ||
|         target_var = PyFloat_AS_DOUBLE(obj);               \
 | ||
|     }                                                      \
 | ||
|     else if (PyLong_CheckExact(obj)) {                     \
 | ||
|         target_var = PyLong_AsDouble(obj);                 \
 | ||
|         if (target_var == -1.0 && PyErr_Occurred()) {      \
 | ||
|             goto error_label;                              \
 | ||
|         }                                                  \
 | ||
|     }                                                      \
 | ||
|     else {                                                 \
 | ||
|         target_var = PyFloat_AsDouble(obj);                \
 | ||
|         if (target_var == -1.0 && PyErr_Occurred()) {      \
 | ||
|             goto error_label;                              \
 | ||
|         }                                                  \
 | ||
|     }
 | ||
| 
 | ||
| static double
 | ||
| m_sinpi(double x)
 | ||
| {
 | ||
|     double y, r;
 | ||
|     int n;
 | ||
|     /* this function should only ever be called for finite arguments */
 | ||
|     assert(isfinite(x));
 | ||
|     y = fmod(fabs(x), 2.0);
 | ||
|     n = (int)round(2.0*y);
 | ||
|     assert(0 <= n && n <= 4);
 | ||
|     switch (n) {
 | ||
|     case 0:
 | ||
|         r = sin(pi*y);
 | ||
|         break;
 | ||
|     case 1:
 | ||
|         r = cos(pi*(y-0.5));
 | ||
|         break;
 | ||
|     case 2:
 | ||
|         /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
 | ||
|            -0.0 instead of 0.0 when y == 1.0. */
 | ||
|         r = sin(pi*(1.0-y));
 | ||
|         break;
 | ||
|     case 3:
 | ||
|         r = -cos(pi*(y-1.5));
 | ||
|         break;
 | ||
|     case 4:
 | ||
|         r = sin(pi*(y-2.0));
 | ||
|         break;
 | ||
|     default:
 | ||
|         Py_UNREACHABLE();
 | ||
|     }
 | ||
|     return copysign(1.0, x)*r;
 | ||
| }
 | ||
| 
 | ||
| /* Implementation of the real gamma function.  Kept here to work around
 | ||
|    issues (see e.g. gh-70309) with quality of libm's tgamma/lgamma implementations
 | ||
|    on various platforms (Windows, MacOS).  In extensive but non-exhaustive
 | ||
|    random tests, this function proved accurate to within <= 10 ulps across the
 | ||
|    entire float domain.  Note that accuracy may depend on the quality of the
 | ||
|    system math functions, the pow function in particular.  Special cases
 | ||
|    follow C99 annex F.  The parameters and method are tailored to platforms
 | ||
|    whose double format is the IEEE 754 binary64 format.
 | ||
| 
 | ||
|    Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
 | ||
|    and g=6.024680040776729583740234375; these parameters are amongst those
 | ||
|    used by the Boost library.  Following Boost (again), we re-express the
 | ||
|    Lanczos sum as a rational function, and compute it that way.  The
 | ||
|    coefficients below were computed independently using MPFR, and have been
 | ||
|    double-checked against the coefficients in the Boost source code.
 | ||
| 
 | ||
|    For x < 0.0 we use the reflection formula.
 | ||
| 
 | ||
|    There's one minor tweak that deserves explanation: Lanczos' formula for
 | ||
|    Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5).  For many x
 | ||
|    values, x+g-0.5 can be represented exactly.  However, in cases where it
 | ||
|    can't be represented exactly the small error in x+g-0.5 can be magnified
 | ||
|    significantly by the pow and exp calls, especially for large x.  A cheap
 | ||
|    correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
 | ||
|    involved in the computation of x+g-0.5 (that is, e = computed value of
 | ||
|    x+g-0.5 - exact value of x+g-0.5).  Here's the proof:
 | ||
| 
 | ||
|    Correction factor
 | ||
|    -----------------
 | ||
|    Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
 | ||
|    double, and e is tiny.  Then:
 | ||
| 
 | ||
|      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
 | ||
|      = pow(y, x-0.5)/exp(y) * C,
 | ||
| 
 | ||
|    where the correction_factor C is given by
 | ||
| 
 | ||
|      C = pow(1-e/y, x-0.5) * exp(e)
 | ||
| 
 | ||
|    Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
 | ||
| 
 | ||
|      C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
 | ||
| 
 | ||
|    But y-(x-0.5) = g+e, and g+e ~ g.  So we get C ~ 1 + e*g/y, and
 | ||
| 
 | ||
|      pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
 | ||
| 
 | ||
|    Note that for accuracy, when computing r*C it's better to do
 | ||
| 
 | ||
|      r + e*g/y*r;
 | ||
| 
 | ||
|    than
 | ||
| 
 | ||
|      r * (1 + e*g/y);
 | ||
| 
 | ||
|    since the addition in the latter throws away most of the bits of
 | ||
|    information in e*g/y.
 | ||
| */
 | ||
| 
 | ||
| #define LANCZOS_N 13
 | ||
| static const double lanczos_g = 6.024680040776729583740234375;
 | ||
| static const double lanczos_g_minus_half = 5.524680040776729583740234375;
 | ||
| static const double lanczos_num_coeffs[LANCZOS_N] = {
 | ||
|     23531376880.410759688572007674451636754734846804940,
 | ||
|     42919803642.649098768957899047001988850926355848959,
 | ||
|     35711959237.355668049440185451547166705960488635843,
 | ||
|     17921034426.037209699919755754458931112671403265390,
 | ||
|     6039542586.3520280050642916443072979210699388420708,
 | ||
|     1439720407.3117216736632230727949123939715485786772,
 | ||
|     248874557.86205415651146038641322942321632125127801,
 | ||
|     31426415.585400194380614231628318205362874684987640,
 | ||
|     2876370.6289353724412254090516208496135991145378768,
 | ||
|     186056.26539522349504029498971604569928220784236328,
 | ||
|     8071.6720023658162106380029022722506138218516325024,
 | ||
|     210.82427775157934587250973392071336271166969580291,
 | ||
|     2.5066282746310002701649081771338373386264310793408
 | ||
| };
 | ||
| 
 | ||
| /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
 | ||
| static const double lanczos_den_coeffs[LANCZOS_N] = {
 | ||
|     0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
 | ||
|     13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
 | ||
| 
 | ||
| /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
 | ||
| #define NGAMMA_INTEGRAL 23
 | ||
| static const double gamma_integral[NGAMMA_INTEGRAL] = {
 | ||
|     1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
 | ||
|     3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
 | ||
|     1307674368000.0, 20922789888000.0, 355687428096000.0,
 | ||
|     6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
 | ||
|     51090942171709440000.0, 1124000727777607680000.0,
 | ||
| };
 | ||
| 
 | ||
| /* Lanczos' sum L_g(x), for positive x */
 | ||
| 
 | ||
| static double
 | ||
| lanczos_sum(double x)
 | ||
| {
 | ||
|     double num = 0.0, den = 0.0;
 | ||
|     int i;
 | ||
|     assert(x > 0.0);
 | ||
|     /* evaluate the rational function lanczos_sum(x).  For large
 | ||
|        x, the obvious algorithm risks overflow, so we instead
 | ||
|        rescale the denominator and numerator of the rational
 | ||
|        function by x**(1-LANCZOS_N) and treat this as a
 | ||
|        rational function in 1/x.  This also reduces the error for
 | ||
|        larger x values.  The choice of cutoff point (5.0 below) is
 | ||
|        somewhat arbitrary; in tests, smaller cutoff values than
 | ||
|        this resulted in lower accuracy. */
 | ||
|     if (x < 5.0) {
 | ||
|         for (i = LANCZOS_N; --i >= 0; ) {
 | ||
|             num = num * x + lanczos_num_coeffs[i];
 | ||
|             den = den * x + lanczos_den_coeffs[i];
 | ||
|         }
 | ||
|     }
 | ||
|     else {
 | ||
|         for (i = 0; i < LANCZOS_N; i++) {
 | ||
|             num = num / x + lanczos_num_coeffs[i];
 | ||
|             den = den / x + lanczos_den_coeffs[i];
 | ||
|         }
 | ||
|     }
 | ||
|     return num/den;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static double
 | ||
| m_tgamma(double x)
 | ||
| {
 | ||
|     double absx, r, y, z, sqrtpow;
 | ||
| 
 | ||
|     /* special cases */
 | ||
|     if (!isfinite(x)) {
 | ||
|         if (isnan(x) || x > 0.0)
 | ||
|             return x;  /* tgamma(nan) = nan, tgamma(inf) = inf */
 | ||
|         else {
 | ||
|             errno = EDOM;
 | ||
|             return Py_NAN;  /* tgamma(-inf) = nan, invalid */
 | ||
|         }
 | ||
|     }
 | ||
|     if (x == 0.0) {
 | ||
|         errno = EDOM;
 | ||
|         /* tgamma(+-0.0) = +-inf, divide-by-zero */
 | ||
|         return copysign(Py_INFINITY, x);
 | ||
|     }
 | ||
| 
 | ||
|     /* integer arguments */
 | ||
|     if (x == floor(x)) {
 | ||
|         if (x < 0.0) {
 | ||
|             errno = EDOM;  /* tgamma(n) = nan, invalid for */
 | ||
|             return Py_NAN; /* negative integers n */
 | ||
|         }
 | ||
|         if (x <= NGAMMA_INTEGRAL)
 | ||
|             return gamma_integral[(int)x - 1];
 | ||
|     }
 | ||
|     absx = fabs(x);
 | ||
| 
 | ||
|     /* tiny arguments:  tgamma(x) ~ 1/x for x near 0 */
 | ||
|     if (absx < 1e-20) {
 | ||
|         r = 1.0/x;
 | ||
|         if (isinf(r))
 | ||
|             errno = ERANGE;
 | ||
|         return r;
 | ||
|     }
 | ||
| 
 | ||
|     /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
 | ||
|        x > 200, and underflows to +-0.0 for x < -200, not a negative
 | ||
|        integer. */
 | ||
|     if (absx > 200.0) {
 | ||
|         if (x < 0.0) {
 | ||
|             return 0.0/m_sinpi(x);
 | ||
|         }
 | ||
|         else {
 | ||
|             errno = ERANGE;
 | ||
|             return Py_HUGE_VAL;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     y = absx + lanczos_g_minus_half;
 | ||
|     /* compute error in sum */
 | ||
|     if (absx > lanczos_g_minus_half) {
 | ||
|         /* note: the correction can be foiled by an optimizing
 | ||
|            compiler that (incorrectly) thinks that an expression like
 | ||
|            a + b - a - b can be optimized to 0.0.  This shouldn't
 | ||
|            happen in a standards-conforming compiler. */
 | ||
|         double q = y - absx;
 | ||
|         z = q - lanczos_g_minus_half;
 | ||
|     }
 | ||
|     else {
 | ||
|         double q = y - lanczos_g_minus_half;
 | ||
|         z = q - absx;
 | ||
|     }
 | ||
|     z = z * lanczos_g / y;
 | ||
|     if (x < 0.0) {
 | ||
|         r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
 | ||
|         r -= z * r;
 | ||
|         if (absx < 140.0) {
 | ||
|             r /= pow(y, absx - 0.5);
 | ||
|         }
 | ||
|         else {
 | ||
|             sqrtpow = pow(y, absx / 2.0 - 0.25);
 | ||
|             r /= sqrtpow;
 | ||
|             r /= sqrtpow;
 | ||
|         }
 | ||
|     }
 | ||
|     else {
 | ||
|         r = lanczos_sum(absx) / exp(y);
 | ||
|         r += z * r;
 | ||
|         if (absx < 140.0) {
 | ||
|             r *= pow(y, absx - 0.5);
 | ||
|         }
 | ||
|         else {
 | ||
|             sqrtpow = pow(y, absx / 2.0 - 0.25);
 | ||
|             r *= sqrtpow;
 | ||
|             r *= sqrtpow;
 | ||
|         }
 | ||
|     }
 | ||
|     if (isinf(r))
 | ||
|         errno = ERANGE;
 | ||
|     return r;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|    lgamma:  natural log of the absolute value of the Gamma function.
 | ||
|    For large arguments, Lanczos' formula works extremely well here.
 | ||
| */
 | ||
| 
 | ||
| static double
 | ||
| m_lgamma(double x)
 | ||
| {
 | ||
|     double r;
 | ||
|     double absx;
 | ||
| 
 | ||
|     /* special cases */
 | ||
|     if (!isfinite(x)) {
 | ||
|         if (isnan(x))
 | ||
|             return x;  /* lgamma(nan) = nan */
 | ||
|         else
 | ||
|             return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
 | ||
|     }
 | ||
| 
 | ||
|     /* integer arguments */
 | ||
|     if (x == floor(x) && x <= 2.0) {
 | ||
|         if (x <= 0.0) {
 | ||
|             errno = EDOM;  /* lgamma(n) = inf, divide-by-zero for */
 | ||
|             return Py_HUGE_VAL; /* integers n <= 0 */
 | ||
|         }
 | ||
|         else {
 | ||
|             return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     absx = fabs(x);
 | ||
|     /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
 | ||
|     if (absx < 1e-20)
 | ||
|         return -log(absx);
 | ||
| 
 | ||
|     /* Lanczos' formula.  We could save a fraction of a ulp in accuracy by
 | ||
|        having a second set of numerator coefficients for lanczos_sum that
 | ||
|        absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
 | ||
|        subtraction below; it's probably not worth it. */
 | ||
|     r = log(lanczos_sum(absx)) - lanczos_g;
 | ||
|     r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
 | ||
|     if (x < 0.0)
 | ||
|         /* Use reflection formula to get value for negative x. */
 | ||
|         r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
 | ||
|     if (isinf(r))
 | ||
|         errno = ERANGE;
 | ||
|     return r;
 | ||
| }
 | ||
| 
 | ||
| /* IEEE 754-style remainder operation: x - n*y where n*y is the nearest
 | ||
|    multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754
 | ||
|    binary floating-point format, the result is always exact. */
 | ||
| 
 | ||
| static double
 | ||
| m_remainder(double x, double y)
 | ||
| {
 | ||
|     /* Deal with most common case first. */
 | ||
|     if (isfinite(x) && isfinite(y)) {
 | ||
|         double absx, absy, c, m, r;
 | ||
| 
 | ||
|         if (y == 0.0) {
 | ||
|             return Py_NAN;
 | ||
|         }
 | ||
| 
 | ||
|         absx = fabs(x);
 | ||
|         absy = fabs(y);
 | ||
|         m = fmod(absx, absy);
 | ||
| 
 | ||
|         /*
 | ||
|            Warning: some subtlety here. What we *want* to know at this point is
 | ||
|            whether the remainder m is less than, equal to, or greater than half
 | ||
|            of absy. However, we can't do that comparison directly because we
 | ||
|            can't be sure that 0.5*absy is representable (the multiplication
 | ||
|            might incur precision loss due to underflow). So instead we compare
 | ||
|            m with the complement c = absy - m: m < 0.5*absy if and only if m <
 | ||
|            c, and so on. The catch is that absy - m might also not be
 | ||
|            representable, but it turns out that it doesn't matter:
 | ||
| 
 | ||
|            - if m > 0.5*absy then absy - m is exactly representable, by
 | ||
|              Sterbenz's lemma, so m > c
 | ||
|            - if m == 0.5*absy then again absy - m is exactly representable
 | ||
|              and m == c
 | ||
|            - if m < 0.5*absy then either (i) 0.5*absy is exactly representable,
 | ||
|              in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m <
 | ||
|              c, or (ii) absy is tiny, either subnormal or in the lowest normal
 | ||
|              binade. Then absy - m is exactly representable and again m < c.
 | ||
|         */
 | ||
| 
 | ||
|         c = absy - m;
 | ||
|         if (m < c) {
 | ||
|             r = m;
 | ||
|         }
 | ||
|         else if (m > c) {
 | ||
|             r = -c;
 | ||
|         }
 | ||
|         else {
 | ||
|             /*
 | ||
|                Here absx is exactly halfway between two multiples of absy,
 | ||
|                and we need to choose the even multiple. x now has the form
 | ||
| 
 | ||
|                    absx = n * absy + m
 | ||
| 
 | ||
|                for some integer n (recalling that m = 0.5*absy at this point).
 | ||
|                If n is even we want to return m; if n is odd, we need to
 | ||
|                return -m.
 | ||
| 
 | ||
|                So
 | ||
| 
 | ||
|                    0.5 * (absx - m) = (n/2) * absy
 | ||
| 
 | ||
|                and now reducing modulo absy gives us:
 | ||
| 
 | ||
|                                                   | m, if n is odd
 | ||
|                    fmod(0.5 * (absx - m), absy) = |
 | ||
|                                                   | 0, if n is even
 | ||
| 
 | ||
|                Now m - 2.0 * fmod(...) gives the desired result: m
 | ||
|                if n is even, -m if m is odd.
 | ||
| 
 | ||
|                Note that all steps in fmod(0.5 * (absx - m), absy)
 | ||
|                will be computed exactly, with no rounding error
 | ||
|                introduced.
 | ||
|             */
 | ||
|             assert(m == c);
 | ||
|             r = m - 2.0 * fmod(0.5 * (absx - m), absy);
 | ||
|         }
 | ||
|         return copysign(1.0, x) * r;
 | ||
|     }
 | ||
| 
 | ||
|     /* Special values. */
 | ||
|     if (isnan(x)) {
 | ||
|         return x;
 | ||
|     }
 | ||
|     if (isnan(y)) {
 | ||
|         return y;
 | ||
|     }
 | ||
|     if (isinf(x)) {
 | ||
|         return Py_NAN;
 | ||
|     }
 | ||
|     assert(isinf(y));
 | ||
|     return x;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|     Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
 | ||
|     log(-ve), log(NaN).  Here are wrappers for log and log10 that deal with
 | ||
|     special values directly, passing positive non-special values through to
 | ||
|     the system log/log10.
 | ||
|  */
 | ||
| 
 | ||
| static double
 | ||
| m_log(double x)
 | ||
| {
 | ||
|     if (isfinite(x)) {
 | ||
|         if (x > 0.0)
 | ||
|             return log(x);
 | ||
|         errno = EDOM;
 | ||
|         if (x == 0.0)
 | ||
|             return -Py_HUGE_VAL; /* log(0) = -inf */
 | ||
|         else
 | ||
|             return Py_NAN; /* log(-ve) = nan */
 | ||
|     }
 | ||
|     else if (isnan(x))
 | ||
|         return x; /* log(nan) = nan */
 | ||
|     else if (x > 0.0)
 | ||
|         return x; /* log(inf) = inf */
 | ||
|     else {
 | ||
|         errno = EDOM;
 | ||
|         return Py_NAN; /* log(-inf) = nan */
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|    log2: log to base 2.
 | ||
| 
 | ||
|    Uses an algorithm that should:
 | ||
| 
 | ||
|      (a) produce exact results for powers of 2, and
 | ||
|      (b) give a monotonic log2 (for positive finite floats),
 | ||
|          assuming that the system log is monotonic.
 | ||
| */
 | ||
| 
 | ||
| static double
 | ||
| m_log2(double x)
 | ||
| {
 | ||
|     if (!isfinite(x)) {
 | ||
|         if (isnan(x))
 | ||
|             return x; /* log2(nan) = nan */
 | ||
|         else if (x > 0.0)
 | ||
|             return x; /* log2(+inf) = +inf */
 | ||
|         else {
 | ||
|             errno = EDOM;
 | ||
|             return Py_NAN; /* log2(-inf) = nan, invalid-operation */
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     if (x > 0.0) {
 | ||
|         return log2(x);
 | ||
|     }
 | ||
|     else if (x == 0.0) {
 | ||
|         errno = EDOM;
 | ||
|         return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
 | ||
|     }
 | ||
|     else {
 | ||
|         errno = EDOM;
 | ||
|         return Py_NAN; /* log2(-inf) = nan, invalid-operation */
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| static double
 | ||
| m_log10(double x)
 | ||
| {
 | ||
|     if (isfinite(x)) {
 | ||
|         if (x > 0.0)
 | ||
|             return log10(x);
 | ||
|         errno = EDOM;
 | ||
|         if (x == 0.0)
 | ||
|             return -Py_HUGE_VAL; /* log10(0) = -inf */
 | ||
|         else
 | ||
|             return Py_NAN; /* log10(-ve) = nan */
 | ||
|     }
 | ||
|     else if (isnan(x))
 | ||
|         return x; /* log10(nan) = nan */
 | ||
|     else if (x > 0.0)
 | ||
|         return x; /* log10(inf) = inf */
 | ||
|     else {
 | ||
|         errno = EDOM;
 | ||
|         return Py_NAN; /* log10(-inf) = nan */
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_gcd(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
 | ||
| {
 | ||
|     // Fast-path for the common case: gcd(int, int)
 | ||
|     if (nargs == 2 && PyLong_CheckExact(args[0]) && PyLong_CheckExact(args[1]))
 | ||
|     {
 | ||
|         return _PyLong_GCD(args[0], args[1]);
 | ||
|     }
 | ||
| 
 | ||
|     if (nargs == 0) {
 | ||
|         return PyLong_FromLong(0);
 | ||
|     }
 | ||
| 
 | ||
|     PyObject *res = PyNumber_Index(args[0]);
 | ||
|     if (res == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     if (nargs == 1) {
 | ||
|         Py_SETREF(res, PyNumber_Absolute(res));
 | ||
|         return res;
 | ||
|     }
 | ||
| 
 | ||
|     PyObject *one = _PyLong_GetOne();  // borrowed ref
 | ||
|     for (Py_ssize_t i = 1; i < nargs; i++) {
 | ||
|         PyObject *x = _PyNumber_Index(args[i]);
 | ||
|         if (x == NULL) {
 | ||
|             Py_DECREF(res);
 | ||
|             return NULL;
 | ||
|         }
 | ||
|         if (res == one) {
 | ||
|             /* Fast path: just check arguments.
