mirror of
				https://github.com/python/cpython.git
				synced 2025-10-31 05:31:20 +00:00 
			
		
		
		
	 c2627d6eea
			
		
	
	
		c2627d6eea
		
			
		
	
	
	
	
		
			
			This PR adds the ability to enable the GIL if it was disabled at interpreter startup, and modifies the multi-phase module initialization path to enable the GIL when loading a module, unless that module's spec includes a slot indicating it can run safely without the GIL. PEP 703 called the constant for the slot `Py_mod_gil_not_used`; I went with `Py_MOD_GIL_NOT_USED` for consistency with gh-104148. A warning will be issued up to once per interpreter for the first GIL-using module that is loaded. If `-v` is given, a shorter message will be printed to stderr every time a GIL-using module is loaded (including the first one that issues a warning).
		
			
				
	
	
		
			159 lines
		
	
	
	
		
			5.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			159 lines
		
	
	
	
		
			5.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* statistics accelerator C extension: _statistics module. */
 | ||
| 
 | ||
| // Need limited C API version 3.13 for Py_mod_gil
 | ||
| #include "pyconfig.h"   // Py_GIL_DISABLED
 | ||
| #ifndef Py_GIL_DISABLED
 | ||
| #  define Py_LIMITED_API 0x030d0000
 | ||
| #endif
 | ||
| 
 | ||
| #include "Python.h"
 | ||
| #include "clinic/_statisticsmodule.c.h"
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| module _statistics
 | ||
| 
 | ||
| [clinic start generated code]*/
 | ||
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/
 | ||
| 
 | ||
| /*
 | ||
|  * There is no closed-form solution to the inverse CDF for the normal
 | ||
|  * distribution, so we use a rational approximation instead:
 | ||
|  * Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
 | ||
|  * Normal Distribution".  Applied Statistics. Blackwell Publishing. 37
 | ||
|  * (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
 | ||
|  */
 | ||
| 
 | ||
| /*[clinic input]
 | ||
| _statistics._normal_dist_inv_cdf -> double
 | ||
|    p: double
 | ||
|    mu: double
 | ||
|    sigma: double
 | ||
|    /
 | ||
| [clinic start generated code]*/
 | ||
| 
 | ||
| static double
 | ||
| _statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu,
 | ||
|                                       double sigma)
 | ||
| /*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/
 | ||
| {
 | ||
|     double q, num, den, r, x;
 | ||
|     if (p <= 0.0 || p >= 1.0) {
 | ||
|         goto error;
 | ||
|     }
 | ||
| 
 | ||
|     q = p - 0.5;
 | ||
|     if(fabs(q) <= 0.425) {
 | ||
|         r = 0.180625 - q * q;
 | ||
|         // Hash sum-55.8831928806149014439
 | ||
|         num = (((((((2.5090809287301226727e+3 * r +
 | ||
|                      3.3430575583588128105e+4) * r +
 | ||
|                      6.7265770927008700853e+4) * r +
 | ||
|                      4.5921953931549871457e+4) * r +
 | ||
|                      1.3731693765509461125e+4) * r +
 | ||
|                      1.9715909503065514427e+3) * r +
 | ||
|                      1.3314166789178437745e+2) * r +
 | ||
|                      3.3871328727963666080e+0) * q;
 | ||
|         den = (((((((5.2264952788528545610e+3 * r +
 | ||
|                      2.8729085735721942674e+4) * r +
 | ||
|                      3.9307895800092710610e+4) * r +
 | ||
|                      2.1213794301586595867e+4) * r +
 | ||
|                      5.3941960214247511077e+3) * r +
 | ||
|                      6.8718700749205790830e+2) * r +
 | ||
|                      4.2313330701600911252e+1) * r +
 | ||
|                      1.0);
 | ||
|         if (den == 0.0) {
 | ||
|             goto error;
 | ||
|         }
 | ||
|         x = num / den;