 | ||
|                It is okay to use identity comparison here. */
 | ||
|             Py_DECREF(x);
 | ||
|             continue;
 | ||
|         }
 | ||
|         Py_SETREF(res, _PyLong_GCD(res, x));
 | ||
|         Py_DECREF(x);
 | ||
|         if (res == NULL) {
 | ||
|             return NULL;
 | ||
|         }
 | ||
|     }
 | ||
|     return res;
 | ||
| }
 | ||
| 
 | ||
| PyDoc_STRVAR(math_gcd_doc,
 | ||
| "gcd($module, *integers)\n"
 | ||
| "--\n"
 | ||
| "\n"
 | ||
| "Greatest Common Divisor.");
 | ||
| 
 | ||
| 
 | ||
| static PyObject *
 | ||
| long_lcm(PyObject *a, PyObject *b)
 | ||
| {
 | ||
|     PyObject *g, *m, *f, *ab;
 | ||
| 
 | ||
|     if (_PyLong_IsZero((PyLongObject *)a) || _PyLong_IsZero((PyLongObject *)b)) {
 | ||
|         return PyLong_FromLong(0);
 | ||
|     }
 | ||
|     g = _PyLong_GCD(a, b);
 | ||
|     if (g == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     f = PyNumber_FloorDivide(a, g);
 | ||
|     Py_DECREF(g);
 | ||
|     if (f == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     m = PyNumber_Multiply(f, b);
 | ||
|     Py_DECREF(f);
 | ||
|     if (m == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     ab = PyNumber_Absolute(m);
 | ||
|     Py_DECREF(m);
 | ||
|     return ab;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_lcm(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
 | ||
| {
 | ||
|     PyObject *res, *x;
 | ||
|     Py_ssize_t i;
 | ||
| 
 | ||
|     if (nargs == 0) {
 | ||
|         return PyLong_FromLong(1);
 | ||
|     }
 | ||
|     res = PyNumber_Index(args[0]);
 | ||
|     if (res == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     if (nargs == 1) {
 | ||
|         Py_SETREF(res, PyNumber_Absolute(res));
 | ||
|         return res;
 | ||
|     }
 | ||
| 
 | ||
|     PyObject *zero = _PyLong_GetZero();  // borrowed ref
 | ||
|     for (i = 1; i < nargs; i++) {
 | ||
|         x = PyNumber_Index(args[i]);
 | ||
|         if (x == NULL) {
 | ||
|             Py_DECREF(res);
 | ||
|             return NULL;
 | ||
|         }
 | ||
|         if (res == zero) {
 | ||
|             /* Fast path: just check arguments.
 | ||
|                It is okay to use identity comparison here. */
 | ||
|             Py_DECREF(x);
 | ||
|             continue;
 | ||
|         }
 | ||
|         Py_SETREF(res, long_lcm(res, x));
 | ||
|         Py_DECREF(x);
 | ||
|         if (res == NULL) {
 | ||
|             return NULL;
 | ||
|         }
 | ||
|     }
 | ||
|     return res;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| PyDoc_STRVAR(math_lcm_doc,
 | ||
| "lcm($module, *integers)\n"
 | ||
| "--\n"
 | ||
| "\n"
 | ||
| "Least Common Multiple.");
 | ||
| 
 | ||
| 
 | ||
| /* Call is_error when errno != 0, and where x is the result libm
 | ||
|  * returned.  is_error will usually set up an exception and return
 | ||
|  * true (1), but may return false (0) without setting up an exception.
 | ||
|  */
 | ||
| static int
 | ||
| is_error(double x)
 | ||
| {
 | ||
|     int result = 1;     /* presumption of guilt */
 | ||
|     assert(errno);      /* non-zero errno is a precondition for calling */
 | ||
|     if (errno == EDOM)
 | ||
|         PyErr_SetString(PyExc_ValueError, "math domain error");
 | ||
| 
 | ||
|     else if (errno == ERANGE) {
 | ||
|         /* ANSI C generally requires libm functions to set ERANGE
 | ||
|          * on overflow, but also generally *allows* them to set
 | ||
|          * ERANGE on underflow too.  There's no consistency about
 | ||
|          * the latter across platforms.
 | ||
|          * Alas, C99 never requires that errno be set.
 | ||
|          * Here we suppress the underflow errors (libm functions
 | ||
|          * should return a zero on underflow, and +- HUGE_VAL on
 | ||
|          * overflow, so testing the result for zero suffices to
 | ||
|          * distinguish the cases).
 | ||
|          *
 | ||
|          * On some platforms (Ubuntu/ia64) it seems that errno can be
 | ||
|          * set to ERANGE for subnormal results that do *not* underflow
 | ||
|          * to zero.  So to be safe, we'll ignore ERANGE whenever the
 | ||
|          * function result is less than 1.5 in absolute value.
 | ||
|          *
 | ||
|          * bpo-46018: Changed to 1.5 to ensure underflows in expm1()
 | ||
|          * are correctly detected, since the function may underflow
 | ||
|          * toward -1.0 rather than 0.0.
 | ||
|          */
 | ||
|         if (fabs(x) < 1.5)
 | ||
|             result = 0;
 | ||
|         else
 | ||
|             PyErr_SetString(PyExc_OverflowError,
 | ||
|                             "math range error");
 | ||
|     }
 | ||
|     else
 | ||
|         /* Unexpected math error */
 | ||
|         PyErr_SetFromErrno(PyExc_ValueError);
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|    math_1 is used to wrap a libm function f that takes a double
 | ||
|    argument and returns a double.
 | ||
| 
 | ||
|    The error reporting follows these rules, which are designed to do
 | ||
|    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | ||
|    platforms.
 | ||
| 
 | ||
|    - a NaN result from non-NaN inputs causes ValueError to be raised
 | ||
|    - an infinite result from finite inputs causes OverflowError to be
 | ||
|      raised if can_overflow is 1, or raises ValueError if can_overflow
 | ||
|      is 0.
 | ||
|    - if the result is finite and errno == EDOM then ValueError is
 | ||
|      raised
 | ||
|    - if the result is finite and nonzero and errno == ERANGE then
 | ||
|      OverflowError is raised
 | ||
| 
 | ||
|    The last rule is used to catch overflow on platforms which follow
 | ||
|    C89 but for which HUGE_VAL is not an infinity.
 | ||
| 
 | ||
|    For the majority of one-argument functions these rules are enough
 | ||
|    to ensure that Python's functions behave as specified in 'Annex F'
 | ||
|    of the C99 standard, with the 'invalid' and 'divide-by-zero'
 | ||
|    floating-point exceptions mapping to Python's ValueError and the
 | ||
|    'overflow' floating-point exception mapping to OverflowError.
 | ||
|    math_1 only works for functions that don't have singularities *and*
 | ||
|    the possibility of overflow; fortunately, that covers everything we
 | ||
|    care about right now.
 | ||
| */
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_1(PyObject *arg, double (*func) (double), int can_overflow)
 | ||
| {
 | ||
|     double x, r;
 | ||
|     x = PyFloat_AsDouble(arg);
 | ||
|     if (x == -1.0 && PyErr_Occurred())
 | ||
|         return NULL;
 | ||
|     errno = 0;
 | ||
|     r = (*func)(x);
 | ||
|     if (isnan(r) && !isnan(x)) {
 | ||
|         PyErr_SetString(PyExc_ValueError,
 | ||
|                         "math domain error"); /* invalid arg */
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     if (isinf(r) && isfinite(x)) {
 | ||
|         if (can_overflow)
 | ||
|             PyErr_SetString(PyExc_OverflowError,
 | ||
|                             "math range error"); /* overflow */
 | ||
|         else
 | ||
|             PyErr_SetString(PyExc_ValueError,
 | ||
|                             "math domain error"); /* singularity */
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     if (isfinite(r) && errno && is_error(r))
 | ||
|         /* this branch unnecessary on most platforms */
 | ||
|         return NULL;
 | ||
| 
 | ||
|     return PyFloat_FromDouble(r);
 | ||
| }
 | ||
| 
 | ||
| /* variant of math_1, to be used when the function being wrapped is known to
 | ||
|    set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
 | ||
|    errno = ERANGE for overflow). */
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_1a(PyObject *arg, double (*func) (double))
 | ||
| {
 | ||
|     double x, r;
 | ||
|     x = PyFloat_AsDouble(arg);
 | ||
|     if (x == -1.0 && PyErr_Occurred())
 | ||
|         return NULL;
 | ||
|     errno = 0;
 | ||
|     r = (*func)(x);
 | ||
|     if (errno && is_error(r))
 | ||
|         return NULL;
 | ||
|     return PyFloat_FromDouble(r);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|    math_2 is used to wrap a libm function f that takes two double
 | ||
|    arguments and returns a double.
 | ||
| 
 | ||
|    The error reporting follows these rules, which are designed to do
 | ||
|    the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
 | ||
|    platforms.
 | ||
| 
 | ||
|    - a NaN result from non-NaN inputs causes ValueError to be raised
 | ||
|    - an infinite result from finite inputs causes OverflowError to be
 | ||
|      raised.
 | ||
|    - if the result is finite and errno == EDOM then ValueError is
 | ||
|      raised
 | ||
|    - if the result is finite and nonzero and errno == ERANGE then
 | ||
|      OverflowError is raised
 | ||
| 
 | ||
|    The last rule is used to catch overflow on platforms which follow
 | ||
|    C89 but for which HUGE_VAL is not an infinity.
 | ||
| 
 | ||
|    For most two-argument functions (copysign, fmod, hypot, atan2)
 | ||
|    these rules are enough to ensure that Python's functions behave as
 | ||
|    specified in 'Annex F' of the C99 standard, with the 'invalid' and
 | ||
|    'divide-by-zero' floating-point exceptions mapping to Python's
 | ||
|    ValueError and the 'overflow' floating-point exception mapping to
 | ||
|    OverflowError.
 | ||
| */
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_2(PyObject *const *args, Py_ssize_t nargs,
 | ||
|        double (*func) (double, double), const char *funcname)
 | ||
| {
 | ||
|     double x, y, r;
 | ||
|     if (!_PyArg_CheckPositional(funcname, nargs, 2, 2))
 | ||
|         return NULL;
 | ||
|     x = PyFloat_AsDouble(args[0]);
 | ||
|     if (x == -1.0 && PyErr_Occurred()) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     y = PyFloat_AsDouble(args[1]);
 | ||
|     if (y == -1.0 && PyErr_Occurred()) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     errno = 0;
 | ||
|     r = (*func)(x, y);
 | ||
|     if (isnan(r)) {
 | ||
|         if (!isnan(x) && !isnan(y))
 | ||
|             errno = EDOM;
 | ||
|         else
 | ||
|             errno = 0;
 | ||
|     }
 | ||
|     else if (isinf(r)) {
 | ||
|         if (isfinite(x) && isfinite(y))
 | ||
|             errno = ERANGE;
 | ||
|         else
 | ||
|             errno = 0;
 | ||
|     }
 | ||
|     if (errno && is_error(r))
 | ||
|         return NULL;
 | ||
|     else
 | ||
|         return PyFloat_FromDouble(r);
 | ||
| }
 | ||
| 
 | ||
| #define FUNC1(funcname, func, can_overflow, docstring)                  \
 | ||
|     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | ||
|         return math_1(args, func, can_overflow);                            \
 | ||
|     }\
 | ||
|     PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | ||
| 
 | ||
| #define FUNC1A(funcname, func, docstring)                               \
 | ||
|     static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
 | ||
|         return math_1a(args, func);                                     \
 | ||
|     }\
 | ||
|     PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | ||
| 
 | ||
| #define FUNC2(funcname, func, docstring) \
 | ||
|     static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \
 | ||
|         return math_2(args, nargs, func, #funcname); \
 | ||
|     }\
 | ||
|     PyDoc_STRVAR(math_##funcname##_doc, docstring);
 | ||
| 
 | ||
| FUNC1(acos, acos, 0,
 | ||
|       "acos($module, x, /)\n--\n\n"
 | ||
|       "Return the arc cosine (measured in radians) of x.\n\n"
 | ||
|       "The result is between 0 and pi.")
 | ||
| FUNC1(acosh, acosh, 0,
 | ||
|       "acosh($module, x, /)\n--\n\n"
 | ||
|       "Return the inverse hyperbolic cosine of x.")
 | ||
| FUNC1(asin, asin, 0,
 | ||
|       "asin($module, x, /)\n--\n\n"
 | ||
|       "Return the arc sine (measured in radians) of x.\n\n"
 | ||
|       "The result is between -pi/2 and pi/2.")
 | ||
| FUNC1(asinh, asinh, 0,
 | ||
|       "asinh($module, x, /)\n--\n\n"
 | ||
|       "Return the inverse hyperbolic sine of x.")
 | ||
| FUNC1(atan, atan, 0,
 | ||
|       "atan($module, x, /)\n--\n\n"
 | ||
|       "Return the arc tangent (measured in radians) of x.\n\n"
 | ||
|       "The result is between -pi/2 and pi/2.")
 | ||
| FUNC2(atan2, atan2,
 | ||
|       "atan2($module, y, x, /)\n--\n\n"
 | ||
|       "Return the arc tangent (measured in radians) of y/x.\n\n"
 | ||
|       "Unlike atan(y/x), the signs of both x and y are considered.")
 | ||
| FUNC1(atanh, atanh, 0,
 | ||
|       "atanh($module, x, /)\n--\n\n"
 | ||
|       "Return the inverse hyperbolic tangent of x.")
 | ||
| FUNC1(cbrt, cbrt, 0,
 | ||
|       "cbrt($module, x, /)\n--\n\n"
 | ||
|       "Return the cube root of x.")
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.ceil
 | ||
| 
 | ||
|     x as number: object
 | ||
|     /
 | ||
| 
 | ||
| Return the ceiling of x as an Integral.
 | ||
| 
 | ||
| This is the smallest integer >= x.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_ceil(PyObject *module, PyObject *number)
 | ||
| /*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/
 | ||
| {
 | ||
|     double x;
 | ||
| 
 | ||
|     if (PyFloat_CheckExact(number)) {
 | ||
|         x = PyFloat_AS_DOUBLE(number);
 | ||
|     }
 | ||
|     else {
 | ||
|         math_module_state *state = get_math_module_state(module);
 | ||
|         PyObject *method = _PyObject_LookupSpecial(number, state->str___ceil__);
 | ||
|         if (method != NULL) {
 | ||
|             PyObject *result = _PyObject_CallNoArgs(method);
 | ||
|             Py_DECREF(method);
 | ||
|             return result;
 | ||
|         }
 | ||
|         if (PyErr_Occurred())
 | ||
|             return NULL;
 | ||
|         x = PyFloat_AsDouble(number);
 | ||
|         if (x == -1.0 && PyErr_Occurred())
 | ||
|             return NULL;
 | ||
|     }
 | ||
|     return PyLong_FromDouble(ceil(x));
 | ||
| }
 | ||
| 
 | ||
| FUNC2(copysign, copysign,
 | ||
|       "copysign($module, x, y, /)\n--\n\n"
 | ||
|        "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n"
 | ||
|       "On platforms that support signed zeros, copysign(1.0, -0.0)\n"
 | ||
|       "returns -1.0.\n")
 | ||
| FUNC1(cos, cos, 0,
 | ||
|       "cos($module, x, /)\n--\n\n"
 | ||
|       "Return the cosine of x (measured in radians).")
 | ||
| FUNC1(cosh, cosh, 1,
 | ||
|       "cosh($module, x, /)\n--\n\n"
 | ||
|       "Return the hyperbolic cosine of x.")
 | ||
| FUNC1A(erf, erf,
 | ||
|        "erf($module, x, /)\n--\n\n"
 | ||
|        "Error function at x.")
 | ||
| FUNC1A(erfc, erfc,
 | ||
|        "erfc($module, x, /)\n--\n\n"
 | ||
|        "Complementary error function at x.")
 | ||
| FUNC1(exp, exp, 1,
 | ||
|       "exp($module, x, /)\n--\n\n"
 | ||
|       "Return e raised to the power of x.")
 | ||
| FUNC1(exp2, exp2, 1,
 | ||
|       "exp2($module, x, /)\n--\n\n"
 | ||
|       "Return 2 raised to the power of x.")
 | ||
| FUNC1(expm1, expm1, 1,
 | ||
|       "expm1($module, x, /)\n--\n\n"
 | ||
|       "Return exp(x)-1.\n\n"
 | ||
|       "This function avoids the loss of precision involved in the direct "
 | ||
|       "evaluation of exp(x)-1 for small x.")
 | ||
| FUNC1(fabs, fabs, 0,
 | ||
|       "fabs($module, x, /)\n--\n\n"
 | ||
|       "Return the absolute value of the float x.")
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.floor
 | ||
| 
 | ||
|     x as number: object
 | ||
|     /
 | ||
| 
 | ||
| Return the floor of x as an Integral.
 | ||
| 
 | ||
| This is the largest integer <= x.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_floor(PyObject *module, PyObject *number)
 | ||
| /*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/
 | ||
| {
 | ||
|     double x;
 | ||
| 
 | ||
|     if (PyFloat_CheckExact(number)) {
 | ||
|         x = PyFloat_AS_DOUBLE(number);
 | ||
|     }
 | ||
|     else {
 | ||
|         math_module_state *state = get_math_module_state(module);
 | ||
|         PyObject *method = _PyObject_LookupSpecial(number, state->str___floor__);
 | ||
|         if (method != NULL) {
 | ||
|             PyObject *result = _PyObject_CallNoArgs(method);
 | ||
|             Py_DECREF(method);
 | ||
|             return result;
 | ||
|         }
 | ||
|         if (PyErr_Occurred())
 | ||
|             return NULL;
 | ||
|         x = PyFloat_AsDouble(number);
 | ||
|         if (x == -1.0 && PyErr_Occurred())
 | ||
|             return NULL;
 | ||
|     }
 | ||
|     return PyLong_FromDouble(floor(x));
 | ||
| }
 | ||
| 
 | ||
| FUNC1A(gamma, m_tgamma,
 | ||
|       "gamma($module, x, /)\n--\n\n"
 | ||
|       "Gamma function at x.")
 | ||
| FUNC1A(lgamma, m_lgamma,
 | ||
|       "lgamma($module, x, /)\n--\n\n"
 | ||
|       "Natural logarithm of absolute value of Gamma function at x.")
 | ||
| FUNC1(log1p, m_log1p, 0,
 | ||
|       "log1p($module, x, /)\n--\n\n"
 | ||
|       "Return the natural logarithm of 1+x (base e).\n\n"
 | ||
|       "The result is computed in a way which is accurate for x near zero.")
 | ||
| FUNC2(remainder, m_remainder,
 | ||
|       "remainder($module, x, y, /)\n--\n\n"
 | ||
|       "Difference between x and the closest integer multiple of y.\n\n"
 | ||
|       "Return x - n*y where n*y is the closest integer multiple of y.\n"
 | ||
|       "In the case where x is exactly halfway between two multiples of\n"
 | ||
|       "y, the nearest even value of n is used. The result is always exact.")
 | ||
| FUNC1(sin, sin, 0,
 | ||
|       "sin($module, x, /)\n--\n\n"
 | ||
|       "Return the sine of x (measured in radians).")
 | ||
| FUNC1(sinh, sinh, 1,
 | ||
|       "sinh($module, x, /)\n--\n\n"
 | ||
|       "Return the hyperbolic sine of x.")
 | ||
| FUNC1(sqrt, sqrt, 0,
 | ||
|       "sqrt($module, x, /)\n--\n\n"
 | ||
|       "Return the square root of x.")
 | ||
| FUNC1(tan, tan, 0,
 | ||
|       "tan($module, x, /)\n--\n\n"
 | ||
|       "Return the tangent of x (measured in radians).")
 | ||
| FUNC1(tanh, tanh, 0,
 | ||
|       "tanh($module, x, /)\n--\n\n"
 | ||
|       "Return the hyperbolic tangent of x.")
 | ||
| 
 | ||
| /* Precision summation function as msum() by Raymond Hettinger in
 | ||
|    <https://code.activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-full-p/>,
 | ||
|    enhanced with the exact partials sum and roundoff from Mark
 | ||
|    Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
 | ||
|    See those links for more details, proofs and other references.
 | ||
| 
 | ||
|    Note 1: IEEE 754 floating-point semantics with a rounding mode of
 | ||
|    roundTiesToEven are assumed.
 | ||
| 
 | ||
|    Note 2: No provision is made for intermediate overflow handling;
 | ||
|    therefore, fsum([1e+308, -1e+308, 1e+308]) returns 1e+308 while
 | ||
|    fsum([1e+308, 1e+308, -1e+308]) raises an OverflowError due to the
 | ||
|    overflow of the first partial sum.
 | ||
| 
 | ||
|    Note 3: The algorithm has two potential sources of fragility. First, C
 | ||
|    permits arithmetic operations on `double`s to be performed in an
 | ||
|    intermediate format whose range and precision may be greater than those of
 | ||
|    `double` (see for example C99 §5.2.4.2.2, paragraph 8). This can happen for
 | ||
|    example on machines using the now largely historical x87 FPUs. In this case,
 | ||
|    `fsum` can produce incorrect results. If `FLT_EVAL_METHOD` is `0` or `1`, or
 | ||
|    `FLT_EVAL_METHOD` is `2` and `long double` is identical to `double`, then we
 | ||
|    should be safe from this source of errors. Second, an aggressively
 | ||
|    optimizing compiler can re-associate operations so that (for example) the
 | ||
|    statement `yr = hi - x;` is treated as `yr = (x + y) - x` and then
 | ||
|    re-associated as `yr = y + (x - x)`, giving `y = yr` and `lo = 0.0`. That
 | ||
|    re-association would be in violation of the C standard, and should not occur
 | ||
|    except possibly in the presence of unsafe optimizations (e.g., -ffast-math,
 | ||
|    -fassociative-math). Such optimizations should be avoided for this module.
 | ||
| 
 | ||
|    Note 4: The signature of math.fsum() differs from builtins.sum()
 | ||
|    because the start argument doesn't make sense in the context of
 | ||
|    accurate summation.  Since the partials table is collapsed before
 | ||
|    returning a result, sum(seq2, start=sum(seq1)) may not equal the
 | ||
|    accurate result returned by sum(itertools.chain(seq1, seq2)).
 | ||
| */
 | ||
| 
 | ||
| #define NUM_PARTIALS  32  /* initial partials array size, on stack */
 | ||
| 
 | ||
| /* Extend the partials array p[] by doubling its size. */
 | ||
| static int                          /* non-zero on error */
 | ||
| _fsum_realloc(double **p_ptr, Py_ssize_t  n,
 | ||
|              double  *ps,    Py_ssize_t *m_ptr)
 | ||
| {
 | ||
|     void *v = NULL;
 | ||
|     Py_ssize_t m = *m_ptr;
 | ||
| 
 | ||
|     m += m;  /* double */
 | ||
|     if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
 | ||
|         double *p = *p_ptr;
 | ||
|         if (p == ps) {
 | ||
|             v = PyMem_Malloc(sizeof(double) * m);
 | ||
|             if (v != NULL)
 | ||
|                 memcpy(v, ps, sizeof(double) * n);
 | ||
|         }
 | ||
|         else
 | ||
|             v = PyMem_Realloc(p, sizeof(double) * m);
 | ||
|     }
 | ||
|     if (v == NULL) {        /* size overflow or no memory */
 | ||
|         PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
 | ||
|         return 1;
 | ||
|     }
 | ||
|     *p_ptr = (double*) v;
 | ||
|     *m_ptr = m;
 | ||
|     return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Full precision summation of a sequence of floats.
 | ||
| 
 | ||
|    def msum(iterable):
 | ||
|        partials = []  # sorted, non-overlapping partial sums
 | ||
|        for x in iterable:
 | ||
|            i = 0
 | ||
|            for y in partials:
 | ||
|                if abs(x) < abs(y):
 | ||
|                    x, y = y, x
 | ||
|                hi = x + y
 | ||
|                lo = y - (hi - x)
 | ||
|                if lo:
 | ||
|                    partials[i] = lo
 | ||
|                    i += 1
 | ||
|                x = hi
 | ||
|            partials[i:] = [x]
 | ||
|        return sum_exact(partials)
 | ||
| 
 | ||
|    Rounded x+y stored in hi with the roundoff stored in lo.  Together hi+lo
 | ||
|    are exactly equal to x+y.  The inner loop applies hi/lo summation to each
 | ||
|    partial so that the list of partial sums remains exact.
 | ||
| 
 | ||
|    Sum_exact() adds the partial sums exactly and correctly rounds the final
 | ||
|    result (using the round-half-to-even rule).  The items in partials remain
 | ||
|    non-zero, non-special, non-overlapping and strictly increasing in
 | ||
|    magnitude, but possibly not all having the same sign.
 | ||
| 
 | ||
|    Depends on IEEE 754 arithmetic guarantees and half-even rounding.
 | ||
| */
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.fsum
 | ||
| 
 | ||
|     seq: object
 | ||
|     /
 | ||
| 
 | ||
| Return an accurate floating-point sum of values in the iterable seq.
 | ||
| 
 | ||
| Assumes IEEE-754 floating-point arithmetic.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_fsum(PyObject *module, PyObject *seq)
 | ||
| /*[clinic end generated code: output=ba5c672b87fe34fc input=4506244ded6057dc]*/
 | ||
| {
 | ||
|     PyObject *item, *iter, *sum = NULL;
 | ||
|     Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
 | ||
|     double x, y, t, ps[NUM_PARTIALS], *p = ps;
 | ||
|     double xsave, special_sum = 0.0, inf_sum = 0.0;
 | ||
|     double hi, yr, lo = 0.0;
 | ||
| 
 | ||
|     iter = PyObject_GetIter(seq);
 | ||
|     if (iter == NULL)
 | ||
|         return NULL;
 | ||
| 
 | ||
|     for(;;) {           /* for x in iterable */
 | ||
|         assert(0 <= n && n <= m);
 | ||
|         assert((m == NUM_PARTIALS && p == ps) ||
 | ||
|                (m >  NUM_PARTIALS && p != NULL));
 | ||
| 
 | ||
|         item = PyIter_Next(iter);
 | ||
|         if (item == NULL) {
 | ||
|             if (PyErr_Occurred())
 | ||
|                 goto _fsum_error;
 | ||
|             break;
 | ||
|         }
 | ||
|         ASSIGN_DOUBLE(x, item, error_with_item);
 | ||
|         Py_DECREF(item);
 | ||
| 
 | ||
|         xsave = x;
 | ||
|         for (i = j = 0; j < n; j++) {       /* for y in partials */
 | ||
|             y = p[j];
 | ||
|             if (fabs(x) < fabs(y)) {
 | ||
|                 t = x; x = y; y = t;
 | ||
|             }
 | ||
|             hi = x + y;
 | ||
|             yr = hi - x;
 | ||
|             lo = y - yr;
 | ||
|             if (lo != 0.0)
 | ||
|                 p[i++] = lo;
 | ||
|             x = hi;
 | ||
|         }
 | ||
| 
 | ||
|         n = i;                              /* ps[i:] = [x] */
 | ||
|         if (x != 0.0) {
 | ||
|             if (! isfinite(x)) {
 | ||
|                 /* a nonfinite x could arise either as
 | ||
|                    a result of intermediate overflow, or
 | ||
|                    as a result of a nan or inf in the
 | ||
|                    summands */
 | ||
|                 if (isfinite(xsave)) {
 | ||
|                     PyErr_SetString(PyExc_OverflowError,
 | ||
|                           "intermediate overflow in fsum");
 | ||
|                     goto _fsum_error;
 | ||
|                 }
 | ||
|                 if (isinf(xsave))
 | ||
|                     inf_sum += xsave;
 | ||
|                 special_sum += xsave;
 | ||
|                 /* reset partials */
 | ||
|                 n = 0;
 | ||
|             }
 | ||
|             else if (n >= m && _fsum_realloc(&p, n, ps, &m))
 | ||
|                 goto _fsum_error;
 | ||
|             else
 | ||
|                 p[n++] = x;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     if (special_sum != 0.0) {
 | ||
|         if (isnan(inf_sum))
 | ||
|             PyErr_SetString(PyExc_ValueError,
 | ||
|                             "-inf + inf in fsum");
 | ||
|         else
 | ||
|             sum = PyFloat_FromDouble(special_sum);
 | ||
|         goto _fsum_error;
 | ||
|     }
 | ||
| 
 | ||
|     hi = 0.0;
 | ||
|     if (n > 0) {
 | ||
|         hi = p[--n];
 | ||
|         /* sum_exact(ps, hi) from the top, stop when the sum becomes
 | ||
|            inexact. */
 | ||
|         while (n > 0) {
 | ||
|             x = hi;
 | ||
|             y = p[--n];
 | ||
|             assert(fabs(y) < fabs(x));
 | ||
|             hi = x + y;
 | ||
|             yr = hi - x;
 | ||
|             lo = y - yr;
 | ||
|             if (lo != 0.0)
 | ||
|                 break;
 | ||
|         }
 | ||
|         /* Make half-even rounding work across multiple partials.
 | ||
|            Needed so that sum([1e-16, 1, 1e16]) will round-up the last
 | ||
|            digit to two instead of down to zero (the 1e-16 makes the 1
 | ||
|            slightly closer to two).  With a potential 1 ULP rounding
 | ||
|            error fixed-up, math.fsum() can guarantee commutativity. */
 | ||
|         if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
 | ||
|                       (lo > 0.0 && p[n-1] > 0.0))) {
 | ||
|             y = lo * 2.0;
 | ||
|             x = hi + y;
 | ||
|             yr = x - hi;
 | ||
|             if (y == yr)
 | ||
|                 hi = x;
 | ||
|         }
 | ||
|     }
 | ||
|     sum = PyFloat_FromDouble(hi);
 | ||
| 
 | ||
|   _fsum_error:
 | ||
|     Py_DECREF(iter);
 | ||
|     if (p != ps)
 | ||
|         PyMem_Free(p);
 | ||
|     return sum;
 | ||
| 
 | ||
|   error_with_item:
 | ||
|     Py_DECREF(item);
 | ||
|     goto _fsum_error;
 | ||
| }
 | ||
| 
 | ||
| #undef NUM_PARTIALS
 | ||
| 
 | ||
| 
 | ||
| static unsigned long
 | ||
| count_set_bits(unsigned long n)
 | ||
| {
 | ||
|     unsigned long count = 0;
 | ||
|     while (n != 0) {
 | ||
|         ++count;
 | ||
|         n &= n - 1; /* clear least significant bit */
 | ||
|     }
 | ||
|     return count;
 | ||
| }
 | ||
| 
 | ||
| /* Integer square root
 | ||
| 
 | ||
| Given a nonnegative integer `n`, we want to compute the largest integer
 | ||
| `a` for which `a * a <= n`, or equivalently the integer part of the exact
 | ||
| square root of `n`.
 | ||
| 
 | ||
| We use an adaptive-precision pure-integer version of Newton's iteration. Given
 | ||
| a positive integer `n`, the algorithm produces at each iteration an integer
 | ||
| approximation `a` to the square root of `n >> s` for some even integer `s`,
 | ||
| with `s` decreasing as the iterations progress. On the final iteration, `s` is
 | ||
| zero and we have an approximation to the square root of `n` itself.
 | ||
| 
 | ||
| At every step, the approximation `a` is strictly within 1.0 of the true square
 | ||
| root, so we have
 | ||
| 
 | ||
|     (a - 1)**2 < (n >> s) < (a + 1)**2
 | ||
| 
 | ||
| After the final iteration, a check-and-correct step is needed to determine
 | ||
| whether `a` or `a - 1` gives the desired integer square root of `n`.
 | ||
| 
 | ||
| The algorithm is remarkable in its simplicity. There's no need for a
 | ||
| per-iteration check-and-correct step, and termination is straightforward: the
 | ||
| number of iterations is known in advance (it's exactly `floor(log2(log2(n)))`
 | ||
| for `n > 1`). The only tricky part of the correctness proof is in establishing
 | ||
| that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one
 | ||
| iteration to the next. A sketch of the proof of this is given below.
 | ||
| 
 | ||
| In addition to the proof sketch, a formal, computer-verified proof
 | ||
| of correctness (using Lean) of an equivalent recursive algorithm can be found
 | ||
| here:
 | ||
| 
 | ||
|     https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean
 | ||
| 
 | ||
| 
 | ||
| Here's Python code equivalent to the C implementation below:
 | ||
| 
 | ||
|     def isqrt(n):
 | ||
|         """
 | ||
|         Return the integer part of the square root of the input.
 | ||
|         """
 | ||
|         n = operator.index(n)
 | ||
| 
 | ||
|         if n < 0:
 | ||
|             raise ValueError("isqrt() argument must be nonnegative")
 | ||
|         if n == 0:
 | ||
|             return 0
 | ||
| 
 | ||
|         c = (n.bit_length() - 1) // 2
 | ||
|         a = 1
 | ||
|         d = 0
 | ||
|         for s in reversed(range(c.bit_length())):
 | ||
|             # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2
 | ||
|             e = d
 | ||
|             d = c >> s
 | ||
|             a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
 | ||
| 
 | ||
|         return a - (a*a > n)
 | ||
| 
 | ||
| 
 | ||
| Sketch of proof of correctness
 | ||
| ------------------------------
 | ||
| 
 | ||
| The delicate part of the correctness proof is showing that the loop invariant
 | ||
| is preserved from one iteration to the next. That is, just before the line
 | ||
| 
 | ||
|     a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
 | ||
| 
 | ||
| is executed in the above code, we know that
 | ||
| 
 | ||
|     (1)  (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2.
 | ||
| 
 | ||
| (since `e` is always the value of `d` from the previous iteration). We must
 | ||
| prove that after that line is executed, we have
 | ||
| 
 | ||
|     (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2
 | ||
| 
 | ||
| To facilitate the proof, we make some changes of notation. Write `m` for
 | ||
| `n >> 2*(c-d)`, and write `b` for the new value of `a`, so
 | ||
| 
 | ||
|     b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
 | ||
| 
 | ||
| or equivalently:
 | ||
| 
 | ||
|     (2)  b = (a << d - e - 1) + (m >> d - e + 1) // a
 | ||
| 
 | ||
| Then we can rewrite (1) as:
 | ||
| 
 | ||
|     (3)  (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2
 | ||
| 
 | ||
| and we must show that (b - 1)**2 < m < (b + 1)**2.
 | ||
| 
 | ||
| From this point on, we switch to mathematical notation, so `/` means exact
 | ||
| division rather than integer division and `^` is used for exponentiation. We
 | ||
| use the `√` symbol for the exact square root. In (3), we can remove the
 | ||
| implicit floor operation to give:
 | ||
| 
 | ||
|     (4)  (a - 1)^2 < m / 4^(d - e) < (a + 1)^2
 | ||
| 
 | ||
| Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives
 | ||
| 
 | ||
|     (5)  0 <= | 2^(d-e)a - √m | < 2^(d-e)
 | ||
| 
 | ||
| Squaring and dividing through by `2^(d-e+1) a` gives
 | ||
| 
 | ||
|     (6)  0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a
 | ||
| 
 | ||
| We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the
 | ||
| right-hand side of (6) with `1`, and now replacing the central
 | ||
| term `m / (2^(d-e+1) a)` with its floor in (6) gives
 | ||
| 
 | ||
|     (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1
 | ||
| 
 | ||
| Or equivalently, from (2):
 | ||
| 
 | ||
|     (7) -1 < b - √m < 1
 | ||
| 
 | ||
| and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed
 | ||
| to prove.
 | ||
| 
 | ||
| We're not quite done: we still have to prove the inequality `2^(d - e - 1) <=
 | ||
| a` that was used to get line (7) above. From the definition of `c`, we have
 | ||
| `4^c <= n`, which implies
 | ||
| 
 | ||
|     (8)  4^d <= m
 | ||
| 
 | ||
| also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows
 | ||
| that `2d - 2e - 1 <= d` and hence that
 | ||
| 
 | ||
|     (9)  4^(2d - 2e - 1) <= m
 | ||
| 
 | ||
| Dividing both sides by `4^(d - e)` gives
 | ||
| 
 | ||
|     (10)  4^(d - e - 1) <= m / 4^(d - e)
 | ||
| 
 | ||
| But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence
 | ||
| 
 | ||
|     (11)  4^(d - e - 1) < (a + 1)^2
 | ||
| 
 | ||
| Now taking square roots of both sides and observing that both `2^(d-e-1)` and
 | ||
| `a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This
 | ||
| completes the proof sketch.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| /*
 | ||
|     The _approximate_isqrt_tab table provides approximate square roots for
 | ||
|     16-bit integers. For any n in the range 2**14 <= n < 2**16, the value
 | ||
| 
 | ||
|         a = _approximate_isqrt_tab[(n >> 8) - 64]
 | ||
| 
 | ||
|     is an approximate square root of n, satisfying (a - 1)**2 < n < (a + 1)**2.
 | ||
| 
 | ||
|     The table was computed in Python using the expression:
 | ||
| 
 | ||
|         [min(round(sqrt(256*n + 128)), 255) for n in range(64, 256)]
 | ||
| */
 | ||
| 
 | ||
| static const uint8_t _approximate_isqrt_tab[192] = {
 | ||
|     128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
 | ||
|     140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150,
 | ||
|     151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160,
 | ||
|     160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169,
 | ||
|     170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178,
 | ||
|     179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186,
 | ||
|     187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194,
 | ||
|     195, 196, 196, 197, 198, 198, 199, 200, 200, 201, 201, 202,
 | ||
|     203, 203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 210,
 | ||
|     210, 211, 211, 212, 213, 213, 214, 214, 215, 216, 216, 217,
 | ||
|     217, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224,
 | ||
|     224, 225, 225, 226, 227, 227, 228, 228, 229, 229, 230, 230,
 | ||
|     231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 237, 237,
 | ||
|     238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243,
 | ||
|     244, 244, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250,
 | ||
|     250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, 255,
 | ||
| };
 | ||
| 
 | ||
| /* Approximate square root of a large 64-bit integer.
 | ||
| 
 | ||
|    Given `n` satisfying `2**62 <= n < 2**64`, return `a`
 | ||
|    satisfying `(a - 1)**2 < n < (a + 1)**2`. */
 | ||
| 
 | ||
| static inline uint32_t
 | ||
| _approximate_isqrt(uint64_t n)
 | ||
| {
 | ||
|     uint32_t u = _approximate_isqrt_tab[(n >> 56) - 64];
 | ||
|     u = (u << 7) + (uint32_t)(n >> 41) / u;
 | ||
|     return (u << 15) + (uint32_t)((n >> 17) / u);
 | ||
| }
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.isqrt
 | ||
| 
 | ||
|     n: object
 | ||
|     /
 | ||
| 
 | ||
| Return the integer part of the square root of the input.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_isqrt(PyObject *module, PyObject *n)
 | ||
| /*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
 | ||
| {
 | ||
|     int a_too_large, c_bit_length;
 | ||
|     uint64_t c, d;
 | ||
|     uint64_t m;
 | ||
|     uint32_t u;
 | ||
|     PyObject *a = NULL, *b;
 | ||
| 
 | ||
|     n = _PyNumber_Index(n);
 | ||
|     if (n == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
| 
 | ||
|     if (_PyLong_IsNegative((PyLongObject *)n)) {
 | ||
|         PyErr_SetString(
 | ||
|             PyExc_ValueError,
 | ||
|             "isqrt() argument must be nonnegative");
 | ||
|         goto error;
 | ||
|     }
 | ||
|     if (_PyLong_IsZero((PyLongObject *)n)) {
 | ||
|         Py_DECREF(n);
 | ||
|         return PyLong_FromLong(0);
 | ||
|     }
 | ||
| 
 | ||
|     /* c = (n.bit_length() - 1) // 2 */
 | ||
|     c = _PyLong_NumBits(n);
 | ||
|     if (c == (uint64_t)(-1)) {
 | ||
|         goto error;
 | ||
|     }
 | ||
|     c = (c - 1U) / 2U;
 | ||
| 
 | ||
|     /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
 | ||
|        fast, almost branch-free algorithm. */
 | ||
|     if (c <= 31U) {
 | ||
|         int shift = 31 - (int)c;
 | ||
|         m = (uint64_t)PyLong_AsUnsignedLongLong(n);
 | ||
|         Py_DECREF(n);
 | ||
|         if (m == (uint64_t)(-1) && PyErr_Occurred()) {
 | ||
|             return NULL;
 | ||
|         }
 | ||
|         u = _approximate_isqrt(m << 2*shift) >> shift;
 | ||
|         u -= (uint64_t)u * u > m;
 | ||
|         return PyLong_FromUnsignedLong(u);
 | ||
|     }
 | ||
| 
 | ||
|     /* Slow path: n >= 2**64. We perform the first five iterations in C integer
 | ||
|        arithmetic, then switch to using Python long integers. */
 | ||
| 
 | ||
|     /* From n >= 2**64 it follows that c.bit_length() >= 6. */
 | ||
|     c_bit_length = 6;
 | ||
|     while ((c >> c_bit_length) > 0U) {
 | ||
|         ++c_bit_length;
 | ||
|     }
 | ||
| 
 | ||
|     /* Initialise d and a. */
 | ||
|     d = c >> (c_bit_length - 5);
 | ||
|     b = _PyLong_Rshift(n, 2U*c - 62U);
 | ||
|     if (b == NULL) {
 | ||
|         goto error;
 | ||
|     }
 | ||
|     m = (uint64_t)PyLong_AsUnsignedLongLong(b);
 | ||
|     Py_DECREF(b);
 | ||
|     if (m == (uint64_t)(-1) && PyErr_Occurred()) {
 | ||
|         goto error;
 | ||
|     }
 | ||
|     u = _approximate_isqrt(m) >> (31U - d);
 | ||
|     a = PyLong_FromUnsignedLong(u);
 | ||
|     if (a == NULL) {
 | ||
|         goto error;
 | ||
|     }
 | ||
| 
 | ||
|     for (int s = c_bit_length - 6; s >= 0; --s) {
 | ||
|         PyObject *q;
 | ||
|         uint64_t e = d;
 | ||
| 
 | ||
|         d = c >> s;
 | ||
| 
 | ||
|         /* q = (n >> 2*c - e - d + 1) // a */
 | ||
|         q = _PyLong_Rshift(n, 2U*c - d - e + 1U);
 | ||
|         if (q == NULL) {
 | ||
|             goto error;
 | ||
|         }
 | ||
|         Py_SETREF(q, PyNumber_FloorDivide(q, a));
 | ||
|         if (q == NULL) {
 | ||
|             goto error;
 | ||
|         }
 | ||
| 
 | ||
|         /* a = (a << d - 1 - e) + q */
 | ||
|         Py_SETREF(a, _PyLong_Lshift(a, d - 1U - e));
 | ||
|         if (a == NULL) {
 | ||
|             Py_DECREF(q);
 | ||
|             goto error;
 | ||
|         }
 | ||
|         Py_SETREF(a, PyNumber_Add(a, q));
 | ||
|         Py_DECREF(q);
 | ||
|         if (a == NULL) {
 | ||
|             goto error;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /* The correct result is either a or a - 1. Figure out which, and
 | ||
|        decrement a if necessary. */
 | ||
| 
 | ||
|     /* a_too_large = n < a * a */
 | ||
|     b = PyNumber_Multiply(a, a);
 | ||
|     if (b == NULL) {
 | ||
|         goto error;
 | ||
|     }
 | ||
|     a_too_large = PyObject_RichCompareBool(n, b, Py_LT);
 | ||
|     Py_DECREF(b);
 | ||
|     if (a_too_large == -1) {
 | ||
|         goto error;
 | ||
|     }
 | ||
| 
 | ||
|     if (a_too_large) {
 | ||
|         Py_SETREF(a, PyNumber_Subtract(a, _PyLong_GetOne()));
 | ||
|     }
 | ||
|     Py_DECREF(n);
 | ||
|     return a;
 | ||
| 
 | ||
|   error:
 | ||
|     Py_XDECREF(a);
 | ||
|     Py_DECREF(n);
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Divide-and-conquer factorial algorithm
 | ||
|  *
 | ||
|  * Based on the formula and pseudo-code provided at:
 | ||
|  * http://www.luschny.de/math/factorial/binarysplitfact.html
 | ||
|  *
 | ||
|  * Faster algorithms exist, but they're more complicated and depend on
 | ||
|  * a fast prime factorization algorithm.