 | ||
|         return mu + (x * sigma);
 | ||
|     }
 | ||
|     r = (q <= 0.0) ? p : (1.0 - p);
 | ||
|     if (r <= 0.0 || r >= 1.0) {
 | ||
|         goto error;
 | ||
|     }
 | ||
|     r = sqrt(-log(r));
 | ||
|     if (r <= 5.0) {
 | ||
|         r = r - 1.6;
 | ||
|         // Hash sum-49.33206503301610289036
 | ||
|         num = (((((((7.74545014278341407640e-4 * r +
 | ||
|                      2.27238449892691845833e-2) * r +
 | ||
|                      2.41780725177450611770e-1) * r +
 | ||
|                      1.27045825245236838258e+0) * r +
 | ||
|                      3.64784832476320460504e+0) * r +
 | ||
|                      5.76949722146069140550e+0) * r +
 | ||
|                      4.63033784615654529590e+0) * r +
 | ||
|                      1.42343711074968357734e+0);
 | ||
|         den = (((((((1.05075007164441684324e-9 * r +
 | ||
|                      5.47593808499534494600e-4) * r +
 | ||
|                      1.51986665636164571966e-2) * r +
 | ||
|                      1.48103976427480074590e-1) * r +
 | ||
|                      6.89767334985100004550e-1) * r +
 | ||
|                      1.67638483018380384940e+0) * r +
 | ||
|                      2.05319162663775882187e+0) * r +
 | ||
|                      1.0);
 | ||
|     } else {
 | ||
|         r -= 5.0;
 | ||
|         // Hash sum-47.52583317549289671629
 | ||
|         num = (((((((2.01033439929228813265e-7 * r +
 | ||
|                      2.71155556874348757815e-5) * r +
 | ||
|                      1.24266094738807843860e-3) * r +
 | ||
|                      2.65321895265761230930e-2) * r +
 | ||
|                      2.96560571828504891230e-1) * r +
 | ||
|                      1.78482653991729133580e+0) * r +
 | ||
|                      5.46378491116411436990e+0) * r +
 | ||
|                      6.65790464350110377720e+0);
 | ||
|         den = (((((((2.04426310338993978564e-15 * r +
 | ||
|                      1.42151175831644588870e-7) * r +
 | ||
|                      1.84631831751005468180e-5) * r +
 | ||
|                      7.86869131145613259100e-4) * r +
 | ||
|                      1.48753612908506148525e-2) * r +
 | ||
|                      1.36929880922735805310e-1) * r +
 | ||
|                      5.99832206555887937690e-1) * r +
 | ||
|                      1.0);
 | ||
|     }
 | ||
|     if (den == 0.0) {
 | ||
|         goto error;
 | ||
|     }
 | ||
|     x = num / den;
 | ||
|     if (q < 0.0) {
 | ||
|         x = -x;
 | ||
|     }
 | ||
|     return mu + (x * sigma);
 | ||
| 
 | ||
|   error:
 | ||
|     PyErr_SetString(PyExc_ValueError, "inv_cdf undefined for these parameters");
 | ||
|     return -1.0;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| static PyMethodDef statistics_methods[] = {
 | ||
|     _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF
 | ||
|     {NULL, NULL, 0, NULL}
 | ||
| };
 | ||
| 
 | ||
| PyDoc_STRVAR(statistics_doc,
 | ||
| "Accelerators for the statistics module.\n");
 | ||
| 
 | ||
| static struct PyModuleDef_Slot _statisticsmodule_slots[] = {
 | ||
|     {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
 | ||
|     {Py_mod_gil, Py_MOD_GIL_NOT_USED},
 | ||
|     {0, NULL}
 | ||
| };
 | ||
| 
 | ||
| static struct PyModuleDef statisticsmodule = {
 | ||
|         PyModuleDef_HEAD_INIT,
 | ||
|         "_statistics",
 | ||
|         statistics_doc,
 | ||
|         0,
 | ||
|         statistics_methods,
 | ||
|         _statisticsmodule_slots,
 | ||
|         NULL,
 | ||
|         NULL,
 | ||
|         NULL
 | ||
| };
 | ||
| 
 | ||
| PyMODINIT_FUNC
 | ||
| PyInit__statistics(void)
 | ||
| {
 | ||
|     return PyModuleDef_Init(&statisticsmodule);
 | ||
| }
 |