 | ||
|  *
 | ||
|  * Notes on the algorithm
 | ||
|  * ----------------------
 | ||
|  *
 | ||
|  * factorial(n) is written in the form 2**k * m, with m odd.  k and m are
 | ||
|  * computed separately, and then combined using a left shift.
 | ||
|  *
 | ||
|  * The function factorial_odd_part computes the odd part m (i.e., the greatest
 | ||
|  * odd divisor) of factorial(n), using the formula:
 | ||
|  *
 | ||
|  *   factorial_odd_part(n) =
 | ||
|  *
 | ||
|  *        product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
 | ||
|  *
 | ||
|  * Example: factorial_odd_part(20) =
 | ||
|  *
 | ||
|  *        (1) *
 | ||
|  *        (1) *
 | ||
|  *        (1 * 3 * 5) *
 | ||
|  *        (1 * 3 * 5 * 7 * 9) *
 | ||
|  *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 | ||
|  *
 | ||
|  * Here i goes from large to small: the first term corresponds to i=4 (any
 | ||
|  * larger i gives an empty product), and the last term corresponds to i=0.
 | ||
|  * Each term can be computed from the last by multiplying by the extra odd
 | ||
|  * numbers required: e.g., to get from the penultimate term to the last one,
 | ||
|  * we multiply by (11 * 13 * 15 * 17 * 19).
 | ||
|  *
 | ||
|  * To see a hint of why this formula works, here are the same numbers as above
 | ||
|  * but with the even parts (i.e., the appropriate powers of 2) included.  For
 | ||
|  * each subterm in the product for i, we multiply that subterm by 2**i:
 | ||
|  *
 | ||
|  *   factorial(20) =
 | ||
|  *
 | ||
|  *        (16) *
 | ||
|  *        (8) *
 | ||
|  *        (4 * 12 * 20) *
 | ||
|  *        (2 * 6 * 10 * 14 * 18) *
 | ||
|  *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 | ||
|  *
 | ||
|  * The factorial_partial_product function computes the product of all odd j in
 | ||
|  * range(start, stop) for given start and stop.  It's used to compute the
 | ||
|  * partial products like (11 * 13 * 15 * 17 * 19) in the example above.  It
 | ||
|  * operates recursively, repeatedly splitting the range into two roughly equal
 | ||
|  * pieces until the subranges are small enough to be computed using only C
 | ||
|  * integer arithmetic.
 | ||
|  *
 | ||
|  * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
 | ||
|  * the factorial) is computed independently in the main math_factorial
 | ||
|  * function.  By standard results, its value is:
 | ||
|  *
 | ||
|  *    two_valuation = n//2 + n//4 + n//8 + ....
 | ||
|  *
 | ||
|  * It can be shown (e.g., by complete induction on n) that two_valuation is
 | ||
|  * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
 | ||
|  * '1'-bits in the binary expansion of n.
 | ||
|  */
 | ||
| 
 | ||
| /* factorial_partial_product: Compute product(range(start, stop, 2)) using
 | ||
|  * divide and conquer.  Assumes start and stop are odd and stop > start.
 | ||
|  * max_bits must be >= bit_length(stop - 2). */
 | ||
| 
 | ||
| static PyObject *
 | ||
| factorial_partial_product(unsigned long start, unsigned long stop,
 | ||
|                           unsigned long max_bits)
 | ||
| {
 | ||
|     unsigned long midpoint, num_operands;
 | ||
|     PyObject *left = NULL, *right = NULL, *result = NULL;
 | ||
| 
 | ||
|     /* If the return value will fit an unsigned long, then we can
 | ||
|      * multiply in a tight, fast loop where each multiply is O(1).
 | ||
|      * Compute an upper bound on the number of bits required to store
 | ||
|      * the answer.
 | ||
|      *
 | ||
|      * Storing some integer z requires floor(lg(z))+1 bits, which is
 | ||
|      * conveniently the value returned by bit_length(z).  The
 | ||
|      * product x*y will require at most
 | ||
|      * bit_length(x) + bit_length(y) bits to store, based
 | ||
|      * on the idea that lg product = lg x + lg y.
 | ||
|      *
 | ||
|      * We know that stop - 2 is the largest number to be multiplied.  From
 | ||
|      * there, we have: bit_length(answer) <= num_operands *
 | ||
|      * bit_length(stop - 2)
 | ||
|      */
 | ||
| 
 | ||
|     num_operands = (stop - start) / 2;
 | ||
|     /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
 | ||
|      * unlikely case of an overflow in num_operands * max_bits. */
 | ||
|     if (num_operands <= 8 * SIZEOF_LONG &&
 | ||
|         num_operands * max_bits <= 8 * SIZEOF_LONG) {
 | ||
|         unsigned long j, total;
 | ||
|         for (total = start, j = start + 2; j < stop; j += 2)
 | ||
|             total *= j;
 | ||
|         return PyLong_FromUnsignedLong(total);
 | ||
|     }
 | ||
| 
 | ||
|     /* find midpoint of range(start, stop), rounded up to next odd number. */
 | ||
|     midpoint = (start + num_operands) | 1;
 | ||
|     left = factorial_partial_product(start, midpoint,
 | ||
|                                      _Py_bit_length(midpoint - 2));
 | ||
|     if (left == NULL)
 | ||
|         goto error;
 | ||
|     right = factorial_partial_product(midpoint, stop, max_bits);
 | ||
|     if (right == NULL)
 | ||
|         goto error;
 | ||
|     result = PyNumber_Multiply(left, right);
 | ||
| 
 | ||
|   error:
 | ||
|     Py_XDECREF(left);
 | ||
|     Py_XDECREF(right);
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| /* factorial_odd_part:  compute the odd part of factorial(n). */
 | ||
| 
 | ||
| static PyObject *
 | ||
| factorial_odd_part(unsigned long n)
 | ||
| {
 | ||
|     long i;
 | ||
|     unsigned long v, lower, upper;
 | ||
|     PyObject *partial, *tmp, *inner, *outer;
 | ||
| 
 | ||
|     inner = PyLong_FromLong(1);
 | ||
|     if (inner == NULL)
 | ||
|         return NULL;
 | ||
|     outer = Py_NewRef(inner);
 | ||
| 
 | ||
|     upper = 3;
 | ||
|     for (i = _Py_bit_length(n) - 2; i >= 0; i--) {
 | ||
|         v = n >> i;
 | ||
|         if (v <= 2)
 | ||
|             continue;
 | ||
|         lower = upper;
 | ||
|         /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
 | ||
|         upper = (v + 1) | 1;
 | ||
|         /* Here inner is the product of all odd integers j in the range (0,
 | ||
|            n/2**(i+1)].  The factorial_partial_product call below gives the
 | ||
|            product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
 | ||
|         partial = factorial_partial_product(lower, upper, _Py_bit_length(upper-2));
 | ||
|         /* inner *= partial */
 | ||
|         if (partial == NULL)
 | ||
|             goto error;
 | ||
|         tmp = PyNumber_Multiply(inner, partial);
 | ||
|         Py_DECREF(partial);
 | ||
|         if (tmp == NULL)
 | ||
|             goto error;
 | ||
|         Py_SETREF(inner, tmp);
 | ||
|         /* Now inner is the product of all odd integers j in the range (0,
 | ||
|            n/2**i], giving the inner product in the formula above. */
 | ||
| 
 | ||
|         /* outer *= inner; */
 | ||
|         tmp = PyNumber_Multiply(outer, inner);
 | ||
|         if (tmp == NULL)
 | ||
|             goto error;
 | ||
|         Py_SETREF(outer, tmp);
 | ||
|     }
 | ||
|     Py_DECREF(inner);
 | ||
|     return outer;
 | ||
| 
 | ||
|   error:
 | ||
|     Py_DECREF(outer);
 | ||
|     Py_DECREF(inner);
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Lookup table for small factorial values */
 | ||
| 
 | ||
| static const unsigned long SmallFactorials[] = {
 | ||
|     1, 1, 2, 6, 24, 120, 720, 5040, 40320,
 | ||
|     362880, 3628800, 39916800, 479001600,
 | ||
| #if SIZEOF_LONG >= 8
 | ||
|     6227020800, 87178291200, 1307674368000,
 | ||
|     20922789888000, 355687428096000, 6402373705728000,
 | ||
|     121645100408832000, 2432902008176640000
 | ||
| #endif
 | ||
| };
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.factorial
 | ||
| 
 | ||
|     n as arg: object
 | ||
|     /
 | ||
| 
 | ||
| Find n!.
 | ||
| 
 | ||
| Raise a ValueError if x is negative or non-integral.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_factorial(PyObject *module, PyObject *arg)
 | ||
| /*[clinic end generated code: output=6686f26fae00e9ca input=713fb771677e8c31]*/
 | ||
| {
 | ||
|     long x, two_valuation;
 | ||
|     int overflow;
 | ||
|     PyObject *result, *odd_part;
 | ||
| 
 | ||
|     x = PyLong_AsLongAndOverflow(arg, &overflow);
 | ||
|     if (x == -1 && PyErr_Occurred()) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     else if (overflow == 1) {
 | ||
|         PyErr_Format(PyExc_OverflowError,
 | ||
|                      "factorial() argument should not exceed %ld",
 | ||
|                      LONG_MAX);
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     else if (overflow == -1 || x < 0) {
 | ||
|         PyErr_SetString(PyExc_ValueError,
 | ||
|                         "factorial() not defined for negative values");
 | ||
|         return NULL;
 | ||
|     }
 | ||
| 
 | ||
|     /* use lookup table if x is small */
 | ||
|     if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
 | ||
|         return PyLong_FromUnsignedLong(SmallFactorials[x]);
 | ||
| 
 | ||
|     /* else express in the form odd_part * 2**two_valuation, and compute as
 | ||
|        odd_part << two_valuation. */
 | ||
|     odd_part = factorial_odd_part(x);
 | ||
|     if (odd_part == NULL)
 | ||
|         return NULL;
 | ||
|     two_valuation = x - count_set_bits(x);
 | ||
|     result = _PyLong_Lshift(odd_part, two_valuation);
 | ||
|     Py_DECREF(odd_part);
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.trunc
 | ||
| 
 | ||
|     x: object
 | ||
|     /
 | ||
| 
 | ||
| Truncates the Real x to the nearest Integral toward 0.
 | ||
| 
 | ||
| Uses the __trunc__ magic method.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_trunc(PyObject *module, PyObject *x)
 | ||
| /*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/
 | ||
| {
 | ||
|     PyObject *trunc, *result;
 | ||
| 
 | ||
|     if (PyFloat_CheckExact(x)) {
 | ||
|         return PyFloat_Type.tp_as_number->nb_int(x);
 | ||
|     }
 | ||
| 
 | ||
|     math_module_state *state = get_math_module_state(module);
 | ||
|     trunc = _PyObject_LookupSpecial(x, state->str___trunc__);
 | ||
|     if (trunc == NULL) {
 | ||
|         if (!PyErr_Occurred())
 | ||
|             PyErr_Format(PyExc_TypeError,
 | ||
|                          "type %.100s doesn't define __trunc__ method",
 | ||
|                          Py_TYPE(x)->tp_name);
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     result = _PyObject_CallNoArgs(trunc);
 | ||
|     Py_DECREF(trunc);
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.frexp
 | ||
| 
 | ||
|     x: double
 | ||
|     /
 | ||
| 
 | ||
| Return the mantissa and exponent of x, as pair (m, e).
 | ||
| 
 | ||
| m is a float and e is an int, such that x = m * 2.**e.
 | ||
| If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_frexp_impl(PyObject *module, double x)
 | ||
| /*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/
 | ||
| {
 | ||
|     int i;
 | ||
|     /* deal with special cases directly, to sidestep platform
 | ||
|        differences */
 | ||
|     if (isnan(x) || isinf(x) || !x) {
 | ||
|         i = 0;
 | ||
|     }
 | ||
|     else {
 | ||
|         x = frexp(x, &i);
 | ||
|     }
 | ||
|     return Py_BuildValue("(di)", x, i);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.ldexp
 | ||
| 
 | ||
|     x: double
 | ||
|     i: object
 | ||
|     /
 | ||
| 
 | ||
| Return x * (2**i).
 | ||
| 
 | ||
| This is essentially the inverse of frexp().
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_ldexp_impl(PyObject *module, double x, PyObject *i)
 | ||
| /*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/
 | ||
| {
 | ||
|     double r;
 | ||
|     long exp;
 | ||
|     int overflow;
 | ||
| 
 | ||
|     if (PyLong_Check(i)) {
 | ||
|         /* on overflow, replace exponent with either LONG_MAX
 | ||
|            or LONG_MIN, depending on the sign. */
 | ||
|         exp = PyLong_AsLongAndOverflow(i, &overflow);
 | ||
|         if (exp == -1 && PyErr_Occurred())
 | ||
|             return NULL;
 | ||
|         if (overflow)
 | ||
|             exp = overflow < 0 ? LONG_MIN : LONG_MAX;
 | ||
|     }
 | ||
|     else {
 | ||
|         PyErr_SetString(PyExc_TypeError,
 | ||
|                         "Expected an int as second argument to ldexp.");
 | ||
|         return NULL;
 | ||
|     }
 | ||
| 
 | ||
|     if (x == 0. || !isfinite(x)) {
 | ||
|         /* NaNs, zeros and infinities are returned unchanged */
 | ||
|         r = x;
 | ||
|         errno = 0;
 | ||
|     } else if (exp > INT_MAX) {
 | ||
|         /* overflow */
 | ||
|         r = copysign(Py_HUGE_VAL, x);
 | ||
|         errno = ERANGE;
 | ||
|     } else if (exp < INT_MIN) {
 | ||
|         /* underflow to +-0 */
 | ||
|         r = copysign(0., x);
 | ||
|         errno = 0;
 | ||
|     } else {
 | ||
|         errno = 0;
 | ||
|         r = ldexp(x, (int)exp);
 | ||
|         if (isinf(r))
 | ||
|             errno = ERANGE;
 | ||
|     }
 | ||
| 
 | ||
|     if (errno && is_error(r))
 | ||
|         return NULL;
 | ||
|     return PyFloat_FromDouble(r);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.modf
 | ||
| 
 | ||
|     x: double
 | ||
|     /
 | ||
| 
 | ||
| Return the fractional and integer parts of x.
 | ||
| 
 | ||
| Both results carry the sign of x and are floats.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_modf_impl(PyObject *module, double x)
 | ||
| /*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/
 | ||
| {
 | ||
|     double y;
 | ||
|     /* some platforms don't do the right thing for NaNs and
 | ||
|        infinities, so we take care of special cases directly. */
 | ||
|     if (isinf(x))
 | ||
|         return Py_BuildValue("(dd)", copysign(0., x), x);
 | ||
|     else if (isnan(x))
 | ||
|         return Py_BuildValue("(dd)", x, x);
 | ||
| 
 | ||
|     errno = 0;
 | ||
|     x = modf(x, &y);
 | ||
|     return Py_BuildValue("(dd)", x, y);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* A decent logarithm is easy to compute even for huge ints, but libm can't
 | ||
|    do that by itself -- loghelper can.  func is log or log10, and name is
 | ||
|    "log" or "log10".  Note that overflow of the result isn't possible: an int
 | ||
|    can contain no more than INT_MAX * SHIFT bits, so has value certainly less
 | ||
|    than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
 | ||
|    small enough to fit in an IEEE single.  log and log10 are even smaller.
 | ||
|    However, intermediate overflow is possible for an int if the number of bits
 | ||
|    in that int is larger than PY_SSIZE_T_MAX. */
 | ||
| 
 | ||
| static PyObject*
 | ||
| loghelper(PyObject* arg, double (*func)(double))
 | ||
| {
 | ||
|     /* If it is int, do it ourselves. */
 | ||
|     if (PyLong_Check(arg)) {
 | ||
|         double x, result;
 | ||
|         int64_t e;
 | ||
| 
 | ||
|         /* Negative or zero inputs give a ValueError. */
 | ||
|         if (!_PyLong_IsPositive((PyLongObject *)arg)) {
 | ||
|             PyErr_SetString(PyExc_ValueError,
 | ||
|                             "math domain error");
 | ||
|             return NULL;
 | ||
|         }
 | ||
| 
 | ||
|         x = PyLong_AsDouble(arg);
 | ||
|         if (x == -1.0 && PyErr_Occurred()) {
 | ||
|             if (!PyErr_ExceptionMatches(PyExc_OverflowError))
 | ||
|                 return NULL;
 | ||
|             /* Here the conversion to double overflowed, but it's possible
 | ||
|                to compute the log anyway.  Clear the exception and continue. */
 | ||
|             PyErr_Clear();
 | ||
|             x = _PyLong_Frexp((PyLongObject *)arg, &e);
 | ||
|             if (x == -1.0 && PyErr_Occurred())
 | ||
|                 return NULL;
 | ||
|             /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
 | ||
|             result = func(x) + func(2.0) * e;
 | ||
|         }
 | ||
|         else
 | ||
|             /* Successfully converted x to a double. */
 | ||
|             result = func(x);
 | ||
|         return PyFloat_FromDouble(result);
 | ||
|     }
 | ||
| 
 | ||
|     /* Else let libm handle it by itself. */
 | ||
|     return math_1(arg, func, 0);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* AC: cannot convert yet, see gh-102839 and gh-89381, waiting
 | ||
|    for support of multiple signatures */
 | ||
| static PyObject *
 | ||
| math_log(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
 | ||
| {
 | ||
|     PyObject *num, *den;
 | ||
|     PyObject *ans;
 | ||
| 
 | ||
|     if (!_PyArg_CheckPositional("log", nargs, 1, 2))
 | ||
|         return NULL;
 | ||
| 
 | ||
|     num = loghelper(args[0], m_log);
 | ||
|     if (num == NULL || nargs == 1)
 | ||
|         return num;
 | ||
| 
 | ||
|     den = loghelper(args[1], m_log);
 | ||
|     if (den == NULL) {
 | ||
|         Py_DECREF(num);
 | ||
|         return NULL;
 | ||
|     }
 | ||
| 
 | ||
|     ans = PyNumber_TrueDivide(num, den);
 | ||
|     Py_DECREF(num);
 | ||
|     Py_DECREF(den);
 | ||
|     return ans;
 | ||
| }
 | ||
| 
 | ||
| PyDoc_STRVAR(math_log_doc,
 | ||
| "log(x, [base=math.e])\n\
 | ||
| Return the logarithm of x to the given base.\n\n\
 | ||
| If the base is not specified, returns the natural logarithm (base e) of x.");
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.log2
 | ||
| 
 | ||
|     x: object
 | ||
|     /
 | ||
| 
 | ||
| Return the base 2 logarithm of x.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_log2(PyObject *module, PyObject *x)
 | ||
| /*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/
 | ||
| {
 | ||
|     return loghelper(x, m_log2);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.log10
 | ||
| 
 | ||
|     x: object
 | ||
|     /
 | ||
| 
 | ||
| Return the base 10 logarithm of x.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_log10(PyObject *module, PyObject *x)
 | ||
| /*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/
 | ||
| {
 | ||
|     return loghelper(x, m_log10);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.fma
 | ||
| 
 | ||
|     x: double
 | ||
|     y: double
 | ||
|     z: double
 | ||
|     /
 | ||
| 
 | ||
| Fused multiply-add operation.
 | ||
| 
 | ||
| Compute (x * y) + z with a single round.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_fma_impl(PyObject *module, double x, double y, double z)
 | ||
| /*[clinic end generated code: output=4fc8626dbc278d17 input=e3ad1f4a4c89626e]*/
 | ||
| {
 | ||
|     double r = fma(x, y, z);
 | ||
| 
 | ||
|     /* Fast path: if we got a finite result, we're done. */
 | ||
|     if (isfinite(r)) {
 | ||
|         return PyFloat_FromDouble(r);
 | ||
|     }
 | ||
| 
 | ||
|     /* Non-finite result. Raise an exception if appropriate, else return r. */
 | ||
|     if (isnan(r)) {
 | ||
|         if (!isnan(x) && !isnan(y) && !isnan(z)) {
 | ||
|             /* NaN result from non-NaN inputs. */
 | ||
|             PyErr_SetString(PyExc_ValueError, "invalid operation in fma");
 | ||
|             return NULL;
 | ||
|         }
 | ||
|     }
 | ||
|     else if (isfinite(x) && isfinite(y) && isfinite(z)) {
 | ||
|         /* Infinite result from finite inputs. */
 | ||
|         PyErr_SetString(PyExc_OverflowError, "overflow in fma");
 | ||
|         return NULL;
 | ||
|     }
 | ||
| 
 | ||
|     return PyFloat_FromDouble(r);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.fmod
 | ||
| 
 | ||
|     x: double
 | ||
|     y: double
 | ||
|     /
 | ||
| 
 | ||
| Return fmod(x, y), according to platform C.
 | ||
| 
 | ||
| x % y may differ.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_fmod_impl(PyObject *module, double x, double y)
 | ||
| /*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/
 | ||
| {
 | ||
|     double r;
 | ||
|     /* fmod(x, +/-Inf) returns x for finite x. */
 | ||
|     if (isinf(y) && isfinite(x))
 | ||
|         return PyFloat_FromDouble(x);
 | ||
|     errno = 0;
 | ||
|     r = fmod(x, y);
 | ||
|     if (isnan(r)) {
 | ||
|         if (!isnan(x) && !isnan(y))
 | ||
|             errno = EDOM;
 | ||
|         else
 | ||
|             errno = 0;
 | ||
|     }
 | ||
|     if (errno && is_error(r))
 | ||
|         return NULL;
 | ||
|     else
 | ||
|         return PyFloat_FromDouble(r);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
| Given a *vec* of values, compute the vector norm:
 | ||
| 
 | ||
|     sqrt(sum(x ** 2 for x in vec))
 | ||
| 
 | ||
| The *max* variable should be equal to the largest fabs(x).
 | ||
| The *n* variable is the length of *vec*.
 | ||
| If n==0, then *max* should be 0.0.
 | ||
| If an infinity is present in the vec, *max* should be INF.
 | ||
| The *found_nan* variable indicates whether some member of
 | ||
| the *vec* is a NaN.
 | ||
| 
 | ||
| To avoid overflow/underflow and to achieve high accuracy giving results
 | ||
| that are almost always correctly rounded, four techniques are used:
 | ||
| 
 | ||
| * lossless scaling using a power-of-two scaling factor
 | ||
| * accurate squaring using Veltkamp-Dekker splitting [1]
 | ||
|   or an equivalent with an fma() call
 | ||
| * compensated summation using a variant of the Neumaier algorithm [2]
 | ||
| * differential correction of the square root [3]
 | ||
| 
 | ||
| The usual presentation of the Neumaier summation algorithm has an
 | ||
| expensive branch depending on which operand has the larger
 | ||
| magnitude.  We avoid this cost by arranging the calculation so that
 | ||
| fabs(csum) is always as large as fabs(x).
 | ||
| 
 | ||
| To establish the invariant, *csum* is initialized to 1.0 which is
 | ||
| always larger than x**2 after scaling or after division by *max*.
 | ||
| After the loop is finished, the initial 1.0 is subtracted out for a
 | ||
| net zero effect on the final sum.  Since *csum* will be greater than
 | ||
| 1.0, the subtraction of 1.0 will not cause fractional digits to be
 | ||
| dropped from *csum*.
 | ||
| 
 | ||
| To get the full benefit from compensated summation, the largest
 | ||
| addend should be in the range: 0.5 <= |x| <= 1.0.  Accordingly,
 | ||
| scaling or division by *max* should not be skipped even if not
 | ||
| otherwise needed to prevent overflow or loss of precision.
 | ||
| 
 | ||
| The assertion that hi*hi <= 1.0 is a bit subtle.  Each vector element
 | ||
| gets scaled to a magnitude below 1.0.  The Veltkamp-Dekker splitting
 | ||
| algorithm gives a *hi* value that is correctly rounded to half
 | ||
| precision.  When a value at or below 1.0 is correctly rounded, it
 | ||
| never goes above 1.0.  And when values at or below 1.0 are squared,
 | ||
| they remain at or below 1.0, thus preserving the summation invariant.
 | ||
| 
 | ||
| Another interesting assertion is that csum+lo*lo == csum. In the loop,
 | ||
| each scaled vector element has a magnitude less than 1.0.  After the
 | ||
| Veltkamp split, *lo* has a maximum value of 2**-27.  So the maximum
 | ||
| value of *lo* squared is 2**-54.  The value of ulp(1.0)/2.0 is 2**-53.
 | ||
| Given that csum >= 1.0, we have:
 | ||
|     lo**2 <= 2**-54 < 2**-53 == 1/2*ulp(1.0) <= ulp(csum)/2
 | ||
| Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum.
 | ||
| 
 | ||
| To minimize loss of information during the accumulation of fractional
 | ||
| values, each term has a separate accumulator.  This also breaks up
 | ||
| sequential dependencies in the inner loop so the CPU can maximize
 | ||
| floating-point throughput. [4]  On an Apple M1 Max, hypot(*vec)
 | ||
| takes only 3.33 µsec when len(vec) == 1000.
 | ||
| 
 | ||
| The square root differential correction is needed because a
 | ||
| correctly rounded square root of a correctly rounded sum of
 | ||
| squares can still be off by as much as one ulp.
 | ||
| 
 | ||
| The differential correction starts with a value *x* that is
 | ||
| the difference between the square of *h*, the possibly inaccurately
 | ||
| rounded square root, and the accurately computed sum of squares.
 | ||
| The correction is the first order term of the Maclaurin series
 | ||
| expansion of sqrt(h**2 + x) == h + x/(2*h) + O(x**2). [5]
 | ||
| 
 | ||
| Essentially, this differential correction is equivalent to one
 | ||
| refinement step in Newton's divide-and-average square root
 | ||
| algorithm, effectively doubling the number of accurate bits.
 | ||
| This technique is used in Dekker's SQRT2 algorithm and again in
 | ||
| Borges' ALGORITHM 4 and 5.
 | ||
| 
 | ||
| The hypot() function is faithfully rounded (less than 1 ulp error)
 | ||
| and usually correctly rounded (within 1/2 ulp).  The squaring
 | ||
| step is exact.  The Neumaier summation computes as if in doubled
 | ||
| precision (106 bits) and has the advantage that its input squares
 | ||
| are non-negative so that the condition number of the sum is one.
 | ||
| The square root with a differential correction is likewise computed
 | ||
| as if in doubled precision.
 | ||
| 
 | ||
| For n <= 1000, prior to the final addition that rounds the overall
 | ||
| result, the internal accuracy of "h" together with its correction of
 | ||
| "x / (2.0 * h)" is at least 100 bits. [6] Also, hypot() was tested
 | ||
| against a Decimal implementation with prec=300.  After 100 million
 | ||
| trials, no incorrectly rounded examples were found.  In addition,
 | ||
| perfect commutativity (all permutations are exactly equal) was
 | ||
| verified for 1 billion random inputs with n=5. [7]
 | ||
| 
 | ||
| References:
 | ||
| 
 | ||
| 1. Veltkamp-Dekker splitting: http://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
 | ||
| 2. Compensated summation:  http://www.ti3.tu-harburg.de/paper/rump/Ru08b.pdf
 | ||
| 3. Square root differential correction:  https://arxiv.org/pdf/1904.09481.pdf
 | ||
| 4. Data dependency graph:  https://bugs.python.org/file49439/hypot.png
 | ||
| 5. https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
 | ||
| 6. Analysis of internal accuracy:  https://bugs.python.org/file49484/best_frac.py
 | ||
| 7. Commutativity test:  https://bugs.python.org/file49448/test_hypot_commutativity.py
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| static inline double
 | ||
| vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
 | ||
| {
 | ||
|     double x, h, scale, csum = 1.0, frac1 = 0.0, frac2 = 0.0;
 | ||
|     DoubleLength pr, sm;
 | ||
|     int max_e;
 | ||
|     Py_ssize_t i;
 | ||
| 
 | ||
|     if (isinf(max)) {
 | ||
|         return max;
 | ||
|     }
 | ||
|     if (found_nan) {
 | ||
|         return Py_NAN;
 | ||
|     }
 | ||
|     if (max == 0.0 || n <= 1) {
 | ||
|         return max;
 | ||
|     }
 | ||
|     frexp(max, &max_e);
 | ||
|     if (max_e < -1023) {
 | ||
|         /* When max_e < -1023, ldexp(1.0, -max_e) would overflow. */
 | ||
|         for (i=0 ; i < n ; i++) {
 | ||
|             vec[i] /= DBL_MIN;          // convert subnormals to normals
 | ||
|         }
 | ||
|         return DBL_MIN * vector_norm(n, vec, max / DBL_MIN, found_nan);
 | ||
|     }
 | ||
|     scale = ldexp(1.0, -max_e);
 | ||
|     assert(max * scale >= 0.5);
 | ||
|     assert(max * scale < 1.0);
 | ||
|     for (i=0 ; i < n ; i++) {
 | ||
|         x = vec[i];
 | ||
|         assert(isfinite(x) && fabs(x) <= max);
 | ||
|         x *= scale;                     // lossless scaling
 | ||
|         assert(fabs(x) < 1.0);
 | ||
|         pr = dl_mul(x, x);              // lossless squaring
 | ||
|         assert(pr.hi <= 1.0);
 | ||
|         sm = dl_fast_sum(csum, pr.hi);  // lossless addition
 | ||
|         csum = sm.hi;
 | ||
|         frac1 += pr.lo;                 // lossy addition
 | ||
|         frac2 += sm.lo;                 // lossy addition
 | ||
|     }
 | ||
|     h = sqrt(csum - 1.0 + (frac1 + frac2));
 | ||
|     pr = dl_mul(-h, h);
 | ||
|     sm = dl_fast_sum(csum, pr.hi);
 | ||
|     csum = sm.hi;
 | ||
|     frac1 += pr.lo;
 | ||
|     frac2 += sm.lo;
 | ||
|     x = csum - 1.0 + (frac1 + frac2);
 | ||
|     h +=  x / (2.0 * h);                 // differential correction
 | ||
|     return h / scale;
 | ||
| }
 | ||
| 
 | ||
| #define NUM_STACK_ELEMS 16
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.dist
 | ||
| 
 | ||
|     p: object
 | ||
|     q: object
 | ||
|     /
 | ||
| 
 | ||
| Return the Euclidean distance between two points p and q.
 | ||
| 
 | ||
| The points should be specified as sequences (or iterables) of
 | ||
| coordinates.  Both inputs must have the same dimension.
 | ||
| 
 | ||
| Roughly equivalent to:
 | ||
|     sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
 | ||
| /*[clinic end generated code: output=56bd9538d06bbcfe input=74e85e1b6092e68e]*/
 | ||
| {
 | ||
|     PyObject *item;
 | ||
|     double max = 0.0;
 | ||
|     double x, px, qx, result;
 | ||
|     Py_ssize_t i, m, n;
 | ||
|     int found_nan = 0, p_allocated = 0, q_allocated = 0;
 | ||
|     double diffs_on_stack[NUM_STACK_ELEMS];
 | ||
|     double *diffs = diffs_on_stack;
 | ||
| 
 | ||
|     if (!PyTuple_Check(p)) {
 | ||
|         p = PySequence_Tuple(p);
 | ||
|         if (p == NULL) {
 | ||
|             return NULL;
 | ||
|         }
 | ||
|         p_allocated = 1;
 | ||
|     }
 | ||
|     if (!PyTuple_Check(q)) {
 | ||
|         q = PySequence_Tuple(q);
 | ||
|         if (q == NULL) {
 | ||
|             if (p_allocated) {
 | ||
|                 Py_DECREF(p);
 | ||
|             }
 | ||
|             return NULL;
 | ||
|         }
 | ||
|         q_allocated = 1;
 | ||
|     }
 | ||
| 
 | ||
|     m = PyTuple_GET_SIZE(p);
 | ||
|     n = PyTuple_GET_SIZE(q);
 | ||
|     if (m != n) {
 | ||
|         PyErr_SetString(PyExc_ValueError,
 | ||
|                         "both points must have the same number of dimensions");
 | ||
|         goto error_exit;
 | ||
|     }
 | ||
|     if (n > NUM_STACK_ELEMS) {
 | ||
|         diffs = (double *) PyMem_Malloc(n * sizeof(double));
 | ||
|         if (diffs == NULL) {
 | ||
|             PyErr_NoMemory();
 | ||
|             goto error_exit;
 | ||
|         }
 | ||
|     }
 | ||
|     for (i=0 ; i<n ; i++) {
 | ||
|         item = PyTuple_GET_ITEM(p, i);
 | ||
|         ASSIGN_DOUBLE(px, item, error_exit);
 | ||
|         item = PyTuple_GET_ITEM(q, i);
 | ||
|         ASSIGN_DOUBLE(qx, item, error_exit);
 | ||
|         x = fabs(px - qx);
 | ||
|         diffs[i] = x;
 | ||
|         found_nan |= isnan(x);
 | ||
|         if (x > max) {
 | ||
|             max = x;
 | ||
|         }
 | ||
|     }
 | ||
|     result = vector_norm(n, diffs, max, found_nan);
 | ||
|     if (diffs != diffs_on_stack) {
 | ||
|         PyMem_Free(diffs);
 | ||
|     }
 | ||
|     if (p_allocated) {
 | ||
|         Py_DECREF(p);
 | ||
|     }
 | ||
|     if (q_allocated) {
 | ||
|         Py_DECREF(q);
 | ||
|     }
 | ||
|     return PyFloat_FromDouble(result);
 | ||
| 
 | ||
|   error_exit:
 | ||
|     if (diffs != diffs_on_stack) {
 | ||
|         PyMem_Free(diffs);
 | ||
|     }
 | ||
|     if (p_allocated) {
 | ||
|         Py_DECREF(p);
 | ||
|     }
 | ||
|     if (q_allocated) {
 | ||
|         Py_DECREF(q);
 | ||
|     }
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* AC: cannot convert yet, waiting for *args support */
 | ||
| static PyObject *
 | ||
| math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
 | ||
| {
 | ||
|     Py_ssize_t i;
 | ||
|     PyObject *item;
 | ||
|     double max = 0.0;
 | ||
|     double x, result;
 | ||
|     int found_nan = 0;
 | ||
|     double coord_on_stack[NUM_STACK_ELEMS];
 | ||
|     double *coordinates = coord_on_stack;
 | ||
| 
 | ||
|     if (nargs > NUM_STACK_ELEMS) {
 | ||
|         coordinates = (double *) PyMem_Malloc(nargs * sizeof(double));
 | ||
|         if (coordinates == NULL) {
 | ||
|             return PyErr_NoMemory();
 | ||
|         }
 | ||
|     }
 | ||
|     for (i = 0; i < nargs; i++) {
 | ||
|         item = args[i];
 | ||
|         ASSIGN_DOUBLE(x, item, error_exit);
 | ||
|         x = fabs(x);
 | ||
|         coordinates[i] = x;
 | ||
|         found_nan |= isnan(x);
 | ||
|         if (x > max) {
 | ||
|             max = x;
 | ||
|         }
 | ||
|     }
 | ||
|     result = vector_norm(nargs, coordinates, max, found_nan);
 | ||
|     if (coordinates != coord_on_stack) {
 | ||
|         PyMem_Free(coordinates);
 | ||
|     }
 | ||
|     return PyFloat_FromDouble(result);
 | ||
| 
 | ||
|   error_exit:
 | ||
|     if (coordinates != coord_on_stack) {
 | ||
|         PyMem_Free(coordinates);
 | ||
|     }
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| #undef NUM_STACK_ELEMS
 | ||
| 
 | ||
| PyDoc_STRVAR(math_hypot_doc,
 | ||
|              "hypot(*coordinates) -> value\n\n\
 | ||
| Multidimensional Euclidean distance from the origin to a point.\n\
 | ||
| \n\
 | ||
| Roughly equivalent to:\n\
 | ||
|     sqrt(sum(x**2 for x in coordinates))\n\
 | ||
| \n\
 | ||
| For a two dimensional point (x, y), gives the hypotenuse\n\
 | ||
| using the Pythagorean theorem:  sqrt(x*x + y*y).\n\
 | ||
| \n\
 | ||
| For example, the hypotenuse of a 3/4/5 right triangle is:\n\
 | ||
| \n\
 | ||
|     >>> hypot(3.0, 4.0)\n\
 | ||
|     5.0\n\
 | ||
| ");
 | ||
| 
 | ||
| /** sumprod() ***************************************************************/
 | ||
| 
 | ||
| /* Forward declaration */
 | ||
| static inline int _check_long_mult_overflow(long a, long b);
 | ||
| 
 | ||
| static inline bool
 | ||
| long_add_would_overflow(long a, long b)
 | ||
| {
 | ||
|     return (a > 0) ? (b > LONG_MAX - a) : (b < LONG_MIN - a);
 | ||
| }
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.sumprod
 | ||
| 
 | ||
|     p: object
 | ||
|     q: object
 | ||
|     /
 | ||
| 
 | ||
| Return the sum of products of values from two iterables p and q.
 | ||
| 
 | ||
| Roughly equivalent to:
 | ||
| 
 | ||
|     sum(itertools.starmap(operator.mul, zip(p, q, strict=True)))
 | ||
| 
 | ||
| For float and mixed int/float inputs, the intermediate products
 | ||
| and sums are computed with extended precision.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_sumprod_impl(PyObject *module, PyObject *p, PyObject *q)
 | ||
| /*[clinic end generated code: output=6722dbfe60664554 input=82be54fe26f87e30]*/
 | ||
| {
 | ||
|     PyObject *p_i = NULL, *q_i = NULL, *term_i = NULL, *new_total = NULL;
 | ||
|     PyObject *p_it, *q_it, *total;
 | ||
|     iternextfunc p_next, q_next;
 | ||
|     bool p_stopped = false, q_stopped = false;
 | ||
|     bool int_path_enabled = true, int_total_in_use = false;
 | ||
|     bool flt_path_enabled = true, flt_total_in_use = false;
 | ||
|     long int_total = 0;
 | ||
|     TripleLength flt_total = tl_zero;
 | ||
| 
 | ||
|     p_it = PyObject_GetIter(p);
 | ||
|     if (p_it == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     q_it = PyObject_GetIter(q);
 | ||
|     if (q_it == NULL) {
 | ||
|         Py_DECREF(p_it);
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     total = PyLong_FromLong(0);
 | ||
|     if (total == NULL) {
 | ||
|         Py_DECREF(p_it);
 | ||
|         Py_DECREF(q_it);
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     p_next = *Py_TYPE(p_it)->tp_iternext;
 | ||
|     q_next = *Py_TYPE(q_it)->tp_iternext;
 | ||
|     while (1) {
 | ||
|         bool finished;
 | ||
| 
 | ||
|         assert (p_i == NULL);
 | ||
|         assert (q_i == NULL);
 | ||
|         assert (term_i == NULL);
 | ||
|         assert (new_total == NULL);
 | ||
| 
 | ||
|         assert (p_it != NULL);
 | ||
|         assert (q_it != NULL);
 | ||
|         assert (total != NULL);
 | ||
| 
 | ||
|         p_i = p_next(p_it);
 | ||
|         if (p_i == NULL) {
 | ||
|             if (PyErr_Occurred()) {
 | ||
|                 if (!PyErr_ExceptionMatches(PyExc_StopIteration)) {
 | ||
|                     goto err_exit;
 | ||
|                 }
 | ||
|                 PyErr_Clear();
 | ||
|             }
 | ||
|             p_stopped = true;
 | ||
|         }
 | ||
|         q_i = q_next(q_it);
 | ||
|         if (q_i == NULL) {
 | ||
|             if (PyErr_Occurred()) {
 | ||
|                 if (!PyErr_ExceptionMatches(PyExc_StopIteration)) {
 | ||
|                     goto err_exit;
 | ||
|                 }
 | ||
|                 PyErr_Clear();
 | ||
|             }
 | ||
|             q_stopped = true;
 | ||
|         }
 | ||
|         if (p_stopped != q_stopped) {
 | ||
|             PyErr_Format(PyExc_ValueError, "Inputs are not the same length");
 | ||
|             goto err_exit;
 | ||
|         }
 | ||
|         finished = p_stopped & q_stopped;
 | ||
| 
 | ||
|         if (int_path_enabled) {
 | ||
| 
 | ||
|             if (!finished && PyLong_CheckExact(p_i) & PyLong_CheckExact(q_i)) {
 | ||
|                 int overflow;
 | ||
|                 long int_p, int_q, int_prod;
 | ||
| 
 | ||
|                 int_p = PyLong_AsLongAndOverflow(p_i, &overflow);
 | ||
|                 if (overflow) {
 | ||
|                     goto finalize_int_path;
 | ||
|                 }
 | ||
|                 int_q = PyLong_AsLongAndOverflow(q_i, &overflow);
 | ||
|                 if (overflow) {
 | ||
|                     goto finalize_int_path;
 | ||
|                 }
 | ||
|                 if (_check_long_mult_overflow(int_p, int_q)) {
 | ||
|                     goto finalize_int_path;
 | ||
|                 }
 | ||
|                 int_prod = int_p * int_q;
 | ||
|                 if (long_add_would_overflow(int_total, int_prod)) {
 | ||
|                     goto finalize_int_path;
 | ||
|                 }
 | ||
|                 int_total += int_prod;
 | ||
|                 int_total_in_use = true;
 | ||
|                 Py_CLEAR(p_i);
 | ||
|                 Py_CLEAR(q_i);
 | ||
|                 continue;
 | ||
|             }
 | ||
| 
 | ||
|           finalize_int_path:
 | ||
|             // We're finished, overflowed, or have a non-int
 | ||
|             int_path_enabled = false;
 | ||
|             if (int_total_in_use) {
 | ||
|                 term_i = PyLong_FromLong(int_total);
 | ||
|                 if (term_i == NULL) {
 | ||
|                     goto err_exit;
 | ||
|                 }
 | ||
|                 new_total = PyNumber_Add(total, term_i);
 | ||
|                 if (new_total == NULL) {
 | ||
|                     goto err_exit;
 | ||
|                 }
 | ||
|                 Py_SETREF(total, new_total);
 | ||
|                 new_total = NULL;
 | ||
|                 Py_CLEAR(term_i);
 | ||
|                 int_total = 0;   // An ounce of prevention, ...
 | ||
|                 int_total_in_use = false;
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         if (flt_path_enabled) {
 | ||
| 
 | ||
|             if (!finished) {
 | ||
|                 double flt_p, flt_q;
 | ||
|                 bool p_type_float = PyFloat_CheckExact(p_i);
 | ||
|                 bool q_type_float = PyFloat_CheckExact(q_i);
 | ||
|                 if (p_type_float && q_type_float) {
 | ||
|                     flt_p = PyFloat_AS_DOUBLE(p_i);
 | ||
|                     flt_q = PyFloat_AS_DOUBLE(q_i);
 | ||
|                 } else if (p_type_float && (PyLong_CheckExact(q_i) || PyBool_Check(q_i))) {
 | ||
|                     /* We care about float/int pairs and int/float pairs because
 | ||
|                        they arise naturally in several use cases such as price
 | ||
|                        times quantity, measurements with integer weights, or
 | ||
|                        data selected by a vector of bools. */
 | ||
|                     flt_p = PyFloat_AS_DOUBLE(p_i);
 | ||
|                     flt_q = PyLong_AsDouble(q_i);
 | ||
|                     if (flt_q == -1.0 && PyErr_Occurred()) {
 | ||
|                         PyErr_Clear();
 | ||
|                         goto finalize_flt_path;
 | ||
|                     }
 | ||
|                 } else if (q_type_float && (PyLong_CheckExact(p_i) || PyBool_Check(p_i))) {
 | ||
|                     flt_q = PyFloat_AS_DOUBLE(q_i);
 | ||
|                     flt_p = PyLong_AsDouble(p_i);
 | ||
|                     if (flt_p == -1.0 && PyErr_Occurred()) {
 | ||
|                         PyErr_Clear();
 | ||
|                         goto finalize_flt_path;
 | ||
|                     }
 | ||
|                 } else {
 | ||
|                     goto finalize_flt_path;
 | ||
|                 }
 | ||
|                 TripleLength new_flt_total = tl_fma(flt_p, flt_q, flt_total);
 | ||
|                 if (isfinite(new_flt_total.hi)) {
 | ||
|                     flt_total = new_flt_total;
 | ||
|                     flt_total_in_use = true;
 | ||
|                     Py_CLEAR(p_i);
 | ||
|                     Py_CLEAR(q_i);
 | ||
|                     continue;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|           finalize_flt_path:
 | ||
|             // We're finished, overflowed, have a non-float, or got a non-finite value
 | ||
|             flt_path_enabled = false;
 | ||
|             if (flt_total_in_use) {
 | ||
|                 term_i = PyFloat_FromDouble(tl_to_d(flt_total));
 | ||
|                 if (term_i == NULL) {
 | ||
|                     goto err_exit;
 | ||
|                 }
 | ||
|                 new_total = PyNumber_Add(total, term_i);
 | ||
|                 if (new_total == NULL) {
 | ||
|                     goto err_exit;
 | ||
|                 }
 | ||
|                 Py_SETREF(total, new_total);
 | ||
|                 new_total = NULL;
 | ||
|                 Py_CLEAR(term_i);
 | ||
|                 flt_total = tl_zero;
 | ||
|                 flt_total_in_use = false;
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         assert(!int_total_in_use);
 | ||
|         assert(!flt_total_in_use);
 | ||
|         if (finished) {
 | ||
|             goto normal_exit;
 | ||
|         }
 | ||
|         term_i = PyNumber_Multiply(p_i, q_i);
 | ||
|         if (term_i == NULL) {
 | ||
|             goto err_exit;
 | ||
|         }
 | ||
|         new_total = PyNumber_Add(total, term_i);
 | ||
|         if (new_total == NULL) {
 | ||
|             goto err_exit;
 | ||
|         }
 | ||
|         Py_SETREF(total, new_total);
 | ||
|         new_total = NULL;
 | ||
|         Py_CLEAR(p_i);
 | ||
|         Py_CLEAR(q_i);
 | ||
|         Py_CLEAR(term_i);
 | ||
|     }
 | ||
| 
 | ||
|  normal_exit:
 | ||
|     Py_DECREF(p_it);
 | ||
|     Py_DECREF(q_it);
 | ||
|     return total;
 | ||
| 
 | ||
|  err_exit:
 | ||
|     Py_DECREF(p_it);
 | ||
|     Py_DECREF(q_it);
 | ||
|     Py_DECREF(total);
 | ||
|     Py_XDECREF(p_i);
 | ||
|     Py_XDECREF(q_i);
 | ||
|     Py_XDECREF(term_i);
 | ||
|     Py_XDECREF(new_total);
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* pow can't use math_2, but needs its own wrapper: the problem is
 | ||
|    that an infinite result can arise either as a result of overflow
 | ||
|    (in which case OverflowError should be raised) or as a result of
 | ||
|    e.g. 0.**-5. (for which ValueError needs to be raised.)
 | ||
| */
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.pow
 | ||
| 
 | ||
|     x: double
 | ||
|     y: double
 | ||
|     /
 | ||
| 
 | ||
| Return x**y (x to the power of y).
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_pow_impl(PyObject *module, double x, double y)
 | ||
| /*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
 | ||
| {
 | ||
|     double r;
 | ||
|     int odd_y;
 | ||
| 
 | ||
|     /* deal directly with IEEE specials, to cope with problems on various
 | ||
|        platforms whose semantics don't exactly match C99 */
 | ||
|     r = 0.; /* silence compiler warning */
 | ||
|     if (!isfinite(x) || !isfinite(y)) {
 | ||
|         errno = 0;
 | ||
|         if (isnan(x))
 | ||
|             r = y == 0. ? 1. : x; /* NaN**0 = 1 */
 | ||
|         else if (isnan(y))
 | ||
|             r = x == 1. ? 1. : y; /* 1**NaN = 1 */
 | ||
|         else if (isinf(x)) {
 | ||
|             odd_y = isfinite(y) && fmod(fabs(y), 2.0) == 1.0;
 | ||
|             if (y > 0.)
 | ||
|                 r = odd_y ? x : fabs(x);
 | ||
|             else if (y == 0.)
 | ||
|                 r = 1.;
 | ||
|             else /* y < 0. */
 | ||
|                 r = odd_y ? copysign(0., x) : 0.;
 | ||
|         }
 | ||
|         else {
 | ||
|             assert(isinf(y));
 | ||
|             if (fabs(x) == 1.0)
 | ||
|                 r = 1.;
 | ||
|             else if (y > 0. && fabs(x) > 1.0)
 | ||
|                 r = y;
 | ||
|             else if (y < 0. && fabs(x) < 1.0) {
 | ||
|                 r = -y; /* result is +inf */
 | ||
|             }
 | ||
|             else
 | ||
|                 r = 0.;
 | ||
|         }
 | ||
|     }
 | ||
|     else {
 | ||
|         /* let libm handle finite**finite */
 | ||
|         errno = 0;
 | ||
|         r = pow(x, y);
 | ||
|         /* a NaN result should arise only from (-ve)**(finite
 | ||
|            non-integer); in this case we want to raise ValueError. */
 | ||
|         if (!isfinite(r)) {
 | ||
|             if (isnan(r)) {
 | ||
|                 errno = EDOM;
 | ||
|             }
 | ||
|             /*
 | ||
|                an infinite result here arises either from:
 | ||
|                (A) (+/-0.)**negative (-> divide-by-zero)
 | ||
|                (B) overflow of x**y with x and y finite
 | ||
|             */
 | ||
|             else if (isinf(r)) {
 | ||
|                 if (x == 0.)
 | ||
|                     errno = EDOM;
 | ||
|                 else
 | ||
|                     errno = ERANGE;
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     if (errno && is_error(r))
 | ||
|         return NULL;
 | ||
|     else
 | ||
|         return PyFloat_FromDouble(r);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static const double degToRad = Py_MATH_PI / 180.0;
 | ||
| static const double radToDeg = 180.0 / Py_MATH_PI;
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.degrees
 | ||
| 
 | ||
|     x: double
 | ||
|     /
 | ||
| 
 | ||
| Convert angle x from radians to degrees.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_degrees_impl(PyObject *module, double x)
 | ||
| /*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/
 | ||
| {
 | ||
|     return PyFloat_FromDouble(x * radToDeg);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.radians
 | ||
| 
 | ||
|     x: double
 | ||
|     /
 | ||
| 
 | ||
| Convert angle x from degrees to radians.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_radians_impl(PyObject *module, double x)
 | ||
| /*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/
 | ||
| {
 | ||
|     return PyFloat_FromDouble(x * degToRad);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.isfinite
 | ||
| 
 | ||
|     x: double
 | ||
|     /
 | ||
| 
 | ||
| Return True if x is neither an infinity nor a NaN, and False otherwise.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_isfinite_impl(PyObject *module, double x)
 | ||
| /*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
 | ||
| {
 | ||
|     return PyBool_FromLong((long)isfinite(x));
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.isnan
 | ||
| 
 | ||
|     x: double
 | ||
|     /
 | ||
| 
 | ||
| Return True if x is a NaN (not a number), and False otherwise.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_isnan_impl(PyObject *module, double x)
 | ||
| /*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
 | ||
| {
 | ||
|     return PyBool_FromLong((long)isnan(x));
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.isinf
 | ||
| 
 | ||
|     x: double
 | ||
|     /
 | ||
| 
 | ||
| Return True if x is a positive or negative infinity, and False otherwise.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_isinf_impl(PyObject *module, double x)
 | ||
| /*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
 | ||
| {
 | ||
|     return PyBool_FromLong((long)isinf(x));
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.isclose -> bool
 | ||
| 
 | ||
|     a: double
 | ||
|     b: double
 | ||
|     *
 | ||
|     rel_tol: double = 1e-09
 | ||
|         maximum difference for being considered "close", relative to the
 | ||
|         magnitude of the input values
 | ||
|     abs_tol: double = 0.0
 | ||
|         maximum difference for being considered "close", regardless of the
 | ||
|         magnitude of the input values
 | ||
| 
 | ||
| Determine whether two floating-point numbers are close in value.
 | ||
| 
 | ||
| Return True if a is close in value to b, and False otherwise.
 | ||
| 
 | ||
| For the values to be considered close, the difference between them
 | ||
| must be smaller than at least one of the tolerances.
 | ||
| 
 | ||
| -inf, inf and NaN behave similarly to the IEEE 754 Standard.  That
 | ||
| is, NaN is not close to anything, even itself.  inf and -inf are
 | ||
| only close to themselves.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static int
 | ||
| math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
 | ||
|                   double abs_tol)
 | ||
| /*[clinic end generated code: output=b73070207511952d input=12d41764468bfdb8]*/
 | ||
| {
 | ||
|     double diff = 0.0;
 | ||
| 
 | ||
|     /* sanity check on the inputs */
 | ||
|     if (rel_tol < 0.0 || abs_tol < 0.0 ) {
 | ||
|         PyErr_SetString(PyExc_ValueError,
 | ||
|                         "tolerances must be non-negative");
 | ||
|         return -1;
 | ||
|     }
 | ||
| 
 | ||
|     if ( a == b ) {
 | ||
|         /* short circuit exact equality -- needed to catch two infinities of
 | ||
|            the same sign. And perhaps speeds things up a bit sometimes.
 | ||
|         */
 | ||
|         return 1;
 | ||
|     }
 | ||
| 
 | ||
|     /* This catches the case of two infinities of opposite sign, or
 | ||
|        one infinity and one finite number. Two infinities of opposite
 | ||
|        sign would otherwise have an infinite relative tolerance.
 | ||
|        Two infinities of the same sign are caught by the equality check
 | ||
|        above.
 | ||
|     */
 | ||
| 
 | ||
|     if (isinf(a) || isinf(b)) {
 | ||
|         return 0;
 | ||
|     }
 | ||
| 
 | ||
|     /* now do the regular computation
 | ||
|        this is essentially the "weak" test from the Boost library
 | ||
|     */
 | ||
| 
 | ||
|     diff = fabs(b - a);
 | ||
| 
 | ||
|     return (((diff <= fabs(rel_tol * b)) ||
 | ||
|              (diff <= fabs(rel_tol * a))) ||
 | ||
|             (diff <= abs_tol));
 | ||
| }
 | ||
| 
 | ||
| static inline int
 | ||
| _check_long_mult_overflow(long a, long b) {
 | ||
| 
 | ||
|     /* From Python2's int_mul code:
 | ||
| 
 | ||
|     Integer overflow checking for * is painful:  Python tried a couple ways, but
 | ||
|     they didn't work on all platforms, or failed in endcases (a product of
 | ||
|     -sys.maxint-1 has been a particular pain).
 | ||
| 
 | ||
|     Here's another way:
 | ||
| 
 | ||
|     The native long product x*y is either exactly right or *way* off, being
 | ||
|     just the last n bits of the true product, where n is the number of bits
 | ||
|     in a long (the delivered product is the true product plus i*2**n for
 | ||
|     some integer i).
 | ||
| 
 | ||
|     The native double product (double)x * (double)y is subject to three
 | ||
|     rounding errors:  on a sizeof(long)==8 box, each cast to double can lose
 | ||
|     info, and even on a sizeof(long)==4 box, the multiplication can lose info.
 | ||
|     But, unlike the native long product, it's not in *range* trouble:  even
 | ||
|     if sizeof(long)==32 (256-bit longs), the product easily fits in the
 | ||
|     dynamic range of a double.  So the leading 50 (or so) bits of the double
 | ||
|     product are correct.
 | ||
| 
 | ||
|     We check these two ways against each other, and declare victory if they're
 | ||
|     approximately the same.  Else, because the native long product is the only
 | ||
|     one that can lose catastrophic amounts of information, it's the native long
 | ||
|     product that must have overflowed.
 | ||
| 
 | ||
|     */
 | ||
| 
 | ||
|     long longprod = (long)((unsigned long)a * b);
 | ||
|     double doubleprod = (double)a * (double)b;
 | ||
|     double doubled_longprod = (double)longprod;
 | ||
| 
 | ||
|     if (doubled_longprod == doubleprod) {
 | ||
|         return 0;
 | ||
|     }
 | ||
| 
 | ||
|     const double diff = doubled_longprod - doubleprod;
 | ||
|     const double absdiff = diff >= 0.0 ? diff : -diff;
 | ||
|     const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod;
 | ||
| 
 | ||
|     if (32.0 * absdiff <= absprod) {
 | ||
|         return 0;
 | ||
|     }
 | ||
| 
 | ||
|     return 1;
 | ||
| }
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.prod
 | ||
| 
 | ||
|     iterable: object
 | ||
|     /
 | ||
|     *
 | ||
|     start: object(c_default="NULL") = 1
 | ||
| 
 | ||
| Calculate the product of all the elements in the input iterable.
 | ||
| 
 | ||
| The default start value for the product is 1.
 | ||
| 
 | ||
| When the iterable is empty, return the start value.  This function is
 | ||
| intended specifically for use with numeric values and may reject
 | ||
| non-numeric types.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
 | ||
| /*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/
 | ||
| {
 | ||
|     PyObject *result = start;
 | ||
|     PyObject *temp, *item, *iter;
 | ||
| 
 | ||
|     iter = PyObject_GetIter(iterable);
 | ||
|     if (iter == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
| 
 | ||
|     if (result == NULL) {
 | ||
|         result = _PyLong_GetOne();
 | ||
|     }
 | ||
|     Py_INCREF(result);
 | ||
| #ifndef SLOW_PROD
 | ||
|     /* Fast paths for integers keeping temporary products in C.
 | ||
|      * Assumes all inputs are the same type.
 | ||
|      * If the assumption fails, default to use PyObjects instead.
 | ||
|     */
 | ||
|     if (PyLong_CheckExact(result)) {
 | ||
|         int overflow;
 | ||
|         long i_result = PyLong_AsLongAndOverflow(result, &overflow);
 | ||
|         /* If this already overflowed, don't even enter the loop. */
 | ||
|         if (overflow == 0) {
 | ||
|             Py_SETREF(result, NULL);
 | ||
|         }
 | ||
|         /* Loop over all the items in the iterable until we finish, we overflow
 | ||
|          * or we found a non integer element */
 | ||
|         while (result == NULL) {
 | ||
|             item = PyIter_Next(iter);
 | ||
|             if (item == NULL) {
 | ||
|                 Py_DECREF(iter);
 | ||
|                 if (PyErr_Occurred()) {
 | ||
|                     return NULL;
 | ||
|                 }
 | ||
|                 return PyLong_FromLong(i_result);
 | ||
|             }
 | ||
|             if (PyLong_CheckExact(item)) {
 | ||
|                 long b = PyLong_AsLongAndOverflow(item, &overflow);
 | ||
|                 if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) {
 | ||
|                     long x = i_result * b;
 | ||
|                     i_result = x;
 | ||
|                     Py_DECREF(item);
 | ||
|                     continue;
 | ||
|                 }
 | ||
|             }
 | ||
|             /* Either overflowed or is not an int.
 | ||
|              * Restore real objects and process normally */
 | ||
|             result = PyLong_FromLong(i_result);
 | ||
|             if (result == NULL) {
 | ||
|                 Py_DECREF(item);
 | ||
|                 Py_DECREF(iter);
 | ||
|                 return NULL;
 | ||
|             }
 | ||
|             temp = PyNumber_Multiply(result, item);
 | ||
|             Py_DECREF(result);
 | ||
|             Py_DECREF(item);
 | ||
|             result = temp;
 | ||
|             if (result == NULL) {
 | ||
|                 Py_DECREF(iter);
 | ||
|                 return NULL;
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /* Fast paths for floats keeping temporary products in C.
 | ||
|      * Assumes all inputs are the same type.
 | ||
|      * If the assumption fails, default to use PyObjects instead.
 | ||
|     */
 | ||
|     if (PyFloat_CheckExact(result)) {
 | ||
|         double f_result = PyFloat_AS_DOUBLE(result);
 | ||
|         Py_SETREF(result, NULL);
 | ||
|         while(result == NULL) {
 | ||
|             item = PyIter_Next(iter);
 | ||
|             if (item == NULL) {
 | ||
|                 Py_DECREF(iter);
 | ||
|                 if (PyErr_Occurred()) {
 | ||
|                     return NULL;
 | ||
|                 }
 | ||
|                 return PyFloat_FromDouble(f_result);
 | ||
|             }
 | ||
|             if (PyFloat_CheckExact(item)) {
 | ||
|                 f_result *= PyFloat_AS_DOUBLE(item);
 | ||
|                 Py_DECREF(item);
 | ||
|                 continue;
 | ||
|             }
 | ||
|             if (PyLong_CheckExact(item)) {
 | ||
|                 long value;
 | ||
|                 int overflow;
 | ||
|                 value = PyLong_AsLongAndOverflow(item, &overflow);
 | ||
|                 if (!overflow) {
 | ||
|                     f_result *= (double)value;
 | ||
|                     Py_DECREF(item);
 | ||
|                     continue;
 | ||
|                 }
 | ||
|             }
 | ||
|             result = PyFloat_FromDouble(f_result);
 | ||
|             if (result == NULL) {
 | ||
|                 Py_DECREF(item);
 | ||
|                 Py_DECREF(iter);
 | ||
|                 return NULL;
 | ||
|             }
 | ||
|             temp = PyNumber_Multiply(result, item);
 | ||
|             Py_DECREF(result);
 | ||
|             Py_DECREF(item);
 | ||
|             result = temp;
 | ||
|             if (result == NULL) {
 | ||
|                 Py_DECREF(iter);
 | ||
|                 return NULL;
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
| #endif
 | ||
|     /* Consume rest of the iterable (if any) that could not be handled
 | ||
|      * by specialized functions above.*/
 | ||
|     for(;;) {
 | ||
|         item = PyIter_Next(iter);
 | ||
|         if (item == NULL) {
 | ||
|             /* error, or end-of-sequence */
 | ||
|             if (PyErr_Occurred()) {
 | ||
|                 Py_SETREF(result, NULL);
 | ||
|             }
 | ||
|             break;
 | ||
|         }
 | ||
|         temp = PyNumber_Multiply(result, item);
 | ||
|         Py_DECREF(result);
 | ||
|         Py_DECREF(item);
 | ||
|         result = temp;
 | ||
|         if (result == NULL)
 | ||
|             break;
 | ||
|     }
 | ||
|     Py_DECREF(iter);
 | ||
|     return result;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* least significant 64 bits of the odd part of factorial(n), for n in range(128).
 | ||
| 
 | ||
| Python code to generate the values:
 | ||
| 
 | ||
|     import math
 | ||
| 
 | ||
|     for n in range(128):
 | ||
|         fac = math.factorial(n)
 | ||
|         fac_odd_part = fac // (fac & -fac)
 | ||
|         reduced_fac_odd_part = fac_odd_part % (2**64)
 | ||
|         print(f"{reduced_fac_odd_part:#018x}u")
 | ||
| */
 | ||
| static const uint64_t reduced_factorial_odd_part[] = {
 | ||
|     0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000003u,
 | ||
|     0x0000000000000003u, 0x000000000000000fu, 0x000000000000002du, 0x000000000000013bu,
 | ||
|     0x000000000000013bu, 0x0000000000000b13u, 0x000000000000375fu, 0x0000000000026115u,
 | ||
|     0x000000000007233fu, 0x00000000005cca33u, 0x0000000002898765u, 0x00000000260eeeebu,
 | ||
|     0x00000000260eeeebu, 0x0000000286fddd9bu, 0x00000016beecca73u, 0x000001b02b930689u,
 | ||
|     0x00000870d9df20adu, 0x0000b141df4dae31u, 0x00079dd498567c1bu, 0x00af2e19afc5266du,
 | ||
|     0x020d8a4d0f4f7347u, 0x335281867ec241efu, 0x9b3093d46fdd5923u, 0x5e1f9767cc5866b1u,
 | ||
|     0x92dd23d6966aced7u, 0xa30d0f4f0a196e5bu, 0x8dc3e5a1977d7755u, 0x2ab8ce915831734bu,
 | ||
|     0x2ab8ce915831734bu, 0x81d2a0bc5e5fdcabu, 0x9efcac82445da75bu, 0xbc8b95cf58cde171u,
 | ||
|     0xa0e8444a1f3cecf9u, 0x4191deb683ce3ffdu, 0xddd3878bc84ebfc7u, 0xcb39a64b83ff3751u,
 | ||
|     0xf8203f7993fc1495u, 0xbd2a2a78b35f4bddu, 0x84757be6b6d13921u, 0x3fbbcfc0b524988bu,
 | ||
|     0xbd11ed47c8928df9u, 0x3c26b59e41c2f4c5u, 0x677a5137e883fdb3u, 0xff74e943b03b93ddu,
 | ||
|     0xfe5ebbcb10b2bb97u, 0xb021f1de3235e7e7u, 0x33509eb2e743a58fu, 0x390f9da41279fb7du,
 | ||
|     0xe5cb0154f031c559u, 0x93074695ba4ddb6du, 0x81c471caa636247fu, 0xe1347289b5a1d749u,
 | ||
|     0x286f21c3f76ce2ffu, 0x00be84a2173e8ac7u, 0x1595065ca215b88bu, 0xf95877595b018809u,
 | ||
|     0x9c2efe3c5516f887u, 0x373294604679382bu, 0xaf1ff7a888adcd35u, 0x18ddf279a2c5800bu,
 | ||
|     0x18ddf279a2c5800bu, 0x505a90e2542582cbu, 0x5bacad2cd8d5dc2bu, 0xfe3152bcbff89f41u,
 | ||
|     0xe1467e88bf829351u, 0xb8001adb9e31b4d5u, 0x2803ac06a0cbb91fu, 0x1904b5d698805799u,
 | ||
|     0xe12a648b5c831461u, 0x3516abbd6160cfa9u, 0xac46d25f12fe036du, 0x78bfa1da906b00efu,
 | ||
|     0xf6390338b7f111bdu, 0x0f25f80f538255d9u, 0x4ec8ca55b8db140fu, 0x4ff670740b9b30a1u,
 | ||
|     0x8fd032443a07f325u, 0x80dfe7965c83eeb5u, 0xa3dc1714d1213afdu, 0x205b7bbfcdc62007u,
 | ||
|     0xa78126bbe140a093u, 0x9de1dc61ca7550cfu, 0x84f0046d01b492c5u, 0x2d91810b945de0f3u,
 | ||
|     0xf5408b7f6008aa71u, 0x43707f4863034149u, 0xdac65fb9679279d5u, 0xc48406e7d1114eb7u,
 | ||
|     0xa7dc9ed3c88e1271u, 0xfb25b2efdb9cb30du, 0x1bebda0951c4df63u, 0x5c85e975580ee5bdu,
 | ||
|     0x1591bc60082cb137u, 0x2c38606318ef25d7u, 0x76ca72f7c5c63e27u, 0xf04a75d17baa0915u,
 | ||
|     0x77458175139ae30du, 0x0e6c1330bc1b9421u, 0xdf87d2b5797e8293u, 0xefa5c703e1e68925u,
 | ||
|     0x2b6b1b3278b4f6e1u, 0xceee27b382394249u, 0xd74e3829f5dab91du, 0xfdb17989c26b5f1fu,
 | ||
|     0xc1b7d18781530845u, 0x7b4436b2105a8561u, 0x7ba7c0418372a7d7u, 0x9dbc5c67feb6c639u,
 | ||
|     0x502686d7f6ff6b8fu, 0x6101855406be7a1fu, 0x9956afb5806930e7u, 0xe1f0ee88af40f7c5u,
 | ||
|     0x984b057bda5c1151u, 0x9a49819acc13ea05u, 0x8ef0dead0896ef27u, 0x71f7826efe292b21u,
 | ||
|     0xad80a480e46986efu, 0x01cdc0ebf5e0c6f7u, 0x6e06f839968f68dbu, 0xdd5943ab56e76139u,
 | ||
|     0xcdcf31bf8604c5e7u, 0x7e2b4a847054a1cbu, 0x0ca75697a4d3d0f5u, 0x4703f53ac514a98bu,
 | ||
| };
 | ||
| 
 | ||
| /* inverses of reduced_factorial_odd_part values modulo 2**64.
 | ||
| 
 | ||
| Python code to generate the values:
 | ||
| 
 | ||
|     import math
 | ||
| 
 | ||
|     for n in range(128):
 | ||
|         fac = math.factorial(n)
 | ||
|         fac_odd_part = fac // (fac & -fac)
 | ||
|         inverted_fac_odd_part = pow(fac_odd_part, -1, 2**64)
 | ||
|         print(f"{inverted_fac_odd_part:#018x}u")
 | ||
| */
 | ||
| static const uint64_t inverted_factorial_odd_part[] = {
 | ||
|     0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0xaaaaaaaaaaaaaaabu,
 | ||
|     0xaaaaaaaaaaaaaaabu, 0xeeeeeeeeeeeeeeefu, 0x4fa4fa4fa4fa4fa5u, 0x2ff2ff2ff2ff2ff3u,
 | ||
|     0x2ff2ff2ff2ff2ff3u, 0x938cc70553e3771bu, 0xb71c27cddd93e49fu, 0xb38e3229fcdee63du,
 | ||
|     0xe684bb63544a4cbfu, 0xc2f684917ca340fbu, 0xf747c9cba417526du, 0xbb26eb51d7bd49c3u,
 | ||
|     0xbb26eb51d7bd49c3u, 0xb0a7efb985294093u, 0xbe4b8c69f259eabbu, 0x6854d17ed6dc4fb9u,
 | ||
|     0xe1aa904c915f4325u, 0x3b8206df131cead1u, 0x79c6009fea76fe13u, 0xd8c5d381633cd365u,
 | ||
|     0x4841f12b21144677u, 0x4a91ff68200b0d0fu, 0x8f9513a58c4f9e8bu, 0x2b3e690621a42251u,
 | ||
|     0x4f520f00e03c04e7u, 0x2edf84ee600211d3u, 0xadcaa2764aaacdfdu, 0x161f4f9033f4fe63u,
 | ||
|     0x161f4f9033f4fe63u, 0xbada2932ea4d3e03u, 0xcec189f3efaa30d3u, 0xf7475bb68330bf91u,
 | ||
|     0x37eb7bf7d5b01549u, 0x46b35660a4e91555u, 0xa567c12d81f151f7u, 0x4c724007bb2071b1u,
 | ||
|     0x0f4a0cce58a016bdu, 0xfa21068e66106475u, 0x244ab72b5a318ae1u, 0x366ce67e080d0f23u,
 | ||
|     0xd666fdae5dd2a449u, 0xd740ddd0acc06a0du, 0xb050bbbb28e6f97bu, 0x70b003fe890a5c75u,
 | ||
|     0xd03aabff83037427u, 0x13ec4ca72c783bd7u, 0x90282c06afdbd96fu, 0x4414ddb9db4a95d5u,
 | ||
|     0xa2c68735ae6832e9u, 0xbf72d71455676665u, 0xa8469fab6b759b7fu, 0xc1e55b56e606caf9u,
 | ||
|     0x40455630fc4a1cffu, 0x0120a7b0046d16f7u, 0xa7c3553b08faef23u, 0x9f0bfd1b08d48639u,
 | ||
|     0xa433ffce9a304d37u, 0xa22ad1d53915c683u, 0xcb6cbc723ba5dd1du, 0x547fb1b8ab9d0ba3u,
 | ||
|     0x547fb1b8ab9d0ba3u, 0x8f15a826498852e3u, 0x32e1a03f38880283u, 0x3de4cce63283f0c1u,
 | ||
|     0x5dfe6667e4da95b1u, 0xfda6eeeef479e47du, 0xf14de991cc7882dfu, 0xe68db79247630ca9u,
 | ||
|     0xa7d6db8207ee8fa1u, 0x255e1f0fcf034499u, 0xc9a8990e43dd7e65u, 0x3279b6f289702e0fu,
 | ||
|     0xe7b5905d9b71b195u, 0x03025ba41ff0da69u, 0xb7df3d6d3be55aefu, 0xf89b212ebff2b361u,
 | ||
|     0xfe856d095996f0adu, 0xd6e533e9fdf20f9du, 0xf8c0e84a63da3255u, 0xa677876cd91b4db7u,
 | ||
|     0x07ed4f97780d7d9bu, 0x90a8705f258db62fu, 0xa41bbb2be31b1c0du, 0x6ec28690b038383bu,
 | ||
|     0xdb860c3bb2edd691u, 0x0838286838a980f9u, 0x558417a74b36f77du, 0x71779afc3646ef07u,
 | ||
|     0x743cda377ccb6e91u, 0x7fdf9f3fe89153c5u, 0xdc97d25df49b9a4bu, 0x76321a778eb37d95u,
 | ||
|     0x7cbb5e27da3bd487u, 0x9cff4ade1a009de7u, 0x70eb166d05c15197u, 0xdcf0460b71d5fe3du,
 | ||
|     0x5ac1ee5260b6a3c5u, 0xc922dedfdd78efe1u, 0xe5d381dc3b8eeb9bu, 0xd57e5347bafc6aadu,
 | ||
|     0x86939040983acd21u, 0x395b9d69740a4ff9u, 0x1467299c8e43d135u, 0x5fe440fcad975cdfu,
 | ||
|     0xcaa9a39794a6ca8du, 0xf61dbd640868dea1u, 0xac09d98d74843be7u, 0x2b103b9e1a6b4809u,
 | ||
|     0x2ab92d16960f536fu, 0x6653323d5e3681dfu, 0xefd48c1c0624e2d7u, 0xa496fefe04816f0du,
 | ||
|     0x1754a7b07bbdd7b1u, 0x23353c829a3852cdu, 0xbf831261abd59097u, 0x57a8e656df0618e1u,
 | ||
|     0x16e9206c3100680fu, 0xadad4c6ee921dac7u, 0x635f2b3860265353u, 0xdd6d0059f44b3d09u,
 | ||
|     0xac4dd6b894447dd7u, 0x42ea183eeaa87be3u, 0x15612d1550ee5b5du, 0x226fa19d656cb623u,
 | ||
| };
 | ||
| 
 | ||
| /* exponent of the largest power of 2 dividing factorial(n), for n in range(68)
 | ||
| 
 | ||
| Python code to generate the values:
 | ||
| 
 | ||
| import math
 | ||
| 
 | ||
| for n in range(128):
 | ||
|     fac = math.factorial(n)
 | ||
|     fac_trailing_zeros = (fac & -fac).bit_length() - 1
 | ||
|     print(fac_trailing_zeros)
 | ||
| */
 | ||
| 
 | ||
| static const uint8_t factorial_trailing_zeros[] = {
 | ||
|      0,  0,  1,  1,  3,  3,  4,  4,  7,  7,  8,  8, 10, 10, 11, 11,  //  0-15
 | ||
|     15, 15, 16, 16, 18, 18, 19, 19, 22, 22, 23, 23, 25, 25, 26, 26,  // 16-31
 | ||
|     31, 31, 32, 32, 34, 34, 35, 35, 38, 38, 39, 39, 41, 41, 42, 42,  // 32-47
 | ||
|     46, 46, 47, 47, 49, 49, 50, 50, 53, 53, 54, 54, 56, 56, 57, 57,  // 48-63
 | ||
|     63, 63, 64, 64, 66, 66, 67, 67, 70, 70, 71, 71, 73, 73, 74, 74,  // 64-79
 | ||
|     78, 78, 79, 79, 81, 81, 82, 82, 85, 85, 86, 86, 88, 88, 89, 89,  // 80-95
 | ||
|     94, 94, 95, 95, 97, 97, 98, 98, 101, 101, 102, 102, 104, 104, 105, 105,  // 96-111
 | ||
|     109, 109, 110, 110, 112, 112, 113, 113, 116, 116, 117, 117, 119, 119, 120, 120,  // 112-127
 | ||
| };
 | ||
| 
 | ||
| /* Number of permutations and combinations.
 | ||
|  * P(n, k) = n! / (n-k)!
 | ||
|  * C(n, k) = P(n, k) / k!
 | ||
|  */
 | ||
| 
 | ||
| /* Calculate C(n, k) for n in the 63-bit range. */
 | ||
| static PyObject *
 | ||
| perm_comb_small(unsigned long long n, unsigned long long k, int iscomb)
 | ||
| {
 | ||
|     assert(k != 0);
 | ||
| 
 | ||
|     /* For small enough n and k the result fits in the 64-bit range and can
 | ||
|      * be calculated without allocating intermediate PyLong objects. */
 | ||
|     if (iscomb) {
 | ||
|         /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)
 | ||
|          * fits into a uint64_t.  Exclude k = 1, because the second fast
 | ||
|          * path is faster for this case.*/
 | ||
|         static const unsigned char fast_comb_limits1[] = {
 | ||
|             0, 0, 127, 127, 127, 127, 127, 127,  // 0-7
 | ||
|             127, 127, 127, 127, 127, 127, 127, 127,  // 8-15
 | ||
|             116, 105, 97, 91, 86, 82, 78, 76,  // 16-23
 | ||
|             74, 72, 71, 70, 69, 68, 68, 67,  // 24-31
 | ||
|             67, 67, 67,  // 32-34
 | ||
|         };
 | ||
|         if (k < Py_ARRAY_LENGTH(fast_comb_limits1) && n <= fast_comb_limits1[k]) {
 | ||
|             /*
 | ||
|                 comb(n, k) fits into a uint64_t. We compute it as
 | ||
| 
 | ||
|                     comb_odd_part << shift
 | ||
| 
 | ||
|                 where 2**shift is the largest power of two dividing comb(n, k)
 | ||
|                 and comb_odd_part is comb(n, k) >> shift. comb_odd_part can be
 | ||
|                 calculated efficiently via arithmetic modulo 2**64, using three
 | ||
|                 lookups and two uint64_t multiplications.
 | ||
|             */
 | ||
|             uint64_t comb_odd_part = reduced_factorial_odd_part[n]
 | ||
|                                    * inverted_factorial_odd_part[k]
 | ||
|                                    * inverted_factorial_odd_part[n - k];
 | ||
|             int shift = factorial_trailing_zeros[n]
 | ||
|                       - factorial_trailing_zeros[k]
 | ||
|                       - factorial_trailing_zeros[n - k];
 | ||
|             return PyLong_FromUnsignedLongLong(comb_odd_part << shift);
 | ||
|         }
 | ||
| 
 | ||
|         /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)*k
 | ||
|          * fits into a long long (which is at least 64 bit).  Only contains
 | ||
|          * items larger than in fast_comb_limits1. */
 | ||
|         static const unsigned long long fast_comb_limits2[] = {
 | ||
|             0, ULLONG_MAX, 4294967296ULL, 3329022, 102570, 13467, 3612, 1449,  // 0-7
 | ||
|             746, 453, 308, 227, 178, 147,  // 8-13
 | ||
|         };
 | ||
|         if (k < Py_ARRAY_LENGTH(fast_comb_limits2) && n <= fast_comb_limits2[k]) {
 | ||
|             /* C(n, k) = C(n, k-1) * (n-k+1) / k */
 | ||
|             unsigned long long result = n;
 | ||
|             for (unsigned long long i = 1; i < k;) {
 | ||
|                 result *= --n;
 | ||
|                 result /= ++i;
 | ||
|             }
 | ||
|             return PyLong_FromUnsignedLongLong(result);
 | ||
|         }
 | ||
|     }
 | ||
|     else {
 | ||
|         /* Maps k to the maximal n so that k <= n and P(n, k)
 | ||
|          * fits into a long long (which is at least 64 bit). */
 | ||
|         static const unsigned long long fast_perm_limits[] = {
 | ||
|             0, ULLONG_MAX, 4294967296ULL, 2642246, 65537, 7133, 1627, 568,  // 0-7
 | ||
|             259, 142, 88, 61, 45, 36, 30, 26,  // 8-15
 | ||
|             24, 22, 21, 20, 20,  // 16-20
 | ||
|         };
 | ||
|         if (k < Py_ARRAY_LENGTH(fast_perm_limits) && n <= fast_perm_limits[k]) {
 | ||
|             if (n <= 127) {
 | ||
|                 /* P(n, k) fits into a uint64_t. */
 | ||
|                 uint64_t perm_odd_part = reduced_factorial_odd_part[n]
 | ||
|                                        * inverted_factorial_odd_part[n - k];
 | ||
|                 int shift = factorial_trailing_zeros[n]
 | ||
|                           - factorial_trailing_zeros[n - k];
 | ||
|                 return PyLong_FromUnsignedLongLong(perm_odd_part << shift);
 | ||
|             }
 | ||
| 
 | ||
|             /* P(n, k) = P(n, k-1) * (n-k+1) */
 | ||
|             unsigned long long result = n;
 | ||
|             for (unsigned long long i = 1; i < k;) {
 | ||
|                 result *= --n;
 | ||
|                 ++i;
 | ||
|             }
 | ||
|             return PyLong_FromUnsignedLongLong(result);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     /* For larger n use recursive formulas:
 | ||
|      *
 | ||
|      *   P(n, k) = P(n, j) * P(n-j, k-j)
 | ||
|      *   C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j)
 | ||
|      */
 | ||
|     unsigned long long j = k / 2;
 | ||
|     PyObject *a, *b;
 | ||
|     a = perm_comb_small(n, j, iscomb);
 | ||
|     if (a == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     b = perm_comb_small(n - j, k - j, iscomb);
 | ||
|     if (b == NULL) {
 | ||
|         goto error;
 | ||
|     }
 | ||
|     Py_SETREF(a, PyNumber_Multiply(a, b));
 | ||
|     Py_DECREF(b);
 | ||
|     if (iscomb && a != NULL) {
 | ||
|         b = perm_comb_small(k, j, 1);
 | ||
|         if (b == NULL) {
 | ||
|             goto error;
 | ||
|         }
 | ||
|         Py_SETREF(a, PyNumber_FloorDivide(a, b));
 | ||
|         Py_DECREF(b);
 | ||
|     }
 | ||
|     return a;
 | ||
| 
 | ||
| error:
 | ||
|     Py_DECREF(a);
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| /* Calculate P(n, k) or C(n, k) using recursive formulas.
 | ||
|  * It is more efficient than sequential multiplication thanks to
 | ||
|  * Karatsuba multiplication.
 | ||
|  */
 | ||
| static PyObject *
 | ||
| perm_comb(PyObject *n, unsigned long long k, int iscomb)
 | ||
| {
 | ||
|     if (k == 0) {
 | ||
|         return PyLong_FromLong(1);
 | ||
|     }
 | ||
|     if (k == 1) {
 | ||
|         return Py_NewRef(n);
 | ||
|     }
 | ||
| 
 | ||
|     /* P(n, k) = P(n, j) * P(n-j, k-j) */
 | ||
|     /* C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) */
 | ||
|     unsigned long long j = k / 2;
 | ||
|     PyObject *a, *b;
 | ||
|     a = perm_comb(n, j, iscomb);
 | ||
|     if (a == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     PyObject *t = PyLong_FromUnsignedLongLong(j);
 | ||
|     if (t == NULL) {
 | ||
|         goto error;
 | ||
|     }
 | ||
|     n = PyNumber_Subtract(n, t);
 | ||
|     Py_DECREF(t);
 | ||
|     if (n == NULL) {
 | ||
|         goto error;
 | ||
|     }
 | ||
|     b = perm_comb(n, k - j, iscomb);
 | ||
|     Py_DECREF(n);
 | ||
|     if (b == NULL) {
 | ||
|         goto error;
 | ||
|     }
 | ||
|     Py_SETREF(a, PyNumber_Multiply(a, b));
 | ||
|     Py_DECREF(b);
 | ||
|     if (iscomb && a != NULL) {
 | ||
|         b = perm_comb_small(k, j, 1);
 | ||
|         if (b == NULL) {
 | ||
|             goto error;
 | ||
|         }
 | ||
|         Py_SETREF(a, PyNumber_FloorDivide(a, b));
 | ||
|         Py_DECREF(b);
 | ||
|     }
 | ||
|     return a;
 | ||
| 
 | ||
| error:
 | ||
|     Py_DECREF(a);
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.perm
 | ||
| 
 | ||
|     n: object
 | ||
|     k: object = None
 | ||
|     /
 | ||
| 
 | ||
| Number of ways to choose k items from n items without repetition and with order.
 | ||
| 
 | ||
| Evaluates to n! / (n - k)! when k <= n and evaluates
 | ||
| to zero when k > n.
 | ||
| 
 | ||
| If k is not specified or is None, then k defaults to n
 | ||
| and the function returns n!.
 | ||
| 
 | ||
| Raises TypeError if either of the arguments are not integers.
 | ||
| Raises ValueError if either of the arguments are negative.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_perm_impl(PyObject *module, PyObject *n, PyObject *k)
 | ||
| /*[clinic end generated code: output=e021a25469653e23 input=5311c5a00f359b53]*/
 | ||
| {
 | ||
|     PyObject *result = NULL;
 | ||
|     int overflow, cmp;
 | ||
|     long long ki, ni;
 | ||
| 
 | ||
|     if (k == Py_None) {
 | ||
|         return math_factorial(module, n);
 | ||
|     }
 | ||
|     n = PyNumber_Index(n);
 | ||
|     if (n == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     k = PyNumber_Index(k);
 | ||
|     if (k == NULL) {
 | ||
|         Py_DECREF(n);
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     assert(PyLong_CheckExact(n) && PyLong_CheckExact(k));
 | ||
| 
 | ||
|     if (_PyLong_IsNegative((PyLongObject *)n)) {
 | ||
|         PyErr_SetString(PyExc_ValueError,
 | ||
|                         "n must be a non-negative integer");
 | ||
|         goto error;
 | ||
|     }
 | ||
|     if (_PyLong_IsNegative((PyLongObject *)k)) {
 | ||
|         PyErr_SetString(PyExc_ValueError,
 | ||
|                         "k must be a non-negative integer");
 | ||
|         goto error;
 | ||
|     }
 | ||
| 
 | ||
|     cmp = PyObject_RichCompareBool(n, k, Py_LT);
 | ||
|     if (cmp != 0) {
 | ||
|         if (cmp > 0) {
 | ||
|             result = PyLong_FromLong(0);
 | ||
|             goto done;
 | ||
|         }
 | ||
|         goto error;
 | ||
|     }
 | ||
| 
 | ||
|     ki = PyLong_AsLongLongAndOverflow(k, &overflow);
 | ||
|     assert(overflow >= 0 && !PyErr_Occurred());
 | ||
|     if (overflow > 0) {
 | ||
|         PyErr_Format(PyExc_OverflowError,
 | ||
|                      "k must not exceed %lld",
 | ||
|                      LLONG_MAX);
 | ||
|         goto error;
 | ||
|     }
 | ||
|     assert(ki >= 0);
 | ||
| 
 | ||
|     ni = PyLong_AsLongLongAndOverflow(n, &overflow);
 | ||
|     assert(overflow >= 0 && !PyErr_Occurred());
 | ||
|     if (!overflow && ki > 1) {
 | ||
|         assert(ni >= 0);
 | ||
|         result = perm_comb_small((unsigned long long)ni,
 | ||
|                                  (unsigned long long)ki, 0);
 | ||
|     }
 | ||
|     else {
 | ||
|         result = perm_comb(n, (unsigned long long)ki, 0);
 | ||
|     }
 | ||
| 
 | ||
| done:
 | ||
|     Py_DECREF(n);
 | ||
|     Py_DECREF(k);
 | ||
|     return result;
 | ||
| 
 | ||
| error:
 | ||
|     Py_DECREF(n);
 | ||
|     Py_DECREF(k);
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.comb
 | ||
| 
 | ||
|     n: object
 | ||
|     k: object
 | ||
|     /
 | ||
| 
 | ||
| Number of ways to choose k items from n items without repetition and without order.
 | ||
| 
 | ||
| Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates
 | ||
| to zero when k > n.
 | ||
| 
 | ||
| Also called the binomial coefficient because it is equivalent
 | ||
| to the coefficient of k-th term in polynomial expansion of the
 | ||
| expression (1 + x)**n.
 | ||
| 
 | ||
| Raises TypeError if either of the arguments are not integers.
 | ||
| Raises ValueError if either of the arguments are negative.
 | ||
| 
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
 | ||
| /*[clinic end generated code: output=bd2cec8d854f3493 input=9a05315af2518709]*/
 | ||
| {
 | ||
|     PyObject *result = NULL, *temp;
 | ||
|     int overflow, cmp;
 | ||
|     long long ki, ni;
 | ||
| 
 | ||
|     n = PyNumber_Index(n);
 | ||
|     if (n == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     k = PyNumber_Index(k);
 | ||
|     if (k == NULL) {
 | ||
|         Py_DECREF(n);
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     assert(PyLong_CheckExact(n) && PyLong_CheckExact(k));
 | ||
| 
 | ||
|     if (_PyLong_IsNegative((PyLongObject *)n)) {
 | ||
|         PyErr_SetString(PyExc_ValueError,
 | ||
|                         "n must be a non-negative integer");
 | ||
|         goto error;
 | ||
|     }
 | ||
|     if (_PyLong_IsNegative((PyLongObject *)k)) {
 | ||
|         PyErr_SetString(PyExc_ValueError,
 | ||
|                         "k must be a non-negative integer");
 | ||
|         goto error;
 | ||
|     }
 | ||
| 
 | ||
|     ni = PyLong_AsLongLongAndOverflow(n, &overflow);
 | ||
|     assert(overflow >= 0 && !PyErr_Occurred());
 | ||
|     if (!overflow) {
 | ||
|         assert(ni >= 0);
 | ||
|         ki = PyLong_AsLongLongAndOverflow(k, &overflow);
 | ||
|         assert(overflow >= 0 && !PyErr_Occurred());
 | ||
|         if (overflow || ki > ni) {
 | ||
|             result = PyLong_FromLong(0);
 | ||
|             goto done;
 | ||
|         }
 | ||
|         assert(ki >= 0);
 | ||
| 
 | ||
|         ki = Py_MIN(ki, ni - ki);
 | ||
|         if (ki > 1) {
 | ||
|             result = perm_comb_small((unsigned long long)ni,
 | ||
|                                      (unsigned long long)ki, 1);
 | ||
|             goto done;
 | ||
|         }
 | ||
|         /* For k == 1 just return the original n in perm_comb(). */
 | ||
|     }
 | ||
|     else {
 | ||
|         /* k = min(k, n - k) */
 | ||
|         temp = PyNumber_Subtract(n, k);
 | ||
|         if (temp == NULL) {
 | ||
|             goto error;
 | ||
|         }
 | ||
|         assert(PyLong_Check(temp));
 | ||
|         if (_PyLong_IsNegative((PyLongObject *)temp)) {
 | ||
|             Py_DECREF(temp);
 | ||
|             result = PyLong_FromLong(0);
 | ||
|             goto done;
 | ||
|         }
 | ||
|         cmp = PyObject_RichCompareBool(temp, k, Py_LT);
 | ||
|         if (cmp > 0) {
 | ||
|             Py_SETREF(k, temp);
 | ||
|         }
 | ||
|         else {
 | ||
|             Py_DECREF(temp);
 | ||
|             if (cmp < 0) {
 | ||
|                 goto error;
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|         ki = PyLong_AsLongLongAndOverflow(k, &overflow);
 | ||
|         assert(overflow >= 0 && !PyErr_Occurred());
 | ||
|         if (overflow) {
 | ||
|             PyErr_Format(PyExc_OverflowError,
 | ||
|                          "min(n - k, k) must not exceed %lld",
 | ||
|                          LLONG_MAX);
 | ||
|             goto error;
 | ||
|         }
 | ||
|         assert(ki >= 0);
 | ||
|     }
 | ||
| 
 | ||
|     result = perm_comb(n, (unsigned long long)ki, 1);
 | ||
| 
 | ||
| done:
 | ||
|     Py_DECREF(n);
 | ||
|     Py_DECREF(k);
 | ||
|     return result;
 | ||
| 
 | ||
| error:
 | ||
|     Py_DECREF(n);
 | ||
|     Py_DECREF(k);
 | ||
|     return NULL;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.nextafter
 | ||
| 
 | ||
|     x: double
 | ||
|     y: double
 | ||
|     /
 | ||
|     *
 | ||
|     steps: object = None
 | ||
| 
 | ||
| Return the floating-point value the given number of steps after x towards y.
 | ||
| 
 | ||
| If steps is not specified or is None, it defaults to 1.
 | ||
| 
 | ||
| Raises a TypeError, if x or y is not a double, or if steps is not an integer.
 | ||
| Raises ValueError if steps is negative.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static PyObject *
 | ||
| math_nextafter_impl(PyObject *module, double x, double y, PyObject *steps)
 | ||
| /*[clinic end generated code: output=cc6511f02afc099e input=7f2a5842112af2b4]*/
 | ||
| {
 | ||
| #if defined(_AIX)
 | ||
|     if (x == y) {
 | ||
|         /* On AIX 7.1, libm nextafter(-0.0, +0.0) returns -0.0.
 | ||
|            Bug fixed in bos.adt.libm 7.2.2.0 by APAR IV95512. */
 | ||
|         return PyFloat_FromDouble(y);
 | ||
|     }
 | ||
|     if (isnan(x)) {
 | ||
|         return PyFloat_FromDouble(x);
 | ||
|     }
 | ||
|     if (isnan(y)) {
 | ||
|         return PyFloat_FromDouble(y);
 | ||
|     }
 | ||
| #endif
 | ||
|     if (steps == Py_None) {
 | ||
|         // fast path: we default to one step.
 | ||
|         return PyFloat_FromDouble(nextafter(x, y));
 | ||
|     }
 | ||
|     steps = PyNumber_Index(steps);
 | ||
|     if (steps == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     assert(PyLong_CheckExact(steps));
 | ||
|     if (_PyLong_IsNegative((PyLongObject *)steps)) {
 | ||
|         PyErr_SetString(PyExc_ValueError,
 | ||
|                         "steps must be a non-negative integer");
 | ||
|         Py_DECREF(steps);
 | ||
|         return NULL;
 | ||
|     }
 | ||
| 
 | ||
|     unsigned long long usteps_ull = PyLong_AsUnsignedLongLong(steps);
 | ||
|     // Conveniently, uint64_t and double have the same number of bits
 | ||
|     // on all the platforms we care about.
 | ||
|     // So if an overflow occurs, we can just use UINT64_MAX.
 | ||
|     Py_DECREF(steps);
 | ||
|     if (usteps_ull >= UINT64_MAX) {
 | ||
|         // This branch includes the case where an error occurred, since
 | ||
|         // (unsigned long long)(-1) = ULLONG_MAX >= UINT64_MAX. Note that
 | ||
|         // usteps_ull can be strictly larger than UINT64_MAX on a machine
 | ||
|         // where unsigned long long has width > 64 bits.
 | ||
|         if (PyErr_Occurred()) {
 | ||
|             if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
 | ||
|                 PyErr_Clear();
 | ||
|             }
 | ||
|             else {
 | ||
|                 return NULL;
 | ||
|             }
 | ||
|         }
 | ||
|         usteps_ull = UINT64_MAX;
 | ||
|     }
 | ||
|     assert(usteps_ull <= UINT64_MAX);
 | ||
|     uint64_t usteps = (uint64_t)usteps_ull;
 | ||
| 
 | ||
|     if (usteps == 0) {
 | ||
|         return PyFloat_FromDouble(x);
 | ||
|     }
 | ||
|     if (isnan(x)) {
 | ||
|         return PyFloat_FromDouble(x);
 | ||
|     }
 | ||
|     if (isnan(y)) {
 | ||
|         return PyFloat_FromDouble(y);
 | ||
|     }
 | ||
| 
 | ||
|     // We assume that double and uint64_t have the same endianness.
 | ||
|     // This is not guaranteed by the C-standard, but it is true for
 | ||
|     // all platforms we care about. (The most likely form of violation
 | ||
|     // would be a "mixed-endian" double.)
 | ||
|     union pun {double f; uint64_t i;};
 | ||
|     union pun ux = {x}, uy = {y};
 | ||
|     if (ux.i == uy.i) {
 | ||
|         return PyFloat_FromDouble(x);
 | ||
|     }
 | ||
| 
 | ||
|     const uint64_t sign_bit = 1ULL<<63;
 | ||
| 
 | ||
|     uint64_t ax = ux.i & ~sign_bit;
 | ||
|     uint64_t ay = uy.i & ~sign_bit;
 | ||
| 
 | ||
|     // opposite signs
 | ||
|     if (((ux.i ^ uy.i) & sign_bit)) {
 | ||
|         // NOTE: ax + ay can never overflow, because their most significant bit
 | ||
|         // ain't set.
 | ||
|         if (ax + ay <= usteps) {
 | ||
|             return PyFloat_FromDouble(uy.f);
 | ||
|         // This comparison has to use <, because <= would get +0.0 vs -0.0
 | ||
|         // wrong.
 | ||
|         } else if (ax < usteps) {
 | ||
|             union pun result = {.i = (uy.i & sign_bit) | (usteps - ax)};
 | ||
|             return PyFloat_FromDouble(result.f);
 | ||
|         } else {
 | ||
|             ux.i -= usteps;
 | ||
|             return PyFloat_FromDouble(ux.f);
 | ||
|         }
 | ||
|     // same sign
 | ||
|     } else if (ax > ay) {
 | ||
|         if (ax - ay >= usteps) {
 | ||
|             ux.i -= usteps;
 | ||
|             return PyFloat_FromDouble(ux.f);
 | ||
|         } else {
 | ||
|             return PyFloat_FromDouble(uy.f);
 | ||
|         }
 | ||
|     } else {
 | ||
|         if (ay - ax >= usteps) {
 | ||
|             ux.i += usteps;
 | ||
|             return PyFloat_FromDouble(ux.f);
 | ||
|         } else {
 | ||
|             return PyFloat_FromDouble(uy.f);
 | ||
|         }
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| math.ulp -> double
 | ||
| 
 | ||
|     x: double
 | ||
|     /
 | ||
| 
 | ||
| Return the value of the least significant bit of the float x.
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static double
 | ||
| math_ulp_impl(PyObject *module, double x)
 | ||
| /*[clinic end generated code: output=f5207867a9384dd4 input=31f9bfbbe373fcaa]*/
 | ||
| {
 | ||
|     if (isnan(x)) {
 | ||
|         return x;
 | ||
|     }
 | ||
|     x = fabs(x);
 | ||
|     if (isinf(x)) {
 | ||
|         return x;
 | ||
|     }
 | ||
|     double inf = Py_INFINITY;
 | ||
|     double x2 = nextafter(x, inf);
 | ||
|     if (isinf(x2)) {
 | ||
|         /* special case: x is the largest positive representable float */
 | ||
|         x2 = nextafter(x, -inf);
 | ||
|         return x - x2;
 | ||
|     }
 | ||
|     return x2 - x;
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| math_exec(PyObject *module)
 | ||
| {
 | ||
| 
 | ||
|     math_module_state *state = get_math_module_state(module);
 | ||
|     state->str___ceil__ = PyUnicode_InternFromString("__ceil__");
 | ||
|     if (state->str___ceil__ == NULL) {
 | ||
|         return -1;
 | ||
|     }
 | ||
|     state->str___floor__ = PyUnicode_InternFromString("__floor__");
 | ||
|     if (state->str___floor__ == NULL) {
 | ||
|         return -1;
 | ||
|     }
 | ||
|     state->str___trunc__ = PyUnicode_InternFromString("__trunc__");
 | ||
|     if (state->str___trunc__ == NULL) {
 | ||
|         return -1;
 | ||
|     }
 | ||
|     if (PyModule_Add(module, "pi", PyFloat_FromDouble(Py_MATH_PI)) < 0) {
 | ||
|         return -1;
 | ||
|     }
 | ||
|     if (PyModule_Add(module, "e", PyFloat_FromDouble(Py_MATH_E)) < 0) {
 | ||
|         return -1;
 | ||
|     }
 | ||
|     // 2pi
 | ||
|     if (PyModule_Add(module, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) {
 | ||
|         return -1;
 | ||
|     }
 | ||
|     if (PyModule_Add(module, "inf", PyFloat_FromDouble(Py_INFINITY)) < 0) {
 | ||
|         return -1;
 | ||
|     }
 | ||
|     if (PyModule_Add(module, "nan", PyFloat_FromDouble(fabs(Py_NAN))) < 0) {
 | ||
|         return -1;
 | ||
|     }
 | ||
|     return 0;
 | ||
| }
 | ||
| 
 | ||
| static int
 | ||
| math_clear(PyObject *module)
 | ||
| {
 | ||
|     math_module_state *state = get_math_module_state(module);
 | ||
|     Py_CLEAR(state->str___ceil__);
 | ||
|     Py_CLEAR(state->str___floor__);
 | ||
|     Py_CLEAR(state->str___trunc__);
 | ||
|     return 0;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| math_free(void *module)
 | ||
| {
 | ||
|     math_clear((PyObject *)module);
 | ||
| }
 | ||
| 
 | ||
| static PyMethodDef math_methods[] = {
 | ||
|     {"acos",            math_acos,      METH_O,         math_acos_doc},
 | ||
|     {"acosh",           math_acosh,     METH_O,         math_acosh_doc},
 | ||
|     {"asin",            math_asin,      METH_O,         math_asin_doc},
 | ||
|     {"asinh",           math_asinh,     METH_O,         math_asinh_doc},
 | ||
|     {"atan",            math_atan,      METH_O,         math_atan_doc},
 | ||
|     {"atan2",           _PyCFunction_CAST(math_atan2),     METH_FASTCALL,  math_atan2_doc},
 | ||
|     {"atanh",           math_atanh,     METH_O,         math_atanh_doc},
 | ||
|     {"cbrt",            math_cbrt,      METH_O,         math_cbrt_doc},
 | ||
|     MATH_CEIL_METHODDEF
 | ||
|     {"copysign",        _PyCFunction_CAST(math_copysign),  METH_FASTCALL,  math_copysign_doc},
 | ||
|     {"cos",             math_cos,       METH_O,         math_cos_doc},
 | ||
|     {"cosh",            math_cosh,      METH_O,         math_cosh_doc},
 | ||
|     MATH_DEGREES_METHODDEF
 | ||
|     MATH_DIST_METHODDEF
 | ||
|     {"erf",             math_erf,       METH_O,         math_erf_doc},
 | ||
|     {"erfc",            math_erfc,      METH_O,         math_erfc_doc},
 | ||
|     {"exp",             math_exp,       METH_O,         math_exp_doc},
 | ||
|     {"exp2",            math_exp2,      METH_O,         math_exp2_doc},
 | ||
|     {"expm1",           math_expm1,     METH_O,         math_expm1_doc},
 | ||
|     {"fabs",            math_fabs,      METH_O,         math_fabs_doc},
 | ||
|     MATH_FACTORIAL_METHODDEF
 | ||
|     MATH_FLOOR_METHODDEF
 | ||
|     MATH_FMA_METHODDEF
 | ||
|     MATH_FMOD_METHODDEF
 | ||
|     MATH_FREXP_METHODDEF
 | ||
|     MATH_FSUM_METHODDEF
 | ||
|     {"gamma",           math_gamma,     METH_O,         math_gamma_doc},
 | ||
|     {"gcd",             _PyCFunction_CAST(math_gcd),       METH_FASTCALL,  math_gcd_doc},
 | ||
|     {"hypot",           _PyCFunction_CAST(math_hypot),     METH_FASTCALL,  math_hypot_doc},
 | ||
|     MATH_ISCLOSE_METHODDEF
 | ||
|     MATH_ISFINITE_METHODDEF
 | ||
|     MATH_ISINF_METHODDEF
 | ||
|     MATH_ISNAN_METHODDEF
 | ||
|     MATH_ISQRT_METHODDEF
 | ||
|     {"lcm",             _PyCFunction_CAST(math_lcm),       METH_FASTCALL,  math_lcm_doc},
 | ||
|     MATH_LDEXP_METHODDEF
 | ||
|     {"lgamma",          math_lgamma,    METH_O,         math_lgamma_doc},
 | ||
|     {"log",             _PyCFunction_CAST(math_log),       METH_FASTCALL,  math_log_doc},
 | ||
|     {"log1p",           math_log1p,     METH_O,         math_log1p_doc},
 | ||
|     MATH_LOG10_METHODDEF
 | ||
|     MATH_LOG2_METHODDEF
 | ||
|     MATH_MODF_METHODDEF
 | ||
|     MATH_POW_METHODDEF
 | ||
|     MATH_RADIANS_METHODDEF
 | ||
|     {"remainder",       _PyCFunction_CAST(math_remainder), METH_FASTCALL,  math_remainder_doc},
 | ||
|     {"sin",             math_sin,       METH_O,         math_sin_doc},
 | ||
|     {"sinh",            math_sinh,      METH_O,         math_sinh_doc},
 | ||
|     {"sqrt",            math_sqrt,      METH_O,         math_sqrt_doc},
 | ||
|     {"tan",             math_tan,       METH_O,         math_tan_doc},
 | ||
|     {"tanh",            math_tanh,      METH_O,         math_tanh_doc},
 | ||
|     MATH_SUMPROD_METHODDEF
 | ||
|     MATH_TRUNC_METHODDEF
 | ||
|     MATH_PROD_METHODDEF
 | ||
|     MATH_PERM_METHODDEF
 | ||
|     MATH_COMB_METHODDEF
 | ||
|     MATH_NEXTAFTER_METHODDEF
 | ||
|     MATH_ULP_METHODDEF
 | ||
|     {NULL,              NULL}           /* sentinel */
 | ||
| };
 | ||
| 
 | ||
| static PyModuleDef_Slot math_slots[] = {
 | ||
|     {Py_mod_exec, math_exec},
 | ||
|     {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
 | ||
|     {Py_mod_gil, Py_MOD_GIL_NOT_USED},
 | ||
|     {0, NULL}
 | ||
| };
 | ||
| 
 | ||
| PyDoc_STRVAR(module_doc,
 | ||
| "This module provides access to the mathematical functions\n"
 | ||
| "defined by the C standard.");
 | ||
| 
 | ||
| static struct PyModuleDef mathmodule = {
 | ||
|     PyModuleDef_HEAD_INIT,
 | ||
|     .m_name = "math",
 | ||
|     .m_doc = module_doc,
 | ||
|     .m_size = sizeof(math_module_state),
 | ||
|     .m_methods = math_methods,
 | ||
|     .m_slots = math_slots,
 | ||
|     .m_clear = math_clear,
 | ||
|     .m_free = math_free,
 | ||
| };
 | ||
| 
 | ||
| PyMODINIT_FUNC
 | ||
| PyInit_math(void)
 | ||
| {
 | ||
|     return PyModuleDef_Init(&mathmodule);
 | ||
| }
 |